亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        籠型感應(yīng)電機轉(zhuǎn)子軸向分段錯開結(jié)構(gòu)削弱同步附加轉(zhuǎn)矩的研究

        2023-10-31 08:09:12任曉明寧銀行鮑曉華
        電工技術(shù)學(xué)報 2023年20期
        關(guān)鍵詞:磁場

        徐 威 任曉明 寧銀行 鮑曉華

        籠型感應(yīng)電機轉(zhuǎn)子軸向分段錯開結(jié)構(gòu)削弱同步附加轉(zhuǎn)矩的研究

        徐 威1任曉明1寧銀行1鮑曉華2

        (1. 上海電機學(xué)院電氣學(xué)院 上海 201306 2. 合肥工業(yè)大學(xué)電氣與自動化工程學(xué)院 合肥 230009)

        特定槽配合感應(yīng)電機輸出轉(zhuǎn)矩與電機起動位置有關(guān)。為抑制轉(zhuǎn)矩隨起動位置周期變化引起的轉(zhuǎn)矩波動,提出一種削弱同步附加轉(zhuǎn)矩的軸向分段錯開轉(zhuǎn)子結(jié)構(gòu)。建立電磁轉(zhuǎn)矩計算模型,推導(dǎo)關(guān)于轉(zhuǎn)子初始位置的轉(zhuǎn)矩幅值表達式,確定產(chǎn)生恒定轉(zhuǎn)矩的磁場階次和電機轉(zhuǎn)速條件?;诖艅觿菥€性分布假設(shè),探討轉(zhuǎn)子分段錯開結(jié)構(gòu)減小諧波電動勢的機理,量化同步附加轉(zhuǎn)矩削弱程度與轉(zhuǎn)子錯開段數(shù)的關(guān)系。以四種特殊槽配合為例,仿真分析單斜槽轉(zhuǎn)子、分段錯開轉(zhuǎn)子及兩者組合結(jié)構(gòu)轉(zhuǎn)子,對電機基波轉(zhuǎn)矩和同步附加轉(zhuǎn)矩的影響。最后,選擇等槽配合方案試制雙斜槽轉(zhuǎn)子樣機,開展電機堵轉(zhuǎn)轉(zhuǎn)矩和空載特性試驗。結(jié)果表明,轉(zhuǎn)子分段錯開結(jié)構(gòu)有效削弱了同步附加轉(zhuǎn)矩,解決了等槽配合感應(yīng)電機起動困難的問題,為抑制電機轉(zhuǎn)矩波動和槽配合選取方法的研究提供了理論參考。

        軸向分段錯開轉(zhuǎn)子 同步附加轉(zhuǎn)矩 轉(zhuǎn)矩波動 槽配合 感應(yīng)電機

        0 引言

        近些年,在電動汽車等新興應(yīng)用領(lǐng)域中,電機輸出轉(zhuǎn)矩的平滑性與穩(wěn)定性要求逐漸提高[1-3]。相較于永磁同步電機,感應(yīng)電機(Induction Machine, IM)憑借著價格低廉、可靠性高和過載能力強等優(yōu)點,仍具有一定的競爭優(yōu)勢和應(yīng)用需求[4]。因此,眾多科技工作者開展了抑制感應(yīng)電機轉(zhuǎn)矩波動的理論研究與實踐驗證。感應(yīng)電機轉(zhuǎn)矩波動主要源于氣隙諧波磁場產(chǎn)生的諧波電磁轉(zhuǎn)矩[5],而諧波磁場可分為由變頻供電方式導(dǎo)致的時間諧波分量,以及由分布繞組與鐵心開槽結(jié)構(gòu)引起的空間諧波分量[6-7]。相應(yīng)的轉(zhuǎn)矩脈動抑制措施可以從諧波磁場來源展開,一方面可以優(yōu)化電機控制算法,減小諧波電流分量來降低電機轉(zhuǎn)矩脈動[8-9];另一方面也可以調(diào)整電機結(jié)構(gòu)參數(shù)來降低由空間諧波磁場導(dǎo)致的轉(zhuǎn)矩脈動[10-12]?;谙魅蹩臻g諧波磁場的轉(zhuǎn)矩研究,主要從電機定子側(cè)與轉(zhuǎn)子側(cè)結(jié)構(gòu)優(yōu)化兩個方向展開。Li Yanxin等探究定子集中繞組與鐵心結(jié)構(gòu)對轉(zhuǎn)矩特性的影響,對比分析不同拓撲電機的轉(zhuǎn)矩分量,研究表明齒間不對稱飽和是導(dǎo)致轉(zhuǎn)矩脈動差異的主要原因[10]。T. Gundogdu等優(yōu)化電機轉(zhuǎn)子槽形參數(shù),在轉(zhuǎn)子閉口槽槽口處設(shè)置U型槽橋結(jié)構(gòu),改善轉(zhuǎn)子側(cè)磁場分布來降低磁飽和程度,從而減小電機轉(zhuǎn)矩脈動[11]。G. Joksimovi?等對比研究定、轉(zhuǎn)子槽配合參數(shù)對電機負載時轉(zhuǎn)矩脈動的影響,根據(jù)轉(zhuǎn)子直槽或斜槽類型,分別總結(jié)八極電機槽配合參數(shù)的選取范圍,并按照轉(zhuǎn)矩脈動大小依次排序[12]。籠型轉(zhuǎn)子軸向斜槽是一種傳統(tǒng)且有效的抑制轉(zhuǎn)矩波動的措施。基于單斜槽轉(zhuǎn)子結(jié)構(gòu),一種帶中間環(huán)的斜槽轉(zhuǎn)子逐步發(fā)展并應(yīng)用在雙速電機中,有助于減小電機高速運行時的轉(zhuǎn)矩脈動,并提高電機低速運行時的輸出轉(zhuǎn)矩[13]。通過對中環(huán)斜槽轉(zhuǎn)子結(jié)構(gòu)參數(shù)的組合設(shè)計,優(yōu)化后的轉(zhuǎn)子相較于單斜槽轉(zhuǎn)子進一步削弱了空間諧波磁場,從而降低電機轉(zhuǎn)矩脈動[14]。但是,考慮感應(yīng)電機附加轉(zhuǎn)矩與雜散損耗的槽配合選取矛盾仍然存在[15-16],已有的轉(zhuǎn)矩脈動抑制研究往往基于電機常規(guī)的槽配合選取范圍。

