許雯雯 高換超 韓菲菲 李凱薇 賈山毅 李桂榮
DOI:10.13925/j.cnki.gsxb.20230113
摘? ? 要:【目的】咖啡酸O-甲基轉移酶(COMTs)是木質素合成過程中一種多功能酶,參與多種初生代謝和次生代謝途徑,在植物木質素次生物質合成及植物抗逆脅迫反應中起著重要作用。旨在鑒定葡萄COMT基因家族成員,探究其對葡萄真菌病害脅迫的響應,為葡萄抗病育種提供基因資源?!痉椒ā炕跀M南芥COMT基因搜索葡萄COMT基因家族,運用生物信息學方法研究葡萄COMT蛋白質理化性質、基因染色體定位、motif分析和啟動子順式作用元件等;利用熒光定量PCR法分析COMT基因在抗病品種摩爾多瓦和感病品種夏黑葡萄上接種霜霉病的表達模式?!窘Y果】從葡萄中鑒定出26個COMT基因,主要位于第10、12和15號染色體上;蛋白質分子質量差異較大,屬于不穩(wěn)定的兩性蛋白;亞細胞定位顯示其蛋白主要位于細胞質和細胞外。從構建的系統(tǒng)進化樹中發(fā)現(xiàn),該家族分為Ⅰ和Ⅱ 2個亞組,在進化過程中比較保守,與擬南芥和水稻親緣關系較近。啟動子分析表明,葡萄COMT基因啟動子包含豐富的植物激素響應和脅迫響應的順式元件,接種葡萄霜霉病后,在抗病品種摩爾多瓦中,除COMT2基因外其余25條COMT基因在接種24 h后均顯著上調,而在感病品種夏黑中只有63%的COMT基因出現(xiàn)顯著上調,且抗病品種的表達量顯著高于感病品種,其中以VvCOMT1、5、6、7、8、9和19上調最為顯著?!窘Y論】共鑒定了26個葡萄COMT基因家族成員,同時發(fā)現(xiàn)COMT基因在葡萄抗病品種中受霜霉病的強烈誘導,表明木質素在葡萄抗病中起重要作用,可為后期研究葡萄抗霜霉病分子機制提供候選基因。
關鍵詞:葡萄霜霉??;咖啡酸-O-甲基轉移酶;生物學分析;功能分析
中圖分類號:S663.1? S436.631 文獻標志碼:A 文章編號:1009-9980(2023)10-2061-15
Identification and expression analysis of grape COMT gene family
XU Wenwen1, GAO Huanchao1, HAN Feifei1, LI Kaiwei1, JIA Shanyi1, LI Guirong1, 2*
(1School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China; 2Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, Henan, China)
Abstract: 【Objective】Caffeic acid O-methyltransferase (COMTs) is a multifunctional enzyme in lignin synthesis. It participates in some primary and secondary metabolic pathways, and plays an important role in the synthesis of lignin secondary substances and the responses to stresses in plants. The European grape genome was used in the study to search for genes and proteins homologous to members of the COMT gene family, and identification of the final grape COMT gene family and analysis of their expression levels under grape downy mildew stress were carried out to provide a molecular basis and genetic resources for grape resistance breeding. 【Methods】 Firstly, the identified O-methyltransferase gene sequence was searched from the Arabidopsis database. Based on the Arabidopsis COMT gene, the grape COMT gene family was searched by BLASTP tool, and candidate genes of the VvCOMT family were obtained by search and comparison, and duplicate and redundant sequences were deleted. The gene structure, protein physicochemical properties, protein secondary structure, chromosome location and promoter cis-acting elements were obtained using various biological online analysis software; Moldova and Summer Black were selected as materials to inoculate the pathogen spores of grape downy mildew on the leaves respectively. The samples were taken at 0, 6, 24, 48 h and 120 h after inoculation, and the expression patterns of the COMT gene family in Moldova and Summer Black after inoculation of downy mildew pathogen were analyzed by real-time fluorescence quantitative method. 