張 彤,李巧艷,王小燕,梁美生,萊卓君
Pr摻雜Ni~(Ce-Zr)O2/Al2O3用于三效催化(TWC)反應(yīng):缺陷性質(zhì)-活性關(guān)系
張 彤,李巧艷,王小燕,梁美生*,萊卓君
(太原理工大學(xué)環(huán)境科學(xué)與工程學(xué)院,山西 太原 030024)
為探究稀土金屬摻雜CeZrO催化劑引發(fā)的缺陷結(jié)構(gòu)對汽車尾氣污染控制的影響,合成了不同Pr摻雜量的Ni~(Ce6Zr4-xPrx)O2/Al2O3系列催化劑,并對其進(jìn)行了TWC催化活性評價?耐SO2性能測試和系統(tǒng)性表征,研究Pr摻雜引起的缺陷性質(zhì)對催化性能的影響.結(jié)果表明,Pr摻雜Ni~(Ce-Zr)O2/Al2O3產(chǎn)生兩種缺陷:氧空位(Ov)和晶格扭曲,Pr的摻雜水平控制著缺陷位的類型和濃度.Ov在TWC反應(yīng)中起關(guān)鍵作用.在Pr摻雜的Ni~(Ce6Zr4-xPrx)O2/Al2O3催化劑中,TWC的催化性能顯著地依賴于Ov濃度, Pr摻雜產(chǎn)生的Ov可改善NiO的分散,加速本體氧的遷移和擴(kuò)散,促進(jìn)大量活性氧物種的形成,促進(jìn)CO和HC的吸附和氧化,也可激活和削弱N-O鍵促進(jìn)NO的解離.具有最多Ov數(shù)量的Ni~(Ce6Zr3Pr1)O2/Al2O3在200 ~ 600 ℃時表現(xiàn)出最突出的三效催化性能和較好的抗硫性能,而晶格扭曲對催化性能影響并不大.
Ni~(Ce-Zr-Pr)O2;Pr摻雜;氧空位(Ov);晶格扭曲;構(gòu)效關(guān)系
機(jī)動車尾氣已成為我國大氣污染的重要來源[1].三效催化劑(TWCs)被認(rèn)為是減少廢氣排放的有效技術(shù)而廣泛應(yīng)用于控制尾氣排放[1-4],主要由活性組分、助劑以及載體組成[5].目前已設(shè)計(jì)和探索了多種金屬基催化材料,包括貴金屬和非貴金屬[4].然而,傳統(tǒng)負(fù)載型貴金屬催化劑的高成本?稀缺性?耐硫性差等缺點(diǎn)嚴(yán)重限制了其實(shí)際應(yīng)用[3,6-7].非貴金屬Ni基催化劑因在多種催化反應(yīng)中表現(xiàn)出的較好的C-H鍵斷裂[8-9]、CO吸附和NO還原能力[10-14]、以及良好的抗SO2中毒性能[15-18],受到了廣泛關(guān)注,高可用性和低成本使其在三效催化領(lǐng)域具有較好的應(yīng)用潛力.然而,隨著汽車尾氣排放法規(guī)的日益收緊,Ni基催化劑目前的氧化還原性能還無法實(shí)現(xiàn)汽車尾氣污染物的達(dá)標(biāo)排放.眾所周知,助劑改性是提升TWC催化性能最直接?最有效的方法.CeO2因其獨(dú)特的儲放氧能力常作為TWCs的助劑,CeO2-ZrO2復(fù)合氧化物更是三效催化劑中最常用的儲氧材料[2,19-20].隨著汽車尾氣排放法規(guī)的日益收緊,稀土金屬摻雜CeO2- ZrO2催化劑的缺陷化學(xué)在多相催化領(lǐng)域引起了廣泛的科學(xué)興趣并已用于汽車尾氣的催化凈化[21].以前的研究中,我們發(fā)現(xiàn),金屬摻雜CeO2的催化性能與其缺陷結(jié)構(gòu)密切相關(guān).通常金屬摻雜CeO2會產(chǎn)生兩種類型的缺陷,即氧空位Ov和晶格扭曲(MO8型絡(luò)合物),這取決于金屬摻雜的類型(即氧空位的形成與摻雜劑的離子價態(tài)有關(guān),而晶格扭曲的產(chǎn)生取決于所使用的摻雜劑的離子半徑)[22].
目前在一些單一催化體系中,氧空位與晶格扭曲與催化性能之間的關(guān)系已經(jīng)得到了一定的研究.Ke等[23]報(bào)道稱稀土金屬摻雜CeO2的CO氧化活性與氧空位濃度具有直接關(guān)系,氧通常被活化在氧空位上.Zhang等[22]認(rèn)為Pr摻雜CeO2表面引起的氧空位在Prins縮合-水解反應(yīng)中起著關(guān)鍵作用.Chen等[24]通過引入無定形的氧化釤成功地調(diào)節(jié)了Mn3O4的晶格扭曲效應(yīng),大大提升了催化劑的CO催化氧化活性.Shen等[25]報(bào)道了Ce3+取代Zr4+引起的晶格扭曲效應(yīng),并提出其有利于在NH3- SCR反應(yīng)中形成活性中心,促進(jìn)NO的還原過程.然而,對于汽車尾氣CO、HC、NO等多污染物的協(xié)同去除,金屬摻雜CeO2產(chǎn)生的氧空位與晶格扭曲對于催化活性的作用及影響目前并不明確[26-28].文獻(xiàn)報(bào)道[19,29-30],在CeO2-ZrO2固溶體中引入其他元素可以導(dǎo)致更好的結(jié)構(gòu)性能.Wang等[28]發(fā)現(xiàn)適當(dāng)?shù)腃e/Zr比可促進(jìn)(Ce,Zr,La)O2載體表面形成更多的氧空位和晶格扭曲,從而提高對HC、CO和NO的催化性能.Wang等[31-32]將La,Nd,Pr,Sm,Y等稀土元素?fù)诫s進(jìn)CeO2- ZrO2形成了更多的缺陷結(jié)構(gòu),可大大提高其三效催化性能.盡管上述研究均認(rèn)為金屬摻雜CeO2引發(fā)的結(jié)構(gòu)缺陷(氧空位和晶格扭曲)可促進(jìn)三效催化性能的提升,但是他們均未區(qū)分或明確氧空位與晶格扭曲對于三效催化反應(yīng)的主導(dǎo)作用或影響.