        感應(yīng)電機結(jié)構(gòu)優(yōu)化措施可以為其他類型電機抑制轉(zhuǎn)矩脈動研究提供思路。永磁同步電機采用類似于單斜槽轉(zhuǎn)子的軸向分段傾斜磁極,有助于削弱齒槽轉(zhuǎn)矩、減小轉(zhuǎn)矩脈動等[17-18]。為避免單向傾斜磁極引起的不平衡磁拉力問題,永磁電機采用軸向分段錯開的非斜極轉(zhuǎn)子,并結(jié)合其他措施抑制電機齒槽轉(zhuǎn)矩[19-20]。這種轉(zhuǎn)子分段錯開的斜槽代替結(jié)構(gòu)也可以抑制感應(yīng)電機轉(zhuǎn)矩脈動[21]。但是,轉(zhuǎn)子軸向分段錯開結(jié)構(gòu)減小諧波轉(zhuǎn)矩的工作原理還未明確。相較于隨轉(zhuǎn)子位置周期變化的齒槽轉(zhuǎn)矩[22],很少有文獻研究感應(yīng)電機電磁轉(zhuǎn)矩的空間周期性,尤其是針對起動過程中的附加轉(zhuǎn)矩分量,基于削弱附加轉(zhuǎn)矩以拓寬電機槽配合選取范圍的研究還不夠充分。

        本文針對感應(yīng)電機輸出轉(zhuǎn)矩隨起動位置周期變化的現(xiàn)象,提出一種轉(zhuǎn)子軸向分段錯開結(jié)構(gòu)削弱同步附加轉(zhuǎn)矩,降低電機轉(zhuǎn)矩波動。通過建立電磁轉(zhuǎn)矩計算模型,推導(dǎo)恒定轉(zhuǎn)矩幅值與轉(zhuǎn)子初始位置的關(guān)系,確定典型槽配合電機恒定轉(zhuǎn)矩的空間周期性。仿真分析單斜槽轉(zhuǎn)子、分段錯開轉(zhuǎn)子及其組合結(jié)構(gòu)轉(zhuǎn)子削弱同步附加轉(zhuǎn)矩的效果,并采用等槽配合樣機試驗來驗證理論分析的合理性。為抑制電機轉(zhuǎn)矩波動提供設(shè)計思路,并為探索感應(yīng)電機新的槽配合選取規(guī)則提供理論參考。

        1 電磁轉(zhuǎn)矩解析計算

        1.1 轉(zhuǎn)矩通用表達式

        感應(yīng)電機電磁轉(zhuǎn)矩可利用虛位移法求解,根據(jù)轉(zhuǎn)矩表達式的數(shù)學(xué)意義,確定不隨時間或空間位置角變化的恒定電磁轉(zhuǎn)矩的產(chǎn)生條件。對于三相籠型感應(yīng)電機,分別在定子側(cè)和轉(zhuǎn)子側(cè)建立繞組磁動勢坐標系,電機合成氣隙磁動勢包括定子合成磁動勢和轉(zhuǎn)子合成磁動勢,可表示[14]為

        其中,定、轉(zhuǎn)子諧波磁動勢的階次可分別表示為

        為便于后續(xù)電磁轉(zhuǎn)矩的計算,將轉(zhuǎn)子磁動勢表達式轉(zhuǎn)換至定子靜止坐標系中。利用空間機械位置角的變換關(guān)系,轉(zhuǎn)子合成磁動勢又可表示為

        式中,為轉(zhuǎn)差率。

        根據(jù)虛位移法的定義,電機電磁轉(zhuǎn)矩等于氣隙磁場能量對轉(zhuǎn)角的偏導(dǎo)數(shù)。若該角度表示為轉(zhuǎn)子虛位移,忽略磁能中的恒定部分,電機電磁轉(zhuǎn)矩通用表達式可化簡為

        式中,0為真空磁導(dǎo)率;l為電機軸向長度;0為氣隙的徑向長度。在此不考慮電機定、轉(zhuǎn)子開槽等因素引起的氣隙諧波磁導(dǎo)分量。

        電磁轉(zhuǎn)矩表達式可以化簡為關(guān)于磁動勢的兩項三角函數(shù)乘積項。對于第一項由不同階次定、轉(zhuǎn)子磁場產(chǎn)生的轉(zhuǎn)矩分量,以及第二項由轉(zhuǎn)子磁場自身產(chǎn)生的轉(zhuǎn)矩分量,轉(zhuǎn)矩幅值在空間周期內(nèi)的平均值恒為零,表現(xiàn)為空間轉(zhuǎn)矩脈動分量。僅當產(chǎn)生轉(zhuǎn)矩的定、轉(zhuǎn)子磁場階次絕對值相同,即||=||時,電磁轉(zhuǎn)矩幅值與轉(zhuǎn)子空間位置角無關(guān),可表示為