【Results】A grape COMT gene family consisting of 26 COMT members was obtained through the identification, and all COMT genes had a Methyltransfer_2. The C-terminal catalytic domain (PF00891) was named VvCOMT1-26 according to the chromosome position, 84.6% of the grape COMTs had an amino acid length of over 300 aa, and their amino acid numbers ranged from 189 to 395. Among them, VvCOMT24 (VIT_215s0048g02460) had the longest sequence with 395 amino acids, while VvCOMT3 (VIT_208s0032g01130) has the shortest sequence with only 189 amino acids. The relative molecular weight of the proteins were between 21 179.45 (VvCOMT3) and 43 521.88 (VvCOMT24); The isoelectric points were distributed between 5.18 (VvCOMT22) and 6.23 (VvCOMT3), and the isoelectric points were all less than 7; The protein instability coefficients ranged from 27.21 (VvCOMT23) to 43.30 (VvCOMT5), among them 6 instability coefficients over 40 belonged to unstable proteins; All proteins with a hydrophilicity index between -0.158 (VvCOMT16) and 0.079 (VvCOMT7) were amphoteric proteins; The subcellular localization results showed that the final localization was in cytoplasm and extracellular space. By constructing the phylogenetic trees of the different species, it could be observed that the grape COMT gene was relatively conservative and highly similar in the evolutionary process, which was closely related to Arabidopsis and rice, and was farthest related to apple. From the prediction of the secondary structure of the proteins, it could be seen that the grape COMT gene family contained α-helix, β-corner, irregular curl and extended chain four configurations, the total proportion of α-helix and irregular curl was 70%. The Motif analysis yielded 19 more conservative motifs, and each VvCOMT gene was distributed with 4-14 motifs, the motif 6 present in all COMT genes, indicating that the motif 6 was highly conservative. At the same time, it was found that the COMT genes in the same group contained the same motifs. For example, the closely related VvCOMTs in Group I contained motifs 5, 7, 8, 17 and 19, while those in Group Ⅱ were different. Most COMT genes contained motifs 13, 14 and 16, while the VvCOMT4 only contained motifs 2, 3, 6 and 10. The difference in the motifs contained in different branches might be one of the reasons for functional differentiation in the evolution of the VvCOMT. It was found that 26 VvCOMT genes were irregularly distributed on 7 chromosome skeletons, among them the 12 chromosome had the most genes, including 13 VvCOMT genes. The promoter visualization showed that 227 cis-acting elements were found in the grape COMT gene family, including 184 hormone related elements, 19 fungal induction related elements and 29 defense and stress response related elements. By analyzing the expression of the COMT genes in the two cultivars after inoculation with downy mildew pathgen, it was found that 