通過減小顆粒尺寸和結(jié)晶度,可以容易地獲得CeO2的晶格缺陷.Pr是鑭系元素中僅次于Ce的元素,前期研究表明,Pr摻雜CeO2可顯著抑制催化劑的結(jié)晶,在煙塵、CO、顆粒物氧化、CO2甲烷化等反應(yīng)中表現(xiàn)出良好的催化性能[33-36].與其他稀土元素相比,Pr具有較低的釋氧活化能,Pr4+離子的還原電位比Ce4+離子低,Pr3+/Pr4+進(jìn)入氧化鈰晶格會產(chǎn)生更多的結(jié)構(gòu)缺陷以及氧化還原活性位點(diǎn)[22,30,37].通常,Pr3+摻雜CeO2可通過電荷補(bǔ)償機(jī)制產(chǎn)生氧空位,同時,由于Pr3+和Ce4+之間的離子半徑差異造成晶格扭曲,形成PrO8型配合物(O2-的8倍配位的Pr3+)[22,38-39].在CeO2-ZrO2中加入Pr亦可產(chǎn)生更好的結(jié)構(gòu)性能,提升三效催化劑(TWC)的熱穩(wěn)定性[31-32].此外,由于TWC應(yīng)用條件較為復(fù)雜,高溫時活性組分易發(fā)生團(tuán)聚甚至燒結(jié),因此常采用γ-Al2O3作為TWC活性組分的載體,雖然其本身并無催化活性,但其高的比表面積以及良好的熱穩(wěn)定性,可以保持活性金屬的良好分散,防止其高溫?zé)Y(jié),保證催化劑的活性和熱穩(wěn)定性[5,40-41].綜上,在本工作中,我們制備了不同Pr摻雜量的Ni~(Ce6Zr4-xPrx)O2/Al2O3催化劑,用于汽車尾氣中CO、HC和NO的脫除,建立了Pr摻雜CeO2- ZrO2引起的缺陷性質(zhì)(類型和濃度)與其催化性能之間的關(guān)系,以揭示Pr摻雜引起的缺陷性質(zhì)對三效催化性能的影響.
硝酸鈰六水合物(Ce(NO3)3·6H2O),氧化鐠(Pr6O11)均購自上海阿拉丁生物技術(shù)有限公司,硝酸氧鋯水合物(N2O7Zr·H2O)購自北京伊諾凱科技有限公司,擬薄水鋁石購自德州市晶火技術(shù)玻璃有限公司,硝酸鎳六水合物(Ni(NO3)2﹒6H2O)購自天津市登峰化學(xué)試劑廠,硝酸購自天津市廣成化學(xué)試劑有限公司,氨水(NH3·H2O, 25%)購自天津市大茂化學(xué)試劑廠,所有試劑均為AR分析純,無需進(jìn)一步純化,實(shí)驗(yàn)用水均為超純水,由實(shí)驗(yàn)室純水機(jī)自制.
系列不同Pr添加量的(Ce6Zr4-xPr)O2固溶體(= 0, 0.5, 1, 3)由共沉淀法制備.按照不同的摩爾配比,分別稱取相應(yīng)質(zhì)量的Ce(NO3)3·6H2O、N2O7Zr·H2O和Pr(NO3)3(由Pr6O11與硝酸配制而成)溶解在超純水中攪拌1h使其完全混合,然后向混合液中滴入過量的氨水(NH3·H2O, 25%)直至pH值達(dá)到10.靜置陳化一夜(12h)后過濾,用去離子水洗滌濾餅至中性,得到的沉淀物在120℃烘箱中干燥12h,最后在550℃馬弗爐中煅燒4h,得到(Ce6Zr4-xPr)O2.
活性氧化鋁(γ-Al2O3)由擬薄水鋁石在550℃焙燒4h得到,然后以((Ce6Zr4-xPr)O2:γ-Al2O3=0.25: 0.75)的物質(zhì)的量比與上述得到的(Ce6Zr4-xPr)O2混合研磨均勻.
Ni由水浴浸漬引入制備的助劑和載體.將一定質(zhì)量的Ni(NO3)2·6H2O(Ni占催化劑的10wt%)溶解在超純水中,攪拌15min將上述混合物加入硝酸鎳溶液中,在60℃水浴中浸漬8h,之后在105℃烘箱中干燥12h,最后在馬弗爐中以450℃焙燒4.5h得到目標(biāo)三效催化劑,命名為Ni~(Ce6Zr4-Pr)O2/Al2O3.當(dāng)Ni的添加量為0時,得到產(chǎn)物(Ce6Zr3Pr1)O2/Al2O3.
采用自建催化劑性能評價系統(tǒng)模擬污染物配氣,對三效催化劑進(jìn)行活性測試.如圖1,該系統(tǒng)包括進(jìn)氣部分、反應(yīng)部分和檢測部分.進(jìn)氣組成為10000′10-6CO、1000′10-6NO、3000′10-6HC (1950′10-6C3H8+1050′10-6C3H6)、0%~2% O2,用N2平衡.反應(yīng)部分中,催化劑被放置在固定床石英管式反應(yīng)器中,溫度范圍為200~600℃.總氣體流速為350mL/ min,氣體體積空速為20000mL/(Gh)(STP).反應(yīng)結(jié)束后,尾氣中污染物濃度由煙氣分析儀(MARS-6, Seitron AG,意大利)直接監(jiān)測記錄.CO、HC和NO的轉(zhuǎn)化效率分別由下式計(jì)算:
其中“in”和“out”下標(biāo)分別表示穩(wěn)定狀態(tài)下CO/HC/ NO的進(jìn)氣和出氣濃度,其中NO代表NO.
圖1 催化劑性能評價系統(tǒng)
N2吸附儀(ASAP 2020,Micromeritics Instrument,美國)用于測定樣品的比表面積、孔容和孔徑分布等.X射線衍射(XRD, Malvern Panalytical Aeris)用于對催化材料進(jìn)行物相分析.X射線光電子能譜(XPS, ESCALAB 250Xi,美國)用于分析催化劑表面元素組成以及價態(tài)測定. H2-TPR和O2-TPD分別被用來分析催化劑的氧化還原性質(zhì)和考察催化劑參與反應(yīng)的表面氧物種信息,儀器型號為AutoChem II 2920. Raman光譜用來探測催化劑表面缺陷結(jié)構(gòu),激光波長為532nm.