        式中,j為定、轉(zhuǎn)子諧波磁動勢初相位之差。

        由式(6)可進一步分析轉(zhuǎn)矩幅值與時間無關(guān)的條件,在此分為兩種情況。第一種情況為次轉(zhuǎn)子諧波磁場與感生它的ν次定子諧波磁場相互作用,即式(3)中2=0,該轉(zhuǎn)矩分量可稱為異步轉(zhuǎn)矩[15]。在第二種情況中,轉(zhuǎn)矩由次轉(zhuǎn)子諧波磁場與非感生它的ν次定子諧波磁場相互作用,該轉(zhuǎn)矩分量可稱為同步轉(zhuǎn)矩[15]。若產(chǎn)生同步轉(zhuǎn)矩的兩種磁動勢的轉(zhuǎn)向相同,恒定轉(zhuǎn)矩還應(yīng)滿足電機轉(zhuǎn)速r=0的條件;若這兩種磁動勢的轉(zhuǎn)向相反,則轉(zhuǎn)速條件應(yīng)滿足

        式中,為電源頻率。對于式(6)中的其他轉(zhuǎn)矩分量,其幅值在時間周期內(nèi)的平均值恒為零,表現(xiàn)為時間轉(zhuǎn)矩脈動分量。

        1.2 恒定轉(zhuǎn)矩的空間周期性

        由此可知,轉(zhuǎn)矩幅值隨起動位置角變化的空間周期與轉(zhuǎn)子諧波磁動勢階次2成反比,其最小公倍數(shù)為一個轉(zhuǎn)子齒距。由于產(chǎn)生異步轉(zhuǎn)矩的磁場階次條件為2=0,故轉(zhuǎn)子初始位置變化不影響異步轉(zhuǎn)矩,僅需考慮同步轉(zhuǎn)矩的空間周期性。在此以四極感應(yīng)電機為例,同步附加轉(zhuǎn)矩的產(chǎn)生條件見表1,分別列出電機四種槽配合時,產(chǎn)生主要同步轉(zhuǎn)矩分量的磁場階次和電機轉(zhuǎn)速條件。氣隙諧波磁場正向與反向旋轉(zhuǎn)的差異性直接反映在階次正負號上。當r=24時,同階定、轉(zhuǎn)子諧波磁場轉(zhuǎn)向相同,同步轉(zhuǎn)矩的轉(zhuǎn)速條件均為零。當r=26, 28, 16時,產(chǎn)生同步轉(zhuǎn)矩的定、轉(zhuǎn)子磁場旋轉(zhuǎn)方向相反,由式(7)可知,相應(yīng)的電機正向轉(zhuǎn)速條件。根據(jù)產(chǎn)生同步轉(zhuǎn)矩的轉(zhuǎn)子磁場階次,可推斷四種槽配合電機最大同步附加轉(zhuǎn)矩的空間周期分別為1.0、0.5、1.0和1.0個轉(zhuǎn)子齒距。

        表1 四極感應(yīng)電機同步附加轉(zhuǎn)矩的產(chǎn)生條件

        Tab.1 Generation conditions for synchronous parasitic torque of four-pole induction machine

        2 軸向分段錯開轉(zhuǎn)子

        為抑制恒定轉(zhuǎn)矩分量隨起動位置周期變化而引起的轉(zhuǎn)矩波動,本節(jié)提出一種軸向分段錯開轉(zhuǎn)子結(jié)構(gòu),如圖1所示,轉(zhuǎn)子沿軸向分為段,每段轉(zhuǎn)子軸向長度為l/,相鄰轉(zhuǎn)子間的圓周錯開距離為2/,其中,2為轉(zhuǎn)子齒距。軸向分段錯開轉(zhuǎn)子削弱諧波電動勢的工作原理如圖2所示,以錯開段數(shù)=4為例,轉(zhuǎn)子任意一根導(dǎo)條沿軸向分為四段導(dǎo)體并相互錯開,依次標記為1~4。根據(jù)電磁感應(yīng)原理,定子一階和二階齒諧波磁場在各導(dǎo)條中分別感生諧波電動勢ν1和ν2,同階感生電動勢的幅值相等。由于各段導(dǎo)條沿圓周均勻分布,導(dǎo)條12與導(dǎo)條34感生的一階諧波電動勢的方向相反,四段錯開轉(zhuǎn)子合成電動勢中的一階齒諧波分量被抵消,二階齒諧波電動勢同理也被抵消。但是對于兩段錯開轉(zhuǎn)子,即單根轉(zhuǎn)子導(dǎo)條分別錯開為導(dǎo)條13或?qū)l24,相鄰導(dǎo)條中二階齒諧波電動勢方向相同,故僅能抵消轉(zhuǎn)子一階齒諧波電動勢。通過各段錯開轉(zhuǎn)子電動勢之間的合成作用,可以抵消部分階次的諧波電動勢,進而削弱由齒諧波磁動勢產(chǎn)生的同步附加轉(zhuǎn)矩。假設(shè)合成轉(zhuǎn)子磁動勢為各段錯開轉(zhuǎn)子磁動勢的矢量和,由式(11)可知,此時感應(yīng)電機的諧波電磁轉(zhuǎn)矩可以表示為

        式中,為考慮轉(zhuǎn)子分段錯開效應(yīng)后的諧波電磁轉(zhuǎn)矩最大值;a2為轉(zhuǎn)子齒距角。

        圖2 軸向分段錯開轉(zhuǎn)子削弱諧波電動勢原理

        為描述分段錯開轉(zhuǎn)子對電機電磁轉(zhuǎn)矩的削弱程度,引入轉(zhuǎn)子錯開系數(shù)st,定義該系數(shù)為分段錯開轉(zhuǎn)子與完整轉(zhuǎn)子時電機諧波轉(zhuǎn)矩的幅值比??紤]到當前電機制造工藝水平,以錯開段數(shù)≤4為例,由式(12)化簡可知轉(zhuǎn)子錯開系數(shù)為