25 VvCOMTs were significantly upregulated under downy mildew stress in the resistant cultivar Moldova, with 42% of the COMT genes significantly upregulated at 48 h after inoculation, VvCOMT1, 5, 6, 7, 8, 9 and 19 were most significantly upregulated after inoculation with the pathogen in the susceptible cultivar Summer Black. Among them, the VvCOMT2 was not significantly upregulated in both cultivars, indicating that it did not respond to the infection of downy mildew. In addition, the expression of the COMT genes in resistant cultivar was significantly higher than that in susceptible cultivars, indicating that the VvCOMT genes played a certain role in the process of resistance to downy mildew. 【Conclusion】 This study showed that the grape COMT gene family responded to grape downy mildew and played an important role in the process of resistance to downy mildew infection.
Key words: Grape downy mildew; Caffeic acid O-methyltransferase; Biological analysis; Functional analysis
葡萄作為四大水果之一,因其營養(yǎng)豐富,適應性強,普遍受到消費者和生產者的青睞,在世界范圍內被廣泛栽培。然而,葡萄生產過程中經常遭受霜霉病、白腐病等真菌病害的危害,嚴重影響葡萄的產量和品質。葡萄霜霉病是全世界范圍內嚴重危害葡萄的真菌病害之一[1],該病原菌主要以卵孢子形態(tài)在病殘組織內越冬,5月份通過氣流或雨滴濺散傳播,典型的癥狀為葉片背面出現(xiàn)白色霜狀霉層,即病菌的孢子囊和孢子梗,同時侵染嫩梢、卷須、葉柄和幼果等部位,嚴重危害葡萄的營養(yǎng)器官和生殖器官[2-3]。
木質素是一種多酚聚合物,被木纖維、其他維管束細胞和厚壁細胞包圍[4-5],是植物中重要的次生物質,不僅可以增強植物細胞和組織的強度,有利于植物組織中的水分運輸,同時也能提高植物抵抗病蟲害的能力,其總量是僅次于纖維素的第二大有機物[6-7]。木質素的生物合成是苯丙氨酸或酪氨酸在一系列酶的催化下逐漸轉化為木質素單體,繼而形成木質素的過程[8-9],該過程由3個途徑組成:苯丙烷途徑、木質素合成的特定途徑以及木質素單體向木質素的糖基化轉運和聚合的途徑。咖啡酸O-甲基轉移酶(COMT)是苯丙烷代謝途徑中重要的甲基化酶[10-11],COMT有多種功能,如催化咖啡酸的甲基化,5-羥基苯基醛生成阿魏酸、芥末醛等,還能催化S-腺苷L-蛋氨酸(SAM或AdoMet)的甲基基團形成阿魏酸和S-腺苷L-同型半胱氨酸(SAH或AdoHcy)來調節(jié)木質素的合成,且其N端在沒有金屬離子的環(huán)境下就能進行同源二聚化,除參與木質素合成外還在類黃酮和芥子酸酯等物質中發(fā)揮催化作用[12-13]。
前人研究表明,COMT基因家族包含多個成員,如毛楊中有25個[14],擬南芥和甘藍型油菜中分別有14個[15]和42個[16]。在其他物種中也有相關的研究,如煙草[17]、燕麥[18]、松樹[19]、水稻[20]、大麥[21]和藍莓果實[22]。植物病原菌侵染和植株果實發(fā)育包含木質素的積累過程,而COMT基因已被證明在木質素積累過程中起著關鍵作用。Petitot等[23]發(fā)現(xiàn)非洲水稻COMT3在根結線蟲侵染過程中表達量明顯升高;Fornalé等[24]抑制玉米COMT基因的表達后發(fā)現(xiàn)其總木質素含量和S單位/G單位比降低;Wang等[25]過表達COMT-3D基因使得轉基因小麥的耐病性與木質素含量得到了提高。因此,COMT基因對植物抵抗生物和非生物脅迫尤為重要。但在葡萄中尚未對COMT基因家族的特征和功能進行全面研究。筆者在本研究中參考乃國潔等[26]的生物信息學方法,鑒定了葡萄COMT基因家族,分析其蛋白質理化性質、染色體定位、保守結構域和基序分析,同時研究不同抗性葡萄品種COMT基因接種霜霉病的表達模式,旨在挖掘葡萄霜霉病響應的關鍵COMT基因,有利于進一步明確該基因家族在葡萄抗病反應過程中的作用,為葡萄抗病品種的選育奠定基礎。
1 材料和方法
1.1 葡萄COMT基因的鑒定及理化性質分析
葡萄基因組數據庫(v2.1)來自phytozome 13(https://Phytozome-next.igi.doe.gov),首先在擬南芥數據庫(https://www.arabidopsis.org)搜索O-甲基轉移酶基因,基于Pfam數據庫的隱馬爾可夫模型(PF00891),利用phytozome 13非冗余蛋白質數據庫中BLASTP工具搜索比對,獲取葡萄COMT家族候選基因,刪除重復和冗余序列,確定VvCOMT基因家族。利用在線ExPASy(http://web.expasy.org/)和Plant-PLocserve(http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/)工具預測VvCOMT蛋白的理化性質,包括蛋白長度、分子質量、等電點等,并預測亞細胞定位,利用線上分析軟件ProtParam(http://web.expasy.org/protparam)進行蛋白質二級結構預測。
1.2 系統(tǒng)發(fā)育樹的構建及染色體定位