不同Pr摻雜量催化劑的催化性能如圖2所示,總體來看,在200℃-600 ℃內(nèi),Pr摻雜催化劑的三效催化效率相較于Ni~(Ce-Zr)O2/Al2O3均有明顯提高.如圖2(a)所示,Pr摻雜后,Ni~(Ce6Zr3.5Pr0.5)O2/Al2O3的CO轉(zhuǎn)化率為80%,遠(yuǎn)高于Ni~(Ce-Zr)O2/Al2O3(60%).繼續(xù)添加Pr,Ni~(Ce6Zr3Pr1)O2/Al2O3在600 ℃達(dá)到最高CO轉(zhuǎn)化率(90%).而進(jìn)一步加載Pr后,去除效率反而有所下降.類似地,在Ni~(Ce-Zr)O2/Al2O3中摻雜Pr后,HC轉(zhuǎn)化率也有所提高(圖2(b)).Ni~ (Ce6Zr3Pr1)O2/Al2O3在整個溫度窗口內(nèi)均表現(xiàn)出優(yōu)異的HC去除能力,在600 ℃時HC轉(zhuǎn)化率達(dá)100%.對于NO的脫除,Pr摻雜的積極作用更為明顯(圖2(c)).整個溫度窗口內(nèi)NO還原活性順序依次為:Ni~(Ce6Zr3Pr1)O2/Al2O3 > Ni~(Ce6Zr3.5Pr0.5)O2/ Al2O3> Ni~(Ce6Zr1Pr3)O2/Al2O3> Ni~(Ce-Zr)O2/ Al2O3.特別是Ni~(Ce6Zr3Pr1)O2/Al2O3在400 ℃時的NO轉(zhuǎn)化率高達(dá)84%,遠(yuǎn)高于Ni~(Ce-Zr)O2/Al2O3的10%.整體來看,Ni~(Ce6Zr3Pr1)O2/Al2O3表現(xiàn)出最佳的三效催化性能.此外,當(dāng)在體系中引入100ppm SO2后, Ni~(Ce6Zr3Pr1)O2/Al2O3催化劑在600 ℃時較長時間內(nèi)仍保持較高的污染物脫除效率,表現(xiàn)出優(yōu)異的抗硫中毒性能(見支撐信息圖S1).
此外,為進(jìn)一步確定催化劑中活性組分NiO的作用,對不含Ni的(Ce6Zr3Pr1)O2/Al2O3進(jìn)行了TWC活性測試,結(jié)果如圖2所示.可以看出, (Ce6Zr3Pr1)O2/Al2O3本身具有一定的催化活性,溫度較高時可在一定程度上對CO、HC和NO進(jìn)行脫除.與之相比,活性金屬Ni的負(fù)載使得三效催化效能大幅提升,這表明NiO作為活性組分在CO、HC和NO的脫除中起著重要作用,負(fù)載Ni后的Ni~(Ce6Zr3Pr1)O2/Al2O3在整個溫度窗口內(nèi)均表現(xiàn)出優(yōu)異的污染物去除能力,遠(yuǎn)高于(Ce6Zr3Pr1) O2/Al2O3.
為了探究影響催化劑性能的主導(dǎo)因素,對Pr摻雜前后的樣品進(jìn)行了系統(tǒng)性表征.
2.2.1 BET 如圖3(a)所示,四種催化劑均表現(xiàn)出典型的IV吸脫附等溫線,具有H3型的滯后環(huán),表明介孔在吸附中起主要作用[42-43].由表1可知,Pr的引入明顯降低了催化劑的比表面積,Ni~(Ce6Zr1Pr3)O2/ Al2O3的下降尤為明顯.這一現(xiàn)象的可能解釋是,Pr的引入導(dǎo)致了更多晶格缺陷的產(chǎn)生,增加了樣品的孔隙度和結(jié)構(gòu)不規(guī)則性,相應(yīng)地,表面結(jié)構(gòu)的變化和更多的孔隙結(jié)構(gòu)導(dǎo)致了孔徑的增加和孔容的減少,從而導(dǎo)致比表面積的減少[37,39].在所有Pr摻雜樣品中,Ni~(Ce6Zr3Pr1)O2/Al2O3具有最大的比表面積(161.71m2/g)和孔容(0.39cm3/g),這可能有利于NiO活性物種的分散[44].但是,過量Pr的加載導(dǎo)致了介孔結(jié)構(gòu)的部分崩塌,比表面積大大降低,僅為91.88m2/g,孔體積的減小也證實(shí)了這一點(diǎn).此外,圖3(b)中可以發(fā)現(xiàn),引入Pr后催化劑的孔徑增大且孔徑分布更加分散[29].相較于其他Pr摻雜樣品,Ni~(Ce6Zr3Pr1)O2/ Al2O3具有更大的孔容和更均勻的孔徑分布,這種高度多孔的氧化物材料有利于改善高效催化反應(yīng)的相間傳質(zhì)[42,45].
由此可知,比表面積的變化應(yīng)該并不是Pr導(dǎo)致催化性能提高的主要原因.不過或許這可能是Ni~(Ce6Zr3Pr1)O2/Al2O3的性能優(yōu)于其他樣品的一個原因.