        將式(3)代入式(13)中,可計算軸向分段錯開轉(zhuǎn)子對兩類恒定轉(zhuǎn)矩的削弱程度。對于2=0時的異步轉(zhuǎn)矩,諧波階次越低則錯開系數(shù)越接近于1,轉(zhuǎn)矩幅值近似不變。對于2≠0時的同步轉(zhuǎn)矩,特定諧波階次時的錯開系數(shù)接近于零,轉(zhuǎn)矩分量近似被抵消。若以為正序數(shù),軸向分段錯開轉(zhuǎn)子抵消同步轉(zhuǎn)矩的轉(zhuǎn)子齒諧波磁場階次為

        在氣隙磁動勢線性分布的前提下,軸向分段錯開轉(zhuǎn)子可以抵消轉(zhuǎn)子諧波電動勢及其產(chǎn)生的同步附加轉(zhuǎn)矩,作用諧波的類型與錯開段數(shù)有關(guān)。若考慮錯開轉(zhuǎn)子軸向連接區(qū)域?qū)е碌穆┐?,則諧波的削弱程度存在一定的折扣,并且會引起電機主磁通部分降低、附加損耗增加等不利因素。

        3 削弱同步附加轉(zhuǎn)矩的仿真對比

        3.1 單斜槽轉(zhuǎn)子的影響

        傳統(tǒng)感應(yīng)電機設(shè)計理論通常采用轉(zhuǎn)子斜槽措施,并限制槽配合參數(shù)的選取范圍,從而避免電機在起動過程中產(chǎn)生較大的同步附加轉(zhuǎn)矩[15]。為對比不同轉(zhuǎn)子類型削弱同步附加轉(zhuǎn)矩的效果,本文選取表1中的四種非常規(guī)槽配合,建立相應(yīng)的電機模型,每種槽配合電機分別采用轉(zhuǎn)子直槽與單斜槽兩種結(jié)構(gòu),其他參數(shù)完全相同,三相感應(yīng)電機的主要參數(shù)見表2。在產(chǎn)生最大同步轉(zhuǎn)矩的轉(zhuǎn)速條件下,分別計算電機齒距范圍內(nèi)不同起動位置時的轉(zhuǎn)矩。直槽和單斜槽轉(zhuǎn)子感應(yīng)電機輸出轉(zhuǎn)矩波形如圖3所示,四種槽配合電機的輸出轉(zhuǎn)矩波形正弦周期變化,周期分別為1.0、0.5、1.0和1.0個轉(zhuǎn)子齒距,驗證了轉(zhuǎn)矩空間周期性的理論結(jié)果。若忽略異步附加轉(zhuǎn)矩分量,輸出轉(zhuǎn)矩的平均值約等于基波轉(zhuǎn)矩,轉(zhuǎn)矩波形的峰-峰值近似等于兩倍最大同步轉(zhuǎn)矩值。相較于直槽轉(zhuǎn)子,單斜槽轉(zhuǎn)子有效削弱了電機同步附加轉(zhuǎn)矩,四種槽配合電機的最大同步轉(zhuǎn)矩幅值分別減小了58.2%、55.0%、42.9%和61.8%。但是,單斜槽轉(zhuǎn)子仍無法改變特殊槽配合電機輸出轉(zhuǎn)矩的空間周 期性。

        表2 三相感應(yīng)電機的主要參數(shù)

        Tab.2 Main parameters of three-phase induction machine

        3.2 軸向分段錯開轉(zhuǎn)子的影響

        以兩段和三段錯開轉(zhuǎn)子為例,根據(jù)表2中的電機參數(shù),分別建立軸向分段錯開轉(zhuǎn)子電機模型,在此忽略錯開轉(zhuǎn)子間的軸向連通區(qū)域。電機輸出轉(zhuǎn)矩隨起動位置角的波形如圖4所示。在兩段錯開轉(zhuǎn)子情況下,四種槽配合電機輸出轉(zhuǎn)矩的波形為正弦波,空間周期均為1/2個轉(zhuǎn)子齒距。在三段錯開轉(zhuǎn)子情況下,r=24, 16時轉(zhuǎn)矩波形的空間周期為1/3個轉(zhuǎn)子齒距,r=26, 28時電機轉(zhuǎn)矩近似為恒定值,轉(zhuǎn)矩脈動分別為0.55%和1.0%。轉(zhuǎn)矩空間周期性的變化反映了最大同步轉(zhuǎn)矩類型的改變,特定轉(zhuǎn)子諧波磁場產(chǎn)生的同步轉(zhuǎn)矩近似被消除,驗證了兩段錯開轉(zhuǎn)子能抵消轉(zhuǎn)子一階齒諧波磁場產(chǎn)生的同步轉(zhuǎn)矩,三段錯開轉(zhuǎn)子能分別抵消轉(zhuǎn)子一階和二階齒諧波磁場各自產(chǎn)生的同步轉(zhuǎn)矩分量的分析結(jié)果。

        圖4 軸向分段錯開轉(zhuǎn)子感應(yīng)電機輸出轉(zhuǎn)矩波形

        不同轉(zhuǎn)子類型時感應(yīng)電機的轉(zhuǎn)矩值對比見表3,分別列出轉(zhuǎn)子類型為直槽、單斜槽、兩段錯開和三段錯開時,四種槽配合電機的基波轉(zhuǎn)矩和最大同步轉(zhuǎn)矩值。通過對比可知,相較于直槽轉(zhuǎn)子,單斜槽轉(zhuǎn)子有助于削弱不同槽配合電機的同步轉(zhuǎn)矩,并且略微降低基波轉(zhuǎn)矩;而分段錯開轉(zhuǎn)子僅削弱特定槽配合時的同步附加轉(zhuǎn)矩,基波轉(zhuǎn)矩的幅值近似不變。分段錯開轉(zhuǎn)子適用的槽配合范圍取決于同步附加轉(zhuǎn)矩的諧波磁場來源。