運用MEGA 11軟件中的Clustal W程序將擬南芥、水稻、玉米、大豆和番茄等物種蛋白序列進行多序列比對,并通過鄰接法(neighbour-joining,NJ)和最大似然法(maximum likelihood,ML)構建系統(tǒng)發(fā)育樹,Bootstrap檢驗設定1000次重復,以評價系統(tǒng)發(fā)育樹的統(tǒng)計可靠性。利用iTOL(http://iTOL.embl.de)在線軟件對進化樹進行美化。
為了解VvCOMTs基因在基因組內的分布,通過JGI數據庫獲得基因組注釋文件中提供的位置信息,利用TBtools軟件[27]將葡萄COMT基因定位到相應的染色體上。
1.3 VvCOMT家族基序與啟動子順式作用分析
為更好地理解和調控VvCOMTs的基因功能,利用在線程序MEME(v4.3)(http://meme.nbcr.net/meme/)分析VvCOMTs序列特征蛋白保守模塊(motif),查找的motif數量設置為20,運行參數為默認。
從歐洲葡萄數據庫中查找VvCOMTs起始密碼子ATG上游2 kb的序列,提交使用在線程序PlantCARE(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)預測VvCOMT啟動子區(qū)域的順式作用元件,將獲得的順式作用元件提交至TBtools軟件中進行啟動子可視化。
1.4 VvCOMT基因家族成員在葡萄霜霉病中的表達分析
為了解VvCOMTs在抗霜霉病侵染中的作用,采集病葉制作霜霉病病原孢子(濃度為1×105個·mL-1),材料選擇抗病品種摩爾多瓦和感病品種夏黑接種制備的霜霉病菌,接種后0、6、48、96、120 h分別采樣,液氮速凍于-80 ℃保存。樣品RNA提取采用試劑盒法(OMEGA,美國),利用UEIris RT mix with DNase(All-in-One)合成cDNA,使用實時熒光定量PCR(qRT-PCR)技術分析基因表達水平,熒光定量反應體系10 μL:TB Green?Premix Ex Taq?(TaKaRa,大連)5 μL,模板0.5 μL,上、下游引物1 μL,ddH2O 3.5 μL。熒光定量反應程序為:50 ℃ 2 min,95 ℃ 2 min,然后95 ℃ 15 s,60 ℃ 30 s,39次循環(huán)。Thresh值按PCR儀默認為30,分別記錄每個反應熒光信號由本底進入指數增長階段的拐點所對應的循環(huán)數(threshold cycle,Ct),然后用2-△△CT法[28]以未接種霜霉病菌的葉片為對照,對不同時間點VvCOMTs基因的相對表達量進行分析。所有樣本使用3次生物重復進行分析。使用葡萄Actin作為內參引物,本研究中使用的所有引物均列于表1。
1.5 統(tǒng)計分析
采用SPSS Stantistics v.26.0軟件對數據進行方差分析(ANOVA)。采用最小顯著性差異(p<0.05)進行顯著性分析。
2 結果與分析
2.1 葡萄COMT基因的鑒定和蛋白質理化性質分析
通過生物信息學分析獲得26條VvCOMT基因,按照染色體位置分別命名為VvCOMT1~26。基因結構和保守結構域分析表明,26個葡萄COMT都具有一個名為Methyltransf_2結構域的C端催化結構域(PF00891),包括SAM/SAH結合袋和底物結合位點[29],SAM/SAH結合袋高度保守,而底物結合位點對不同組中的蛋白質具有特異性[30](圖1)。利用ExPASy在線工具進行蛋白理化性質分析(表2),84.6%的葡萄COMT氨基酸長度超過300 aa,且氨基酸數分布在189~395個之間,其中VvCOMT24(VIT_215s0048g02460)序列最長,有395個氨基酸,VvCOMT3(VIT_208s0032g01130)序列最短,氨基酸數只有189。蛋白質相對分子質量在21 179.45(VvCOMT3)~43 521.88 Ku(VvCOMT24);等電點分布在5.18(VvCOMT22)~6.23(VvCOMT3)之間,且等電點都小于7;蛋白質不穩(wěn)定系數在27.21(VvCOMT23)~43.30(VvCOMT5),其中6條不穩(wěn)定系數大于40屬于不穩(wěn)定蛋白;親水指數在-0.158(VvCOMT16)~0.079(VvCOMT7)之間均為兩性蛋白;亞細胞定位結果顯示26個COMT蛋白定位于細胞質和細胞外。
2.2 系統(tǒng)發(fā)育樹的構建和蛋白質二級結構分析
為更好地了解葡萄與其他植物COMT的相似性和差異性,利用26條葡萄COMT蛋白與8條擬南芥、14條玉米、28條水稻、16條大豆和12條番茄共104條蛋白序列構建了系統(tǒng)發(fā)育樹(圖2)。VvCOMT的系統(tǒng)發(fā)育分析顯示,26個VvCOMT蛋白序列可分為兩組:GroupⅠ包含17個VvCOMT蛋白,其余9個VvCOMT蛋白屬于Group Ⅱ。葡萄COMT基因家族成員呈現(xiàn)集中分布在2個類群之中,在進化過程中較保守,具有高度的相似性,其中與擬南芥和水稻親緣關系較近,與玉米的親緣關系最遠,表明葡萄與玉米之間的COMT基因差異顯著。
通過ProtParam在線分析工具預測葡萄COMT基因家族成員的二級結構(表3),葡萄COMT基因家族均含有α-螺旋、β-轉角、無規(guī)則卷曲和延伸鏈4種構型,其中α-螺旋和無規(guī)則卷曲兩種構型的總占比為70%,而β-轉角與延伸鏈兩種構型則只占總比的30%。
2.3 染色體定位
利用TBtools軟件進行染色體定位分析,結果顯示,26條基因在7條染色體骨架上呈無規(guī)則分布,且不同染色體骨架上的基因分布密度不同(圖3),其中第12號染色體上基因分布最多,含有13條VvCOMT基因,第2、18和19號染色體上成員最少,各含有1條VvCOMT基因。
2.4 基因結構與基序分析
利用MEME在線工具分析,發(fā)現(xiàn)葡萄COMT基因存在19個較為保守的motif(圖4),每條VvCOMT基因分布4~14個motif,其中motif 6存在于所有的COMT基因,表明motif 6具有很強的保守性。同時發(fā)現(xiàn)同一類群的COMT基因包含的motif相同,如Group Ⅰ中親緣關系較近的VvCOMT都含有motif 5、7、8、17和19,Group Ⅱ與之不同,大多數COMT基因都含有motif 13、14和16,VvCOMT4中只含有motif 2、3、6、10基序,不同的分支所包含基序的不同可能是VvCOMT進化過程中發(fā)生功能分化的原因之一。