2.2.2 XRD 催化劑的XRD譜圖如圖4所示,所有樣品中在2θ = 28.7、33.2、47.4、56.4、59.2、69.3、76.5、79.1和88.5°處的衍射峰可歸屬于CeO2晶體的(JCPDS 34-0394)面心立方螢石結(jié)構(gòu)(空間群: Fm3m)[9,29,46].同時未觀察到ZrO2和PrO2的額外特征峰,表明Zr和Pr物種成功與CeO2形成固溶體[29,46].隨著Pr的增加,CeO2特征峰均向小角度有輕微偏移,這主要?dú)w因于Pr3+(0.113nm)的離子半徑大于Ce4+(0.097nm),表明Pr不僅成功摻雜到Ce晶格中,同時導(dǎo)致了嚴(yán)重的晶格膨脹[22,30,46-47].相比其他催化劑, Ni~(Ce6Zr3Pr1)O2/Al2O3的XRD峰強(qiáng)度減弱且峰變寬,結(jié)合表1晶粒尺寸數(shù)據(jù),表明其具有最低的結(jié)晶度和最小的晶粒尺寸[42,48].低結(jié)晶度常被認(rèn)為有利于催化劑內(nèi)部原子的暴露和晶格缺陷的產(chǎn)生,而較小的晶粒尺寸通常會導(dǎo)致較大的比表面積和孔體積,這兩者都有利于CO、HC和NO的去除[42]. Ni~ (Ce6Zr3Pr1)O2/Al2O3較好的CO?HC和NO消除性能可能得益于其較低的結(jié)晶度和較小的晶粒尺寸.值得注意的是,與我們常規(guī)認(rèn)識不同, Ni~ (Ce-Zr)O2/ Al2O3(4.95nm) 表1 Ni~(Ce6Zr4-xPrx)O2/Al2O3的比表面積、孔體積、孔徑、晶粒尺寸和晶格參數(shù) 注:1 由Scherrer公式計(jì)算得出. 2.3.1 XPS XPS被用于研究樣品的表面元素狀態(tài),圖5(a)為催化劑的Ni 2p3/2譜圖,可以看出,催化劑中的Ni物種均以氧化態(tài)形式存在.Ni~(Ce-Zr)O2/ Al2O3在855.3、856.7和861.7eV可以觀察到α、β和γ三個譜峰,分別歸屬于游離Ni2+物種(表面NiO物種)、與CeO2表面緊密接觸的Ni2+物種(NiO-CeO2界面的Ni2+物種)或Ni(OH)2或Ni2O3物種、Ni 2p3/2中Ni2+的衛(wèi)星峰[10,38-39,49-52].經(jīng)計(jì)算,Pr摻雜催化劑中觀察到更高比例的β峰物種,表明Pr摻雜不僅提高了活性組分NiO的分散性,而且導(dǎo)致了NiO和(Ce-Zr-Pr)O2界面更加密切的電子相互作用,金屬-助劑間的相互作用大大增強(qiáng),Ni~(Ce6Zr3Pr1)O2/ Al2O3具有最強(qiáng)的金屬-助劑相互作用,有利于三效催化反應(yīng)的進(jìn)行[12,53].這一現(xiàn)象的可能解釋為:Pr摻雜后,分散良好的Ni納米顆粒在空氣中更容易被氧化為NiO[39,50],而Ni~(Ce-Zr)O2/Al2O3中Ni納米顆粒較大,不容易被氧化,或被CeO2包裹,與XRD相一致.此外,Pr加載后,Ni2+峰不同程度地向低結(jié)合能方向移動,這可能是由于形成了豐富的氧空位[22],更多的電子集中在Ni物種上,從而削弱了N-O鍵,可促進(jìn)NO物種的解離吸附和還原. 催化劑Ce 3d譜圖如圖5(b)所示.其中,標(biāo)記為u0(899.7eV)、u"(907.7eV)、u2¢(916eV)、v0(880.2eV)、v"(888.6eV)和v2¢(897.5eV)的峰歸屬于Ce4+,而標(biāo)記為u'(902.3eV)和v'(882.2eV)的峰則歸屬于Ce3+物種[9,54-55].樣品表面的Ce主要以+4氧化態(tài)存在,少量Ce3+共存.由表2知,Pr摻雜樣品的Ce3+/(Ce3++Ce4+)比值明顯高于Ni~(Ce-Zr)O2/ Al2O3(26.25%),Ni~ (Ce6Zr3Pr1)O2/ Al2O3具有最高比例的表面Ce3+物種(28.65%).研究表明[25,50,55-56], Ce3+在催化劑表面往往表現(xiàn)出比Ce4+更好的性能, Ce3+可以提供電荷不平衡,Ce4+→Ce3+的相互轉(zhuǎn)化可激發(fā)氧空位Ov形成并釋放自由電子[10,54-55,57].此外,Pr摻雜催化劑中的氧空位Ov既可以來自Pr3+摻雜進(jìn)入到Ce4+位點(diǎn)(PrCe缺陷)也可通過生成本征的Ce3+物種來產(chǎn)生(CeCe缺陷)[39].一般地,Ce3+濃度越高,表明Ni~(Ce6Zr3Pr1) O2/Al2O3表面形成更多的氧空位Ov,而Pr繼續(xù)加載后,Ni~(Ce6Zr1Pr3) O2/Al2O3中Ce3+物種開始減少,這是由于過量Pr摻雜CeZrOx引起較多的結(jié)構(gòu)缺陷(PrCe缺陷)抑制了Ce4+→Ce3+的躍遷[39]. 圖5(c)中,約929.5eV和949.4eV的信號歸屬于Pr3+,而約954.3eV和933.9eV的信號歸屬于Pr4+.從表2可看出,Ni~(Ce6Zr3Pr1)O2/Al2O3的Pr3+/ (Pr3++Pr4+)比值高于其他Pr摻雜催化劑(25.14% vs 23.69% 和21.70%).結(jié)合XRD,Pr3+摻雜量越大,導(dǎo)致的晶格膨脹越多,更高比例Pr3+的Ni~(Ce6Zr3Pr1) O2/Al2O3能進(jìn)一步暴露大量的位點(diǎn)吸附反應(yīng)物,產(chǎn)生大量的氧空位來活化氧.此外,Pr4+的存在可通過形成額外的氧化還原電對Re4+/Re3+(Re = Ce and Pr)進(jìn)一步增加催化劑的儲氧能力(OSC)[58-59]. Zr的XPS能譜如圖5(d),可分為Zr 3d5/2(181.3eV)和Zr 3d3/2(183.8eV)兩部分,與ZrO2的結(jié)合能相一致,表明Zr在固溶體中以穩(wěn)定的+4氧化態(tài)存在.[4,30-31,60-51]而與Zr相比,Pr摻雜(Ce-Zr)O2后造成了較大的結(jié)構(gòu)缺陷,Pr與Ce均表現(xiàn)出與氧空位相關(guān)的混合價態(tài).此外,與氧空位相關(guān)的Ce3+和Pr3+含量較高時,Zr含量也較多.根據(jù)文獻(xiàn)[30,37],Pr摻雜CeZrO2形成的較大的Pr3+-O2-鍵可由較短的Zr4+- O2-鍵距離所補(bǔ)償.結(jié)合XRD,Pr3+的存在并沒有導(dǎo)致CeO2產(chǎn)生相變,Pr摻雜的催化劑也均顯示出CeO2的面心立方螢石結(jié)構(gòu),因此,可以推斷Zr在固溶體中主要起穩(wěn)立方螢石結(jié)構(gòu)的作用,并允許氧空位的形成和Pr3+的穩(wěn)定. 為了更深入地研究催化劑表面的氧物種,催化劑O 1s分析如圖5(e).其中,較低結(jié)合能處的峰(529.9-531.1eV)歸屬于晶格氧物種(Oɑ),而較高結(jié)合能處(531.5-531.9eV)的峰歸屬于表面羥基或化學(xué)吸附氧物種(Oβ)[9,42,55,57].據(jù)文獻(xiàn)報(bào)道[55],催化劑表面氧空位的濃度可以用Oβ/(Oɑ+Oβ)來表示.顯然,Oβ/(Oɑ+Oβ)的比值隨Pr的摻雜而增加(表2),這主要是由于Pr4+比Ce4+更低的還原電位降低了氧空位的形成能[30],以及作為缺陷指示劑的Ce3+的增加,導(dǎo)致了更多的氧空位的產(chǎn)生.催化劑中豐富的氧空位促進(jìn)了CeO2晶格中無序氧的形成,從而促進(jìn)了氧從本體向表面的擴(kuò)散以及大量活性氧物種的形成[42].據(jù)報(bào)道[9],Oβ被認(rèn)為是降低汽車尾氣污染排放的活性氧物種(ROS),更充足的表面吸附氧物種有助于提高CO?HC和NO的轉(zhuǎn)化效率?在Ni~(Ce6Zr3Pr1)O2/ Al2O3表面,由于Pr和Ce之間的電荷補(bǔ)償作用而產(chǎn)生的高濃度的氧空位大大增強(qiáng)了氧的活化,從而產(chǎn)生了較好的CO?HC和NO脫除活性. 