        表3 不同轉(zhuǎn)子類型時感應(yīng)電機的轉(zhuǎn)矩值對比

        Tab.3 Comparison of torque values of induction machines with different rotor types (單位: N·m)

        4 等槽配合感應(yīng)電機仿真與試驗

        4.1 三維有限元仿真

        通過第3節(jié)對四種槽配合電機的仿真計算,驗證了單斜槽轉(zhuǎn)子與分段錯開轉(zhuǎn)子對同步附加轉(zhuǎn)矩的削弱效果。為保證附加轉(zhuǎn)矩的削弱程度,本節(jié)將這兩種轉(zhuǎn)子結(jié)構(gòu)結(jié)合,形成兩段錯開斜槽結(jié)構(gòu)的雙斜槽轉(zhuǎn)子,轉(zhuǎn)子模型如圖5所示。考慮到電機等槽配合時,最大同步附加轉(zhuǎn)矩的產(chǎn)生條件為電機轉(zhuǎn)速r=0 r/min,為簡化后續(xù)樣機的試驗過程,在此以24-24等槽配合為例。建立轉(zhuǎn)子單斜槽、兩段錯開和雙斜槽時的電機對比模型,轉(zhuǎn)子斜槽距離均為一個齒距,電機除轉(zhuǎn)子類型外其他參數(shù)完全相同(見表2)。三臺電機堵轉(zhuǎn)轉(zhuǎn)矩仿真波形對比如圖6所示,轉(zhuǎn)矩幅值隨起動位置角近似正弦變化,其空間周期性與二維有限元仿真中的結(jié)果相同。相較于前兩種轉(zhuǎn)子,電機采用雙斜槽轉(zhuǎn)子組合結(jié)構(gòu)時,最大同步附加轉(zhuǎn)矩幅值分別減小80.3%和50.2%,轉(zhuǎn)矩空間周期性為半個齒距。轉(zhuǎn)矩對比結(jié)果驗證了雙斜槽轉(zhuǎn)子削弱一階齒諧波磁場產(chǎn)生同步轉(zhuǎn)矩的優(yōu)越性,其削弱程度優(yōu)于任意一種單獨轉(zhuǎn)子結(jié)構(gòu)時的效果。

        圖5 籠型轉(zhuǎn)子的三維有限元模型

        圖6 等槽配合電機堵轉(zhuǎn)轉(zhuǎn)矩的仿真波形

        在各導(dǎo)條中設(shè)置隨轉(zhuǎn)子旋轉(zhuǎn)的電流橫截面,計算導(dǎo)條電流在圓周內(nèi)的空間分布。雙斜槽轉(zhuǎn)子導(dǎo)條電流的諧波分析如圖7所示,相較于單側(cè)轉(zhuǎn)子電流,合成轉(zhuǎn)子電流的基波分量略微減小,11次與13次的一階齒諧波電流幅值大幅降低,分別減小84.2%和87.8%,而23次與25次的二階齒諧波電流的減小程度分別為1.15%和0.43%,可近似忽略不計。諧波電流的對比結(jié)果驗證了轉(zhuǎn)子分段錯開結(jié)構(gòu)的作用效果,雙斜槽轉(zhuǎn)子具有削弱轉(zhuǎn)子一階齒諧波電動勢的優(yōu)越效果,但不影響轉(zhuǎn)子二階齒諧波電動勢。

        圖7 雙斜槽轉(zhuǎn)子感應(yīng)電機導(dǎo)條電流諧波分析

        4.2 等槽配合樣機對比試驗

        籠型感應(yīng)電機斜槽轉(zhuǎn)子的最佳斜槽距離通常為一個齒距,有助于削弱奇次齒諧波磁場。為探討雙斜槽轉(zhuǎn)子組合結(jié)構(gòu)中,轉(zhuǎn)子斜槽度參數(shù)對同步附加轉(zhuǎn)矩抑制效果的影響,試制兩臺不同斜槽度的雙斜槽轉(zhuǎn)子樣機,斜槽距離分別為0.9以及1個齒距。樣機轉(zhuǎn)子實物如圖8所示。搭建如圖9所示的堵轉(zhuǎn)轉(zhuǎn)矩試驗平臺,以目測讀取的轉(zhuǎn)矩最大值作為該轉(zhuǎn)子位置時的電機堵轉(zhuǎn)轉(zhuǎn)矩值。

        圖8 閉口槽形的雙斜槽轉(zhuǎn)子

        圖9 電機堵轉(zhuǎn)轉(zhuǎn)矩試驗平臺

        樣機堵轉(zhuǎn)轉(zhuǎn)矩波形如圖10所示,轉(zhuǎn)矩幅值隨轉(zhuǎn)子機械位置角近似正弦變化,其空間周期約為半個轉(zhuǎn)子齒距(2/2)。由此推斷,同步附加轉(zhuǎn)矩以二階齒諧波磁場產(chǎn)生的轉(zhuǎn)矩分量為主。相較于4.1節(jié)的仿真結(jié)果,樣機基波轉(zhuǎn)矩的試驗值較為接近,但是最大同步轉(zhuǎn)矩的估算值偏大,導(dǎo)致堵轉(zhuǎn)轉(zhuǎn)矩的最值存在誤差??紤]轉(zhuǎn)子斜槽設(shè)計對樣機轉(zhuǎn)矩的影響,相較于斜槽距離sk=0.92時的情況,樣機轉(zhuǎn)子sk=1.02時的堵轉(zhuǎn)轉(zhuǎn)矩最小值增加4.7 N·m,最大值減小8.1 N·m。轉(zhuǎn)矩對比結(jié)果表明,在組合轉(zhuǎn)子結(jié)構(gòu)中,轉(zhuǎn)子導(dǎo)條斜槽效應(yīng)與錯開效應(yīng)對轉(zhuǎn)子諧波磁動勢存在耦合的削弱作用。錯開導(dǎo)條結(jié)構(gòu)對奇次諧波產(chǎn)生同步轉(zhuǎn)矩的抵消效果存在誤差,仍需補充采取最佳斜槽角的轉(zhuǎn)子斜槽設(shè)計,從而最大程度削弱同步附加轉(zhuǎn)矩。