根據VvCOMT系統(tǒng)發(fā)育關系,26個基因被分為3個亞組(圖4),其中Ⅰ組與Ⅱ組與COMT基因外顯子-內含子結構相似,都含有2個外顯子和1個內含子,長度在302~775 bp之間,而Ⅲ組則包含3~4個外顯子,且在同一進化枝中的外顯子數量接近,說明系統(tǒng)發(fā)育樹的可靠性。此外,26個COMT基因中形成9個旁系同源對,其中VvCOMT4/5/6,VvCOMT8/9及VvCOMT10/11步長值高達100。
2.5 啟動子順式作用元件分析
通過對葡萄COMT基因家族成員上游2000 bp啟動子區(qū)的順式作用元件進行分析,筆者發(fā)現(xiàn)葡萄26條COMT基因中共存在243個順式作用元件,其中192個激素相關元件(其中乙烯相關元件109個,脫落酸相關元件39個,水楊酸相關元件21個,茉莉酸相關元件18個,赤霉素相關元件5個),真菌誘導相關元件20個,防御和應激反應相關元件31個(圖5)。說明葡萄COMT基因可能參與激素響應和逆境脅迫響應過程。
2.6 葡萄COMT基因家族成員接種霜霉病的表達分析
為探究葡萄COMT基因對霜霉病的響應,利用熒光定量PCR技術,分析抗病品種摩爾多瓦和感病品種夏黑在接種霜霉病后COMT基因家族成員的表達量。由圖6和圖7可以看出,在抗病品種摩爾多瓦中,25個VvCOMT在霜霉病脅迫下均顯著上調,其中42%的COMT基因在接種后的48 h即顯著上調;而在感病品種夏黑中,VvCOMT1、2、、10、15、26和VvCOMT27在接種后病原菌后出現(xiàn)顯著下調,63%的COMT基因在接種后的24 h出現(xiàn)顯著上調,其中VvCOMT2在2個品種中均無顯著上調,表明其不響應霜霉病菌的侵染。此外,COMT基因在抗病品種的表達量顯著高于感病品種,GroupⅠ中VvCOMT5/6/8/9和19在抗病品種中分別比感病品種高出13、15、21、120和7倍;Group Ⅱ中VvCOMT1和VvCOMT7在抗病品種中分別比感病品種高出102和3580倍;Ⅲ家族成員VvCOMT25與VvCOMT26比較特殊,均顯著下調。綜合COMT基因在抗感品種中的表達,VvCOMT1、5、6、7、8、9和VvCOMT19上調最為顯著,其最有可能在葡萄抵抗霜霉病菌脅迫過程中發(fā)揮著更重要的作用。
3 討 論
植物O-甲基轉移酶(OMTs)構成一大類酶,其中Ⅰ型OMT形成功能發(fā)散的基團,并使多種底物(如類黃酮,生物堿和二苯乙烯)甲基化,主要以COMT為代表[31]。在植物木質素生物合成、抵御病原菌侵染和抗逆脅迫中發(fā)揮重要作用。本研究基于phytozome 13數據庫,利用擬南芥COMT基因對葡萄COMT基因家族進行了鑒定與分析,確定了26個VvCOMT基因,所有基因均包含咖啡酸輔酶A-O-甲基轉移酶結構域,系統(tǒng)進化分析結果與基因結構及保守域分析結果一致,具有相同數量的內含子和保守基序的基因家族成員優(yōu)先聚為一類,這與先前的研究結果一致[32],此外,各個亞類基因家族成員的蛋白質理化性質存在差異,本研究得到的26個COMT基因二級結構同擬南芥COMT基因家族的蛋白質組成和結果相似,其中α-螺旋和無規(guī)則卷曲比例最高,這與玉米COMT基因二級結構相同[33]。啟動子是RNA聚合酶識別、結合和開始轉錄的一段DNA序列,它含有RNA聚合酶特異性結合和轉錄起始所需的保守序列,關系到基因的時空表達,是基因的開關,分析其啟動子順式作用元件有助于推測基因的潛在功能。VvCOMT基因的啟動子中含有許多響應激素調控的作用元件(TGA-elemet生長素響應元件,TCA-elemet響應水楊酸響應元件,ABRE脫落酸響應元件,TGACG-motif茉莉酸甲酯響應元件),防御和應激反應作用元件提示基因在應對脅迫方面有重大作用,如VvCOMT1、5、13、14、19、20和VvCOMT26都含有防御和應激反應相關元件(TC-rich)。啟動子分析結果表明,COMT基因家族作用于葡萄的抗病蟲、抗逆等方面,這與其他物種中COMT基因家族的研究結果相一致[34-35]。
據報道,COMT與COMT-like基因在植物次生物質合成和抗逆脅迫反應中起著關鍵性作用[36-37]。單木質素生物合成是細胞壁貼合(cell wall apposition)過程中的關鍵,也是植物抵御病原菌的首要防線之一[38]。這一理論在其他物種中也得以驗證,小麥中COMT-3D基因過表達可以提高其對紋枯病的抗性[25],增加木質素的積累;棉花中n-乙酰轉移酶1(GhSNAT1)和咖啡酸O-甲基轉移酶(GhCOMT)沉默導致褪黑素的生物合成減少,從而影響木質素和棉酚的合成,降低了對棉花黃萎病的抗性[39]; COMT的表達量下調降低了6個月齡的楊樹中木質素的含量水平[40];水稻中咖啡酸O-甲基轉移酶的過表達通過5-甲氧基色胺途徑同樣也增加了褪黑素的產生,以此提高植物抗性[41]。同樣的,在VvCOMT基因家族在受到葡萄霜霉病侵染時,抗病品種COMT基因家族除VvCOMT2外均在接種霜霉病后48 h出現(xiàn)顯著上調,而在感病品種中只有63%的COMT基因在接種后的24 h內出現(xiàn)短時上調,且抗病力不同的品種,其表達量和表達模式也不同,摩爾多瓦多在6~48 h之間顯著表達,而夏黑則是24 h后表達量提高,且抗病品種中96%的基因表達量都高于感病品種,說明在抗病品種抵御霜霉病時COMT基因發(fā)揮重要作用,這與筆者先前預期的結果一致。植物生長發(fā)育過程中不會像動物擁有體細胞適應性免疫系統(tǒng)能夠主動避開病原微生物和病蟲害,只能依靠植物合成的化學成分和本身的一些結構作為屏障[42-43]。而在葡萄中,不同品種的抗霜霉病程度不一樣,其COMT基因家族的表達量也不一樣,結果中顯示VvCOMT1、5、6、7、8、9和VvCOMT19基因在抗病品種摩爾多瓦中表達量顯著高于感病品種夏黑,同時發(fā)現(xiàn)VvCOMT1、5、19啟動子區(qū)域中包含抗防御和應激反應響應元件,可以證明這些基因在葡萄抗霜霉病侵染中發(fā)揮重要作用,后期可對這幾個基因進行過表達處理,獲得陽性轉基因苗,以期挖掘出VvCOMT基因家族更多的潛在功能,為葡萄抗病品種的培育做出貢獻。
4 結 論
筆者在本研究中鑒定了葡萄26個COMT基因家族成員,在接種霜霉病后均有表達,尤其在抗病品種中表達較顯著,推測COMT基因在葡萄抗霜霉病侵染過程中發(fā)揮重要的作用,可為下一步研究其在抗病過程中的分子功能和在基因中的調控奠定基礎。
參考文獻References:
[1] 王璐璐,孫云開,徐旋,周潔,王清明,祝學珍. 葡萄霜霉病的發(fā)病規(guī)律和防治研究進展[J]. 園藝與種苗,2022,42(9):31-33.