表2 Ni~(Ce6Zr4-xPrx)O2/Al2O3催化劑中表面元素的XPS擬合結(jié)果(%) 圖5 Ni~(Ce6Zr4-xPrx)O2/Al2O3的(a) Ni 2p,(b) Ce 3d,(c) Pr 3d,(d) Zr 3d, (e) O 1s的XPS譜圖 Fig.5 XPS spectra of (a) Ni 2p, (b) Ce 3d, (c) Pr 3d, (d) Zr 3d, (e) O 1s of Ni~(Ce6Zr4-xPrx)O2/Al2O3catalysts 2.3.2 H2-TPR and O2-TPD H2-TPR被用于分析催化劑的還原能力,結(jié)果如圖6(a)所示.Ni~(Ce-Zr)O2/ Al2O3在250~300℃、300~400℃、500~600℃和>600℃的溫度區(qū)域內(nèi)出現(xiàn)4個還原峰,分別對應(yīng)于體相NiO物種(峰α)、NiO-CeO2界面的NiO物種(與CeO2相互作用強(qiáng)烈的NiO物種)(峰β)、表面晶格氧(Ce4+→ Ce3+or Pr4+→Pr3+)(峰γ)和體相氧(Ce4+→ Ce3+or Pr4+→Pr3+)(峰σ)的還原[10-12,39,50].值得注意的是,所有Pr摻雜的催化劑在100~250℃均出現(xiàn)了對應(yīng)于表面氧物種的新的還原峰,間接表明Pr摻雜后催化劑表面氧空位Ov的存在[42,62].如圖6(b),適量Pr摻雜的Ni~(Ce6Zr3Pr1)O2/Al2O3顯然具有最多的氧空位Ov含量,而過多的Pr摻雜會導(dǎo)致氧空位Ov的減少.另外,Pr摻雜催化劑表面和體相氧的還原峰都不同程度地向低溫偏移,Pr的引入使得催化劑具有更好的氧化還原性能.其中,Ni~(Ce6Zr3Pr1)O2/ Al2O3表面晶格氧的還原峰(γ)移至397°C,遠(yuǎn)遠(yuǎn)低于其他Pr摻雜樣品(398°C和487°C),進(jìn)一步表明Ni~(Ce6Zr3Pr1)O2/Al2O3上的還原過程更為容易.同時,Ni~(Ce6Zr3Pr1)O2/Al2O3的體相氧還原溫度降低尤其明顯,這可能是由于大量氧空位的生成增強(qiáng)了氧在晶格中的遷移轉(zhuǎn)化,促進(jìn)了氧離子從體相向表面擴(kuò)散.進(jìn)一步添加Pr,Ni~(Ce6Zr1Pr3)O2/ Al2O3的體相氧的還原溫度提高至690℃,這表明過量的Pr會抑制Ni~(Ce6Zr4-xPrx)O2/Al2O3的氧化還原能力,根據(jù)BET和活性測試,這可能是由于晶面聚結(jié)導(dǎo)致的.此外,Pr修飾的催化劑的體相NiO物種的還原發(fā)生在更高的溫度,表明Pr的摻雜也有利于增強(qiáng)NiO與(Ce-Zr-Pr)O2之間的相互作用[10-11,39].特別地,與其他Pr摻雜樣品相比,Ni~(Ce6Zr3Pr1)O2/Al2O3上體相NiO的還原峰(α)發(fā)生在更低溫度(分別為283℃ vs 286℃和295℃).NiO-CeO2界面物種還原峰(β)面積隨Pr的摻雜先增大后減小,并且在Ni~ (Ce6Zr3Pr1) O2/Al2O3上達(dá)到最大,表明Ni~(Ce6Zr3Pr1) O2/Al2O3內(nèi)部NiO與(Ce-Zr-Pr)O2的相互作用最強(qiáng),也證明產(chǎn)生了更多易還原的表面氧,進(jìn)一步促進(jìn)了CO和HC在催化劑上的吸附和氧化,與XPS結(jié)果一致.基于上述分析,Pr的引入可以在Ni~(Ce6Zr3Pr1) O2/ Al2O3中產(chǎn)生更多的表面活性氧,增強(qiáng)晶格氧遷移率以及NiO與(Ce-Zr-Pr)O2之間的相互作用.良好的氧化還原能力有利于加速HC和CO的氧化和NO的還原. O2-TPD進(jìn)一步研究了可能參與反應(yīng)的氧物種.如圖6(c)所示,Pr摻雜的催化劑明顯脫附出了更多的氧,表明Pr的加入可促進(jìn)催化劑產(chǎn)生更多的活性氧物種,與O 1s分析一致.根據(jù)文獻(xiàn)[9,29,42],氧的脫附可以分為三個溫度區(qū)域:小于300℃, 300~400℃和高于400℃,分別歸屬于物理吸附氧和弱化學(xué)吸附氧(Oα),化學(xué)吸附氧(Oβ)以及晶格氧物種(Oγ)的脫附.一般來說,供氧能力是由供氧中心的數(shù)量和活性決定的[9,42].Ni~(Ce6Zr3Pr1)O2/ Al2O3具有最大的表面氧含量(如圖6(d)),這有利于CO和HC在低溫下的氧化.結(jié)合表3數(shù)據(jù),Ni~ (Ce6Zr3Pr1)O2/Al2O3在300~ 400℃也顯示出大量的化學(xué)吸附氧,這應(yīng)該是由于其表面高比例的氧空位(Ov)被活化所致,對于CO和HC的催化氧化也是必不可少的.此外,Ni~ (Ce6Zr3Pr1)O2/Al2O3催化劑的晶格氧(Oγ)的脫附溫度較低(分別為441℃ vs 481℃和509℃),這可以在反應(yīng)溫度范圍內(nèi)促進(jìn)更多的氧物種參與反應(yīng).適量Pr的加入使Ni~ (Ce6Zr3Pr1)O2/Al2O3催化劑在反應(yīng)溫度范圍內(nèi)更容易釋放表面晶格氧,促進(jìn)更多的活性氧物種參與氧化反應(yīng),從而解釋了Ni~(Ce6Zr3Pr1) O2/Al2O3催化劑對CO和HC較高的氧化效率. Raman是探測催化劑近表面缺陷結(jié)構(gòu)的有效手段[22,30,42].圖7(a)顯示了不同樣品的拉曼光譜與擬合曲線,所有樣品在大約451cm?1、561cm?1和600cm?1處觀察到α、β和γ三個主峰,并進(jìn)行了反卷積.Pr含量的增加會逐漸改變晶格結(jié)構(gòu).Ni~(Ce- Zr)O2/Al2O3在451cm?1表現(xiàn)出明顯的特征特征峰,歸屬于Ce離子周圍O原子的F2g對稱呼吸模式. Pr摻雜后在~561cm-1(β)和~600cm-1(γ)處觀察到兩個明顯的峰,均與晶格中的缺陷結(jié)構(gòu)有關(guān).第一個峰(~561cm?1)歸屬于外部引入CeO2以中和電荷的氧空位,而另一個峰(~600cm?1)由晶格扭曲引起,可歸屬于MO8型配合物(ZrO8型配合物或PrO8型配合物)(由8個最近鄰O2-離子包圍的金屬陽離子),其中沒有氧空位[9,22,29-30,42].在圖7(a)中可以發(fā)現(xiàn),隨著催化Pr摻雜量的增加,F2g拉曼模式逐漸向低頻移動,且半高寬FWHM不斷展寬.本實(shí)驗(yàn)中,峰的移動主要由于Pr3+離子半徑(1.013?)大于Ce4+(0.92?)所引起的晶格參數(shù)的增加,峰展寬(FWHM增加)則與Pr摻雜誘導(dǎo)的缺陷相關(guān),這有助于F2g拉曼峰值強(qiáng)度的逐漸降低(圖7(a)).這些結(jié)果也表明Pr已經(jīng)摻入CeO2晶格形成固溶體,與其他表征結(jié)果一致. 表3 Ni~(Ce6Zr4-xPrx)O2/Al2O3的Raman光譜擬合及O2-TPD結(jié)果 為了分析氧空位和MO8型絡(luò)合物的濃度變化,根據(jù)相關(guān)的Raman峰的面積計(jì)算了不同缺陷的相對濃度,分別表示為α,β和γ.β/(α+β+γ)表示氧空位的相對濃度,γ/(α+β+γ)表示MO8型絡(luò)合物的相對濃度,(β+γ)/(α+β+γ)表示總?cè)毕莸臐舛?擬合結(jié)果如表3所示.顯而易見地,Pr添加后催化劑暴露的缺陷濃度(β和γ)急劇增加,表明Pr摻入CeO2的晶格中參與了氧空位Ov和MO8型絡(luò)合物的形成.這可能就是Pr添加導(dǎo)致催化劑反應(yīng)活性大大提高的最主要原因.相應(yīng)的缺陷濃度繪制為Pr/ (Ce+Zr+Pr)的函數(shù)如圖7(b).可以看出,Pr摻雜越多,CeO2晶格中MO8型配合物就越多.相反,隨著Pr的增加,氧空位濃度先增加,當(dāng)Pr/(Ce+Zr+Pr)為10%(Ce/Zr/Pr = 6:3:1)時達(dá)到最大值,當(dāng)Pr/(Ce+Zr+ Pr)進(jìn)一步增加到30%(Ce/Zr/Pr = 6:1:3)時,氧空位濃度最終降低.