        圖10 雙斜槽轉(zhuǎn)子樣機堵轉(zhuǎn)轉(zhuǎn)矩的試驗波形

        為探究雙斜槽轉(zhuǎn)子組合結(jié)構(gòu)對定子側(cè)磁場的影響,在此開展樣機空載特性試驗。利用測定的線電壓、相電流和輸入功率參數(shù),樣機空載特性曲線如圖11所示,繪制其中一臺雙斜槽轉(zhuǎn)子樣機的空載特性曲線。由鐵耗與機械損耗組成的恒定損耗con近似與電壓比的二次方線性相關(guān),其擬合曲線的縱軸截距約等于機械損耗。圖中,0和N分別為空載電壓和額定電壓。兩臺樣機空載試驗結(jié)果見表4,相較于斜槽距離sk=0.92時的情況,樣機轉(zhuǎn)子sk=1.02時的空載電流增加約2.8%,由此導(dǎo)致定子空載銅耗增加5.5 W,而恒定損耗值共增加7.26 W。樣機對比試驗表明,雙斜槽轉(zhuǎn)子有助于削弱同步附加轉(zhuǎn)矩,解決等槽配合電機起動困難的問題。但是,錯開轉(zhuǎn)子連接區(qū)域會引起邊緣漏磁,降低了電機的有效磁通,進而導(dǎo)致功率因數(shù)降低和空載損耗增加等。

        圖11 樣機空載特性曲線

        表4 雙斜槽轉(zhuǎn)子樣機空載試驗結(jié)果對比

        Tab.4 Comparison of no-load test results of dual skewed rotor prototype machines

        5 結(jié)論

        本文提出一種轉(zhuǎn)子軸向分段錯開結(jié)構(gòu)削弱電機同步附加轉(zhuǎn)矩,抑制轉(zhuǎn)矩幅值隨起動位置周期變化引起的轉(zhuǎn)矩波動。通過仿真分析轉(zhuǎn)子單斜槽、分段錯開及其組合結(jié)構(gòu)時的電機轉(zhuǎn)矩特性,對比試驗兩臺等槽配合樣機,可以得到以下主要結(jié)論:

        1)感應(yīng)電機恒定轉(zhuǎn)矩包括異步轉(zhuǎn)矩與同步轉(zhuǎn)矩兩類,僅同步轉(zhuǎn)矩幅值隨電機起動位置周期性變化,其空間周期大小與產(chǎn)生轉(zhuǎn)矩的轉(zhuǎn)子諧波磁場階次成反比,周期最小公倍數(shù)為一個轉(zhuǎn)子齒距。

        2)轉(zhuǎn)子軸向分段錯開結(jié)構(gòu)可以減小轉(zhuǎn)子諧波電動勢,改變特殊槽配合電機輸出轉(zhuǎn)矩的空間周期性,提高輸出轉(zhuǎn)矩最小值。當錯開段數(shù)=2時,可近似抵消轉(zhuǎn)子奇次齒諧波磁場產(chǎn)生的同步轉(zhuǎn)矩分量。

        3)相較于軸向斜槽和分段錯開轉(zhuǎn)子,兩者組合結(jié)構(gòu)削弱同步附加轉(zhuǎn)矩效果更佳。雙斜槽轉(zhuǎn)子斜槽距離為一個齒距時,樣機起動轉(zhuǎn)矩比的最小值約為1.5倍,有助于實現(xiàn)等槽配合電機正常起動,但轉(zhuǎn)子局部漏磁會引起空載損耗增加等缺點。

        [1] Zhu Z Q, Chu W Q, Guan Y. Quantitative comparison of electromagnetic performance of electrical machines for HEVs/EVs[J]. CES Transactions on Electrical Machines and Systems, 2017, 1(1): 37-47.

        [2] Wang Zhikun, Ching T W, Huang Shaojia, et al. Challenges faced by electric vehicle motors and their solutions[J]. IEEE Access, 2020, 9: 5228-5249.

        [3] 王道涵, 彭晨, 王柄東, 等. 電動汽車新型轉(zhuǎn)子內(nèi)置式永磁同步電動機轉(zhuǎn)矩脈動與電磁振動抑制研究[J]. 中國電機工程學(xué)報, 2022, 42(14): 5289- 5300.

        Wang Daohan, Peng Chen, Wang Bingdong, et al. Research on a novel interior permanent magnet machine with segmented rotor to mitigate torque ripple and electromagnetic vibration[J]. Proceedings of the CSEE, 2022, 42(14): 5289-5300.

        [4] Thomas R, Husson H, Garbuio L, et al. Comparative study of the tesla model S and audi e-tron induction motors[C]//2021 17th Conference on Electrical Machines, Drives and Power Systems, Sofia, Bulgaria, 2021: 1-6.

        [5] Mishra A K, Rajpurohit B S, Kumar R. Induction machine drive design for enhanced torque profile[J]. IEEE Transactions on Industry Applications, 2018, 54(2): 1283-1291.

        [6] 肖陽, 宋金元, 屈仁浩, 等. 變頻諧波對電機振動噪聲特性的影響規(guī)律[J]. 電工技術(shù)學(xué)報, 2021, 36(12): 2607-2615.

        Xiao Yang, Song Jinyuan, Qu Renhao, et al. The effect of harmonics on electromagnetic vibration and noise characteristic in inverter-duty motor[J]. Transa- ctions of China Electrotechnical Society, 2021, 36(12): 2607-2615.