WANG Lulu,SUN Yunkai,XU Xuan,ZHOU Jie,WANG Qingming,ZHU Xuezhen. Research progress on pathogenesis and control of grape downy mildew [J]. Horticulture & Seed,2022,42(9):31-33.
[2] 李卓,周婷婷,楊超,李映程,孫琦,任毓忠,趙寶龍,張莉,李國英. 葡萄霜霉病菌侵染抗病和感病品種過程的組織學觀察[J]. 園藝學報,2017,44(5):861-870.
LI Zhuo,ZHOU Tingting,YANG Chao,LI Yingcheng,SUN Qi,REN Yuzhong,ZHAO Baolong,ZHANG Li,LI Guoying. Histological studies on the infection processs of the grape downy mildew between susceptible cultivar and resistant cultivar[J]. Acta Horticulturae Sinica,2017,44(5):861-870.
[3] 杜興蘭. 葡萄霜霉病和白粉病生物防治的研究[D]. 保定:河北農業(yè)大學,2008.
DU Xinglan. Biological control of grape downy mildew and powdery mildew[D]. Baoding:Hebei Agricultural University,2008.
[4] GUO W F,JIN L,MIAO Y H,HE X,HU Q,GUO K,ZHU L F,ZHANG X L. An ethylene response-related factor,GbERF1-like,from Gossypium barbadense improves resistance to Verticillium dahliae via activating lignin synthesis[J]. Plant Molecular Biology,2016,91(3):305-318.
[5] BOERJAN W,RALPH J,BAUCHER M. Lignin biosynthesis[J]. Annual Review of Plant Biology,2003,54(1):519-546.
[6] VANHOLME R,DE MEESTER B,RALPH J,BOERJAN W. Lignin biosynthesis and its integration into metabolism[J]. Current Opinion in Biotechnology,2019,56:230-239.
[7] LEWIS N G,YAMAMOTO E. Lignin:Occurrence,biogenesis and biodegradation[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1990,41:455-496.
[8] ROJE S. S-Adenosyl-L-methionine:Beyond the universal methyl group donor[J]. Phytochemistry,2006,67(15):1686-1698.
[9] LAM K C,IBRAHIM R K,BEHDAD B,DAYANANDAN S. Structure,function,and evolution of plant O-methyltransferases[J]. Genome,2007,50(11):1001-1013.
[10] LU S W,ZHUGE Y X,HAO T Y,LIU Z J,ZHANG M W,F(xiàn)ANG J G. Systematic analysis reveals O-methyltransferase gene family members involved in flavonoid biosynthesis in grape[J]. Plant Physiology and Biochemistry,2022,173:33-45.
[11] JOSHI C P,CHIANG V L. Conserved sequence motifs in plant S-adenosyl-L-methionine-dependent methyltransferases[J]. Plant Molecular Biology,1998,37(4):663-674.
[12] BERIM A,GANG D R. Methoxylated flavones:Occurrence,importance,biosynthesis[J]. Phytochemistry Reviews,2016,15(3):363-390.
[13] BENNETT M R,SHEPHERD S A,CRONIN V A,MICKLEFIELD J. Recent advances in methyltransferase biocatalysis[J]. Current Opinion in Chemical Biology,2017,37:97-106.
[14] SHI R,SUN Y H,LI Q Z,HEBER S,SEDEROFF R,CHIANG V L. Towards a systems approach for lignin biosynthesis in Populus trichocarpa:Transcript abundance and specificity of the monolignol biosynthetic genes[J]. Plant and Cell Physiology,2010,51(1):144-163.