因此,10% Pr是在CeO2-ZrO2固溶體中產(chǎn)生氧空位的最佳摻雜水平,而進(jìn)一步提高Pr摻雜量只會導(dǎo)致更高的MO8型絡(luò)合物濃度. 為了進(jìn)一步探究催化劑活性的主導(dǎo)因素,圖7(b)中研究了缺陷位類型(氧空位和晶格扭曲)以及缺陷位濃度對催化活性的影響(以600℃的NO轉(zhuǎn)化率表示).首先,可以明顯地看出,在Ni~(Ce-Zr)O2/Al2O3中引入Pr后,即Pr的添加量在5%~30%范圍內(nèi)時,氧空位濃度與催化活性的變化趨勢一致,并且進(jìn)一步對在此范圍內(nèi)氧空位、晶格扭曲以及總結(jié)構(gòu)缺陷濃度與催化活性進(jìn)行了線性擬合,如圖7(c)所示,氧空位對于催化活性有著更為明顯的積極影響,而總?cè)毕轁舛群蚆O8型絡(luò)合物濃度的變化與催化活性的趨勢差別較大,表明其對催化性能的影響很小.此外,圖7(b)中也可以發(fā)現(xiàn),Pr的添加量在0~10%范圍內(nèi)所有缺陷位類型的濃度均與催化活性有較為相似的變化趨勢,因此,我們針對Pr摻雜前后整個范圍內(nèi)所有缺陷位類型與催化活性的變化進(jìn)行了線性擬合, 如圖7(d)所示.類似地,氧空位在整個Pr摻雜前后全范圍內(nèi)相對于晶格扭曲和總結(jié)構(gòu)缺陷也對催化劑催化活性有著更為明顯的積極作用.因此,在本文中,氧空位對催化劑的催化性能有明顯積極的影響,并且相對于晶格扭曲有著更為明顯的主導(dǎo)作用. 總的來說,在Ni~(Ce-Zr)O2/Al2O3中引入Pr會產(chǎn)生兩種缺陷:包括氧空位Ov和MO8型絡(luò)合物,Pr的摻雜水平控制著缺陷位的類型和濃度.氧空位Ov在三效催化反應(yīng)中起著關(guān)鍵作用,適量的Pr摻雜有助于形成更多的氧空位Ov.富氧空位(Ov)可以提供豐富的活性氧物種,繼續(xù)促進(jìn)CO和HC物種的吸附和氧化.此外,正如文獻(xiàn)[63]所述,NO的解離是CO模型反應(yīng)還原NO的關(guān)鍵步驟,氧空位(Ov)可以激活N-O鍵,促進(jìn)NO物種的解離吸附,這有利于NO催化還原反應(yīng)中心的形成.大量的氧空位(Ov)可以促進(jìn)NO的解離吸附,從而加快了NO與CO和HC物種的反應(yīng)過程,并產(chǎn)生更多的N2和CO2. 基于上述的分析,提出Pr摻雜的Ni~ (Ce6Zr3Pr1)O2/Al2O3催化劑氧空位影響三效催化反應(yīng)的可能機(jī)理如下:(1)在低溫下,部分CO和HC吸附在催化劑表面的活性位點(diǎn)NiO上,然后被氧化為CO2和H2O,也使得催化劑被部分還原,催化劑本征的氧空位暴露出來,隨著溫度的升高,Ce4++Pr4+→ Ce3++Pr3+的轉(zhuǎn)化導(dǎo)致更多氧空位Ov的生成,富氧空位Ov可繼續(xù)促進(jìn)CO與HC物種的吸附;(2)NO的解離是NO+CO反應(yīng)的關(guān)鍵步驟,活性組分與氧空位的相互作用可以削弱N-O鍵以促進(jìn)NO的解離吸附,有利于在NO催化還原中形成反應(yīng)中心,富氧空位Ov可促進(jìn)NO的解離吸附過程,從而加速NO與CO、HC物種的反應(yīng)過程,生成更多的N2和CO2.(3)氣相中的O2被氧空位Ov捕獲并轉(zhuǎn)化為繼續(xù)參與反應(yīng)的活性氧物種. 圖8 氧空位影響Ni~(Ce6Zr3Pr1)O2/Al2O3去除CO、HC、NOx的可能的反應(yīng)機(jī)理 3.1 活性測試表明,Pr摻雜的Ni~(Ce6Zr3Pr1)O2/ Al2O3(Ce/Zr/Pr = 6:3:1)催化劑在200~600℃條件下表現(xiàn)出最優(yōu)異的催化脫除CO、HC和NO性能. 3.2 表征結(jié)果表明,Pr摻雜進(jìn)入Ni~(Ce-Zr)O2/ Al2O3會產(chǎn)生兩種缺陷,包括氧空位Ov和MO8型絡(luò)合物,不同Pr的摻雜水平控制著缺陷位的類型和濃度.缺陷位的類型和濃度與催化性能的關(guān)系曲線表明,與MO8型絡(luò)合物相比,氧空位Ov在三效催化反應(yīng)中起著重要的作用. 3.3 Pr摻雜誘導(dǎo)產(chǎn)生的氧空位大大提高了催化劑表面本體氧的遷移和擴(kuò)散能力,促進(jìn)大量活性氧物種的形成,進(jìn)一步促進(jìn)CO和HC在催化劑上的吸附和氧化.同時,更多暴露的氧空位極大地激活和削弱了N-O鍵,促進(jìn)了NO的解離吸附及還原.Pr摻雜形成的氧空位也可以改善NiO的分散性,增強(qiáng)NiO與CeO2之間的相互作用,暴露出更多的活性中心,有利于CO、HC和NO的轉(zhuǎn)化. 3.4 此外,當(dāng)在體系中引入100ppm SO2后,本文合成的Ni~(Ce6Zr3Pr1)O2/Al2O3催化劑在600℃時較長時間內(nèi)仍保持較高的污染物脫除效率,表明該催化劑還具有良好的抗硫中毒性能. [1] Farrauto R J, Deeba M, Alerasool S.Gasoline automobile catalysis and its historical journey to cleaner air [J]. Nature Catalysis, 2019,2(7): 603-13. [2] Chen K, Wan J, Lin J, et al. Comparative study of three-way catalytic performance over Pd/CeO2-ZrO2-Al2O3and Pd/La-Al2O3catalysts: New insights into microstructure and thermal stability [J]. Molecular Catalysis, 2022,526112361. [3] Lambert C K. Current state of the art and future needs for automotive exhaust catalysis [J]. Nature Catalysis, 2019,2(7):554-557. [4] 張昭良,何 洪,趙 震.汽車尾氣三效催化劑研究和應(yīng)用40年 [J]. 環(huán)境化學(xué), 2021,40(7):1937-1944. Zhang Z L, He H, Zhao Z. 40years of research and application of three-way catalysts for gasoline automobiles [J]. Environmental Chemistry, 2021,40(7):1937-1944. [5] Granger P, Parvulescu V I.Catalytic NOAbatement Systems for Mobile Sources: From Three-Way to Lean Burn after-Treatment Technologies [J]. Chemical Reviews, 2011,111(5):3155-316. [6] Liu H, Liu L, Wei L,et al.Preparation of three-dimensionally ordered macroporous MFe2O4(M = Co, Ni, Cu) spinel catalyst and its simultaneous catalytic application in CO oxidation and NO+CO reaction [J]. Fuel, 2020,272117738. [7] Escandón L S, Ordó?ez S, Vega A, et al. Sulphur poisoning of palladium catalysts used for methane combustion: Effect of the support [J]. Journal of Hazardous