        [7] Keerthipati S, Nallamekala K K. UPSC SVPWM controlled multi-level inverter topology for multiple pole-pair induction motor drive for minimising torque ripple[J]. IET Power Electronics, 2016, 9(6): 1306- 1314.

        [8] 黃林森, 趙文祥, 吉敬華, 等. 穩(wěn)態(tài)性能改善的雙三相永磁電機直接轉(zhuǎn)矩控制[J]. 電工技術(shù)學(xué)報, 2022, 37(2): 355-367.

        Huang Linsen, Zhao Wenxiang, Ji Jinghua, et al. Direct torque control for dual three-phase permanent- magnet machine with improved steady-state perfor- mance[J]. Transactions of China Electrotechnical Society, 2022, 37(2): 355-367.

        [9] 賈慧利, 楊家強, 楊光輝. 基于轉(zhuǎn)子磁鏈優(yōu)化的五相感應(yīng)電機電子變極策略[J]. 電工技術(shù)學(xué)報, 2022, 37(14): 3587-3597, 3631.

        Jia Huili, Yang Jiaqiang, Yang Guanghui. Electronic pole-changing strategy for five-phase induction motor based on rotor flux optimization[J]. Transactions of China Electrotechnical Society, 2022, 37(14): 3587- 3597, 3631.

        [10] Li Yanxin, Zhu Ziqiang, Li Guang jin. Influence of stator topologies on average torque and torque ripple of fractional-slot SPM machines with fully closed slots[J]. IEEE Transactions on Industry Applications, 2018, 54(3): 2151-2164.

        [11] Gundogdu T, Zhu Z Q, Mipo J C. Optimization and improvement of advanced nonoverlapping induction machines for EVs/HEVs[J]. IEEE Access, 2022, 10: 13329-13353.

        [12] Joksimovi? G, Melecio J I, Tuohy P M, et al. Towards the optimal ‘slot combination’ for steady-state torque ripple minimization: an eight-pole cage rotor indu- ction motor case study[J]. Electrical Engineering, 2020, 102(1): 293-308.

        [13] Cheraghi M, Bayati B M, Mahmoudian E M, et al. Determination of torque-speed characteristic for a two-speed elevator induction machine[J]. IET Electric Power Applications, 2018, 12(2): 239-246.

        [14] Xu Wei, Bao Xiaohua, Di Chong, et al. Optimal angle combination for improving electromagnetic torque in induction motor with double-skewed rotor[J]. IEEE Transactions on Magnetics, 2017, 53(11): 1-5.

        [15] Boldea I, Nasar S A. The induction machines design handbook[M]. 2nd ed. Boca Raton, FL: CRC Press/ Taylor & Francis, 2010.

        [16] 安俊義, 趙海森, 劉曉芳, 等. 槽配合對單繞組雙速直槽異步電動機空載磁場及損耗的影響[J]. 微特電機, 2015, 43(5): 17-21.

        An Junyi, Zhao Haisen, Liu Xiaofang, et al. Influence of slot combination change on no-load magnetic field and loss of single-winding two-speed motor with straight slot system[J]. Small & Special Electrical Machines, 2015, 43(5): 17-21.

        [17] Barman D, Pillay P. Effect of skewing in a variable flux interior permanent magnet synchronous machine[J]. IEEE Transactions on Industry Applications, 2020, 56(6): 6399-6410.

        [18] Ullah W, Khan F, Umair M. Design and optimization of segmented PM consequent pole hybrid excited flux switching machine for EV/HEV application[J]. CES Transactions on Electrical Machines and Systems, 2020, 4(3): 206-214.

        [19] Hong Jianfeng, Wang Shanming, Sun Yuguang, et al. Piecewise stagger poles with continuous skew edge for vibration reduction in surface-mounted PM synchronous machines[J]. IEEE Transactions on Industrial Electronics, 2021, 68(9): 8498-8506.

        [20] Peng Chen, Wang Daohan, Feng Zhenkang, et al. A new segmented rotor to mitigate torque ripple and electromagnetic vibration of interior permanent magnet machine[J]. IEEE Transactions on Industrial Electronics, 2022, 69(2): 1367-1377.

        [21] Darjazini A, Vahedi A, Nobahari A, et al. Analysis of electromagnetic torque for induction motors with a novel non-skewed rotor structure[J]. COMPEL-the International Journal for Computation and Mathe- matics in Electrical and Electronic Engineering, 2021, 41(1): 238-257.

        [22] 劉家琦, 白金剛, 鄭萍, 等. 基于磁場調(diào)制原理的齒槽轉(zhuǎn)矩研究[J]. 電工技術(shù)學(xué)報, 2020, 35(5): 931- 941.

        Liu Jiaqi, Bai Jingang, Zheng Ping, et al. Investi- gation of cogging torque based on magnetic field modulation principle[J]. Transactions of China Elec- trotechnical Society, 2020, 35(5): 931-941.

        Research on the Reduction of Synchronous Parasitic Torque by the Rotor Axial Piecewise Staggered Structure of Cage Induction Machine

        1112

        (1. School of Electrical Engineering Shanghai Dianji University Shanghai 201306 China 2. School of Electrical Engineering and Automation Hefei University of Technology Hefei 230009 China)

        The smoothness and stability requirements of motor output torque have gradually increased in recent years, especially in emerging applications such as electric vehicles. The induction machine (IM), due to its low price, high reliability, and strong overload capacity, still has certain competitive advantages and application needs. In classical motor design theory, the range of slot combinations is limited to ignore the large synchronous parasitic torque, such as the equivalent slot combination. However, the stray loss of IM is small when the number of stator slots and rotor slots is similar. For some of these special slot combinations, the output torque of the induction machine is related to the starting position of the motor. In order to suppress the torque ripple caused by the periodic torque variation with the starting position, a rotor axial piecewise staggered structure is proposed to weaken the synchronous parasitic torque. The selection range of slot combinations can be expanded by solving the starting difficulty of the IM with an equivalent slot combination.