[15] MOINUDDIN S G A,JOURDES M,LASKAR D D,KI C,CARDENAS C L,KIM K W,ZHANG D Z,DAVIN L B,LEWIS N G. Insights into lignin primary structure and deconstruction from Arabidopsis thaliana COMT (caffeic acid O-methyl transferase) mutant Atomt1[J]. Organic & Biomolecular Chemistry,2010,8(17):3928-3946.
[16] LI W,LU J X,LU K,YUAN J L,HUANG J H,DU H,LI J N. Cloning and phylogenetic analysis of Brassica napus L. caffeic acid O-methyltransferase 1 gene family and its expression pattern under drought stress[J]. PLoS One,2016,11(11):e0165975.
[17] PELLEGRINI L,GEOFFROY P,F(xiàn)RITIG B,LEGRAND M. Molecular cloning and expression of a new class of ortho-diphenol-O-methyltransferases induced in tobacco (Nicotiana tabacum L.) leaves by infection or elicitor treatment[J]. Plant Physiology,1993,103(2):509-517.
[18] HEATH R,HUXLEY H,STONE B,SPANGENBERG G. cDNA cloning and differential expression of three caffeic acid O-methyltransferase homologues from perennial ryegrass (Lolium perenne)[J]. Journal of Plant Physiology,1998,153(5/6):649-657.
[19] CHUNG N,ZHANG X D,KREAMER A,LOCCO L,KUAN P F,BARTZ S,LINSLEY P S,F(xiàn)ERRER M,STRULOVICI B. Median absolute deviation to improve hit selection for genome-scale RNAi screens[J]. Journal of Biomolecular Screening,2008,13(2):149-158.
[20] CHOI G H,LEE H Y,BACK K. Chloroplast overexpression of rice caffeic acid O-methyltransferase increases melatonin production in chloroplasts via the 5-methoxytryptamine pathway in transgenic rice plants[J]. Journal of Pineal Research,2017,63(1):e12412.
[21] DALY P,MCCLELLAN C,MALUK M,OAKEY H,LAPIERRE C,WAUGH R,STEPHENS J,MARSHALL D,BARAKATE A,TSUJI Y,GOEMINNE G,VANHOLME R,BOERJAN W,RALPH J,HALPIN C. RNAi-suppression of barley caffeic acid O-methyltransferase modifies lignin despite redundancy in the gene family[J]. Plant Biotechnology Journal,2019,17(3):594-607.
[22] LIU Y S,WANG Y Z,PEI J B,LI Y D,SUN H Y. Genome-wide identification and characterization of COMT gene family during the development of blueberry fruit[J]. BMC Plant Biology,2021,21(1):5.
[23] PETITOT A S,KYNDT T,HAIDAR R,DEREEPER A,COLLIN M,DE ALMEIDA ENGLER J,GHEYSEN G,F(xiàn)ERNANDEZ D. Transcriptomic and histological responses of African rice (Oryza glaberrima) to Meloidogyne graminicola provide new insights into root-knot nematode resistance in monocots[J]. Annals of Botany,2017,119(5):885-899.
[24] FORNAL? S,SONBOL F M,MAES T,CAPELLADES M,PUIGDOM?NECH P,RIGAU J,CAPARR?S-RUIZ D. Down-regulation of the maize and Arabidopsis thaliana caffeic acid O-methyl-transferase genes by two new maize R2R3-MYB transcription factors[J]. Plant Molecular Biology,2006,62(6):809-823.
[25] WANG M X,ZHU X L,WANG K,LU C G,LUO M Y,SHAN T L,ZHANG Z Y. A wheat caffeic acid 3-O-methyltransferase TaCOMT-3D positively contributes to both resistance to sharp eyespot disease and stem mechanical strength[J]. Scientific Reports,2018,8:6543.
[26] 乃國潔,盧世雄,馬維峰,李艷梅,陳佰鴻,毛娟. 葡萄EIN3/EIL轉錄因子家族成員鑒定及表達特征分析[J]. 果樹學報,2021,38(6):856-870.
NAI Guojie,LU Shixiong,MA Weifeng,LI Yanmei,CHEN Baihong,MAO Juan. Genome-wide identification and expression characteristic analysis of EIN3/EIL transcription factor family in grape[J]. Journal of Fruit Science,2021,38(6):856-870.
[27] CHEN C J,CHEN H,ZHANG Y,THOMAS H R,F(xiàn)RANK M H,HE Y H,XIA R. TBtools:An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant,2020,13(8):1194-1202.
[28] LIVAK K J,SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2?ΔΔCT method[J]. Methods,2001,25(4):402-408.
[29] RAMMESMAYER G,PICHORNER H,ADAMS P,JENSEN R G,BOHNERT H J. Characterization of IMT1,myo-inositol O-methyltransferase,from Mesembryanthemum crystallinum[J]. Archives of Biochemistry and Biophysics,1995,322(1):183-188.
[30] DO C T,POLLET B,TH?VENIN J,SIBOUT R,DENOUE D,BARRI?RE Y,LAPIERRE C,JOUANIN L. Both caffeoyl Coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin,flavonoids and sinapoyl malate biosynthesis in Arabidopsis[J]. Planta,2007,226(5):1117-1129.