Materials, 2008,153(1):742-50. [8] Hilli Y, Kinnunen N M, Suvanto M, et al. Preparation and characterization of Pd-Ni bimetallic catalysts for CO and C3H6oxidation under stoichiometric conditions [J]. Applied Catalysis A: General, 2015,49785-49795. [9] Wen J J, Xie Y, Ma Y P, et al. Engineering of surface properties of Ni-CeZrAl catalysts for dry reforming of methane [J]. Fuel, 2022,308. [10] Tang K, Liu W, Li J, et al. The Effect of Exposed Facets of Ceria to the Nickel Species in Nickel-Ceria Catalysts and Their Performance in a NO + CO Reaction [J]. ACS Appl Mater Interfaces, 2015,7(48): 26839-26849. [11] Wang Y, Zhu A, Zhang Y, et al. Catalytic reduction of NO by CO over NiO/CeO2catalyst in stoichiometric NO/CO and NO/CO/O2reaction [J]. Applied Catalysis B: Environmental, 2008,81(1):141-149. [12] Tang C, Sun B, Sun J, et al. Solid state preparation of NiO-CeO2catalyst for NO reduction [J]. Catalysis Today, 2017,281575-582. [13] 侯麗敏,呂秉娛,付善聰,等.Ni改性對稀土尾礦NH3-SCR脫硝性能的影響[J]. 中國環(huán)境科學(xué), 2023,43(4):1574-1581.Hou L M, Lü B Y, Fu S C, et al. Effect of Ni modification on NH3-SCR denitrification performance of rare earth tailings. China Environmental Science, 2023,43(4):1574-1581. [14] 郭 磊,張 濤,?;?等.Ce摻雜改性Ni-Al-O催化劑CO-NO反應(yīng)性能[J]. 中國環(huán)境科學(xué), 2018,38(9):3313-3321. Guo L, Zhang T, Chang H Z, et al. Study on Ce-doped Ni-Al-Ocatalysts for NO reduction by CO. China Environmental Science, 2018, 38(9):3313-3321. [15] Zhang Y, Qu T, Bi F,et al.Trimetallic (Co/Ni/Cu) Hydroxyphosphate Nanosheet Array as Efficient and Durable Electrocatalyst for Oxygen Evolution Reaction [J]. ACS Sustainable Chemistry & Engineering, 2018,6(12):16859-16866. [16] Li G, Zhao B, Wang Q, et al. The effect of Ni on the structure and catalytic behavior of model Pd/Ce0.67Zr0.33O2three-way catalyst before and after aging [J]. Applied Catalysis B: Environmental, 2010, 97(1):41-48. [17] Gao F, Tang X, Yi H, et al. Promotional mechanisms of activity and SO2tolerance of Co- or Ni-doped MnO-CeO2catalysts for SCR of NOwith NH3at low temperature [J]. Chemical Engineering Journal, 2017,31720-31731. [18] Zhang L, Qu H, Du T, et al. H2O and SO2tolerance, activity and reaction mechanism of sulfated Ni-Ce-La composite oxide nanocrystals in NH3-SCR [J]. Chemical Engineering Journal, 2016, 296122-296131. [19] Wang L, Yu X, Wei Y, et al. Research advances of rare earth catalysts for catalytic purification of vehicle exhausts-Commemorating the 100th anniversary of the birth of Academician Guangxian Xu [J]. Journal of Rare Earths, 2021,39(10):1151-1180. [20] Wang G, Jing Y, Ting K W, et al. Effect of oxygen storage materials on the performance of Pt-based three-way catalysts [J]. Catalysis Science & Technology, 2022,12(11):3534-3548. [21] Xie C, Yan D, Li H, et al. Defect Chemistry in Heterogeneous Catalysis: Recognition, Understanding, and Utilization [J]. ACS Catalysis, 2020,10(19):11082-11098. [22] Zhang Z, Wang Y, Lu J, et al. Pr-Doped CeO2catalyst in the Prins Condensation-Hydrolysis Reaction: Are all of the defect sites catalytically active? [J]. ACS Catalysis, 2018,8(4):2635-2644. [23] Ke J, Xiao J W, Zhu W, et al. Dopant-induced modification of active site structure and surface bonding mode for high-performance Nanocatalysts: CO Oxidation on Capping-free (110)-oriented CeO2: Ln (Ln = La-Lu) Nanowires [J]. Journal of the American Chemical Society, 2013,135(40):15191-15200. [24] Chen S, Su Z, Wang H,et al.Lattice distortion in Mn3O4/SmOnanocomposite catalyst for enhanced carbon