        The electromagnetic torque calculation model is established, the torque amplitude expression about the initial rotor position is deduced, and the magnetic field order and the motor speed conditions for generating constant torque are determined. Based on the assumption of the linearly distributed magnetic potential, the mechanism of weakening the harmonic electromotive force is discussed using a piecewise staggered rotor structure. The relationship between the weakening degree of synchronous parasitic torque and the number of staggered rotor segments is quantified. Taking four kinds of special slot combinations as examples, the effects of the single skewed rotor, the piecewise staggered rotor, and the rotor with the combined structure on the fundamental torque and synchronous parasitic torque are simulated and analyzed. Finally, the dual skewed rotor prototype machines are trial-produced with the equivalent slot combination scheme, and the motor locked-rotor torque tests are carried out.

        Simulation results on the torque components show that the single skewed rotor weakens the synchronous torque of the motor with different slot combinations while slightly reducing the fundamental torque. However, the single skewed rotor still cannot change the spatial periodicity of the output torque. For the piecewise staggered rotor, the synchronous torque is weakened only for certain slot combinations, and the amplitude of the fundamental torque remains approximately unchanged. Regarding the combined rotor structure, taking the two-stage staggered skewed rotor as an example, the attenuation degree of the harmonic magnetic field is greater than that of any single rotor structure. Experimental results on the locked-rotor torque show that the offset effect of the staggered bar structure on the synchronous torque generated by the odd harmonics deviates from the simulation results by a degree. An optimal skewed rotor design is necessary to minimize the synchronous parasitic torque.

        The following conclusions can be drawn from the simulation analysis and prototype test. (1) The amplitude of synchronous torque changes periodically with the starting position of the motor, and the spatial period is inversely proportional to the order of the rotor harmonic magnetic field that generates torque. The rotor pitch is the least common multiple of the period. (2) The rotor axial staggered structure can reduce the rotor harmonic electromotive force, change the spatial periodicity of the output torque of the motor with certain slot combinations, and improve the minimum output torque. (3) Compared with the skewed rotor and the piecewise staggered rotor, the combined structure of the two has a better effect of weakening the synchronous parasitic torque. When the skewed distance of the dual skewed rotor is one tooth pitch, the minimum value of the starting torque ratio of the prototype is about 1.5 times, thus helping the normal starting of the motor with equal stator and rotor slot number. However, the partial magnetic flux leakage of the rotor may result in certain disadvantages. For example, it may increase no-load loss.

        Axial piecewise staggered rotor, synchronous parasitic torque, torque fluctuation, slot combination, induction machine

        10.19595/j.cnki.1000-6753.tces.221534

        TM343

        國家自然科學(xué)基金(51977055)和安徽省科技重大專項(201903a05020042)資助項目。

        2022-08-08

        2022-09-01

        徐 威 男,1994年生,博士,講師,研究方向為電機電磁場分析與計算、電機優(yōu)化設(shè)計、電機諧波磁場理論等。E-mail: xuwei@sdju.edu.cn(通信作者)

        任曉明 男,1977年生,博士,副教授,研究方向為高電壓技術(shù)、儲能技術(shù)、工業(yè)控制及圖像處理等。E-mail: renxm@sdju.edu.cn

        (編輯 崔文靜)

        猜你喜歡
        磁場
        西安的“磁場”
        當代陜西(2022年6期)2022-04-19 12:11:54
        帶磁場的廣義Zakharov模型的奇異解
        為什么地球有磁場呢
        文脈清江浦 非遺“磁場圈”
        華人時刊(2020年13期)2020-09-25 08:21:42
        《磁場》易錯易混知識剖析
        帶電粒子在交變電、磁場中的運動
        磁場的性質(zhì)和描述檢測題
        磁場測量儀的設(shè)計與實現(xiàn)
        電子制作(2016年1期)2016-11-07 08:42:44
        2016年春季性感磁場
        Coco薇(2016年1期)2016-01-11 16:53:24
        磁場對于電子分布的影響
        台湾佬综合网| 精品国产中文字幕久久久| 日韩精品无码一区二区三区四区| 国产中文欧美日韩在线| 欧美性久久| 青青自拍视频成人免费观看| 97中文字幕精品一区二区三区| 亚洲av片在线观看| 亚洲精品成人网久久久久久| 亚洲精品国产福利在线观看| 久久伊人精品色婷婷国产| 国产精品久久久久高潮| 欧美变态口味重另类在线视频 | 日韩精品一二三区乱码| 女人被狂躁c到高潮视频| 亚洲AV无码一区二区三区人| 加勒比东京热综合久久| 在线观看国产成人自拍视频| 久久精品国产视频在热| 国产午夜精品理论片| 国产精品日本中文在线| 超碰国产精品久久国产精品99 | 精品久久人人爽天天玩人人妻| 亚洲无码视频一区:| 日本少妇熟女一区二区| 欧美日韩国产精品自在自线| 免费观看国产精品| 日韩一区二区,亚洲一区二区视频| 麻豆精品一区二区av白丝在线| 精产国品一二三产品蜜桃| 精品熟女少妇免费久久| 91乱码亚洲精品中文字幕| 中文字幕人妻熟女人妻| 韩国19禁主播深夜福利视频| 视频一区二区三区中文字幕狠狠| 丝袜美腿福利一区二区| 国产亚洲午夜高清国产拍精品| 国产在线欧美日韩一区二区| 国产极品大秀在线性色| 亚洲成a人片在线观看无码3d| 毛片网站视频|