[31] IBRAHIM R K,BRUNEAU A,BANTIGNIES B. Plant O-methyltransferases:Molecular analysis,common signature and classification[J]. Plant Molecular Biology,1998,36(1):1-10.
[32] 包穎亮. 構樹咖啡酸-O-甲基轉移酶基因的克隆及生物信息學分析[D]. 呼和浩特:內蒙古農業(yè)大學,2018.
BAO Yingliang. Cloning and bioinformatics analysis of caffeic acid O-methyl-transferase gene from Broussonetia papyrifera[D]. Hohhot:Inner Mongolia Agricultural University,2018.
[33] 徐碧瑩,張敏艷,黃偉鵬,沙哈尼,吳委林,鄭大浩. 玉米O-甲基轉移酶(ZmOMT)基因家族的生物信息學分析[J/OL]. 分子植物育種,2021:1-12. [2021-11-05]. https://kns.cnki.net/kcms/detail/46.1068.s.20211104.1914.021.html.
XU Biying,ZHANG Minyan,HUANG Weipeng,SHA Hani,WU Weilin,ZHENG Dahao. Bioinformatics analysis of maize O-methyltransferase (ZmOMT) gene family[J/OL]. Molecular Plant Breeding, 2021:1-12. [2021-11-05]. https://kns.cnki.net/kcms/detail/46.1068.s.20211104.1914.021.html.
[34] WU C C,ZUO D Y,XIAO S P,WANG Q L,CHENG H L,LV L M,ZHANG Y P,LI P B,SONG G L. Genome-wide identification and characterization of GhCOMT gene family during fiber development and Verticillium wilt resistance in cotton[J]. Plants,2021,10(12):2756.
[35] 陳安琪. 川芎咖啡酸-O-甲基轉移酶(LcCOMT)的功能鑒定與應用研究[D]. 成都:西南交通大學,2021.
CHEN Anqi. Functional identification and application of Ligusticum chuanxiong caffcie acid-O-methyltransferase (LcCOMT)[D].
Chengdu:Southwest Jiaotong University,2021.
[36] LEE J E,VOGT T,HAUSE B,L?BLER M. Methyl jasmonate induces an O-methyltransferase in Barley[J]. Plant and Cell Physiology,1997,38(7):851-862.
[37] TOQUIN V,GRAUSEM B,GEOFFROY P,LEGRAND M. Structure of the tobacco caffeic acid O-methyltransferase (COMT) II gene:Identification of promoter sequences involved in gene inducibility by various stimuli[J]. Plant Molecular Biology,2003,52(3):495-509.
[38] COLLINGE D B. Cell wall appositions:The first line of defence[J]. Journal of Experimental Botany,2009,60(2):351-352.
[39] LI C,HE Q L,ZHANG F,YU J W,LI C,ZHAO T L,ZHANG Y,XIE Q W,SU B R,MEI L,ZHU S J,CHEN J H. Melatonin enhances cotton immunity to Verticillium wilt via manipulating lignin and gossypol biosynthesis[J]. The Plant Journal,2019,100(4):784-800.
[40] BARAKAT A,CHOI A,YASSIN N B M,PARK J S,SUN Z C,CARLSON J E. Comparative genomics and evolutionary analyses of the O-methyltransferase gene family in Populus[J]. Gene,2011,479(1/2):37-46.
[41] BYEON Y,CHOI G H,LEE H Y,BACK K. Melatonin biosynthesis requires N-acetylserotonin methyltransferase activity of caffeic acid O-methyltransferase in rice[J]. Journal of Experimental Botany,2015,66(21):6917-6925.
[42] HO-YUE-KUANG S,ALVARADO C,ANTELME S,BOUCHET B,C?ZARD L,LE BRIS P,LEG?E F,MAIA-GRONDARD A,YOSHINAGA A,SAULNIER L,GUILLON F,SIBOUT R,LAPIERRE C,CHATEIGNER-BOUTIN A L. Mutation in Brachypodium caffeic acid O-methyltransferase 6 alters stem and grain lignins and improves straw saccharification without deteriorating grain quality[J]. Journal of Experimental Botany,2016,67(1):227-237.
[43] 李偉,熊謹,陳曉陽. 木質素代謝的生理意義及其遺傳控制研究進展[J]. 西北植物學報,2003,23(4):675-681.
LI Wei,XIONG Jin,CHEN Xiaoyang. Advances in the research of physiological significances and genetic regulation of lignin metabolism[J]. Acta Botanica Boreali-Occidentalia Sinica,2003,23(4):675-681.
收稿日期:2023-04-04 接受日期:2023-05-24
基金項目:河南省科技攻關項目(222102110199、232102111090)
作者簡介:許雯雯,女,碩士,研究方向為果樹種質資源與遺傳育種。Tel:15136767398,E-mail:xuwen199810@163.com
通信作者 Author for correspondence. Tel:13569430110,E-mail:liguirong10@163.com