monoxide oxidation [J]. Chemical Engineering Journal, 2023,451138635. [25] Shen Y, Ma Y, Zhu S. Promotional effect of zirconium additives on Ti0.8Ce0.2O2for selective catalytic reduction of NO [J]. Catalysis Science & Technology, 2012,2(3):589-599. [26] Westermann A, Geantet C, Vernoux P, et al. Defects band enhanced by resonance Raman effect in praseodymium doped CeO2[J].Journal of Raman Spectroscopy, 2016,47(10):1276-1279. [27] Xiong Y, Yao X, Tang C, et al. Effect of CO-pretreatment on the CuO-V2O5/γ-Al2O3catalyst for NO reduction by CO [J]. Catalysis Science & Technology, 2014,4(12):4416-4425. [28] Wang T, Li Y, Zhou R X. The relation of structure and metal-support interaction with three-way catalytic performance of Rh/(Ce,Zr,La)O2catalysts [J]. Environmental Science and Pollution Research, 2020,27 (24):30352-30366. [29] Deng C, Qian, et al. Influences of doping and thermal stability on the catalytic performance of CuO/Ce20M1O(M = Zr, Cr, Mn, Fe, Co, Sn) catalysts for NO reduction by CO [J]. RSC Advances, 2016, 6113630-611363. [30] Xue Y, Yang L, Lin S, et al. New insight into the doping effect of Pr2O3on the structure–activity relationship of Pd/CeO2-ZrO2catalysts by Raman and XRD rietveld analysis [J]. Journal of Physical Chemistry C, 2015,119(11):150309065540001. [31] Wang Q, Zhao B, Li G, et al. Application of rare earth modified Zr-based ceria-zirconia solid solution in three-way catalyst for automotive emission control [J]. Environmental Science & Technology, 2010,44(10):3870-3875. [32] Wang Q, Li G, Bo Z, et al. The effect of rare earth modification on ceria-zirconia solid solution and its application in Pd-only three-way catalyst [J]. Journal of Molecular Catalysis A Chemical, 2011,339(1/2): 52-60. [33] Zhang Z, Wang Y, Lu J, et al. Conversion of isobutene and formaldehyde to diol using praseodymium-doped CeO2catalyst [J]. ACS Catalysis, 2016,6(12):8248-8254. [34] Zhou B, Zhou J, Li H, et al. A study of the microstructures and mechanical properties of Ti6Al4V fabricated by SLM under vacuum [J]. Materials Science and Engineering: A, 2018,7241-7210. [35] Guo M, Liu X, Amorelli A. Activation of small molecules over praseodymium-doped ceria [J]. Chinese Journal of Catalysis, 2019, 40(11):1800-1809. [36] Martínez-munuera J C, Zoccoli M, Giménez-ma?ogil J, et al. Lattice oxygen activity in ceria-praseodymia mixed oxides for soot oxidation in catalysed Gasoline Particle Filters [J]. Applied Catalysis B: Environmental, 2019,245706-245720. [37] Frizon V, Bassat J M, Pollet M F, et al.Tuning the Pr valence state to design high oxygen mobility, redox and transport properties in the CeO2-ZrO2-PrOphase diagram [J].The Journal of Physical Chemistry C, 2019,123(11)DOI:10.1021/acs.jpcc.8b11469. [38] Tsiotsias A I, Charisiou N D, Harkou E, et al. Enhancing CO2methanation over Ni catalysts supported on sol-gel derived Pr2O3- CeO2: An experimental and theoretical investigation [J]. Applied Catalysis B: Environmental, 2022,318121836. [39] Tsiotsias A I, Charisiou N D, Alkhoori A, et al. Optimizing the oxide support composition in Pr-doped CeO2towards highly active and selective Ni-based CO2methanation catalysts [J]. Journal of Energy Chemistry, 2022,71547-71561. [40] Jing Y, Cai Z, Liu C, et al. Promotional effect of La in the three-way catalysis of La-loaded Al2O3-supported Pd catalysts (Pd/La/Al2O3) [J]. ACS Catalysis, 2020,10(2):1010-1023. [41] Hoffman A J, Asokan C, Gadinas N, et al. Experimental and theoretical characterization of Rh single atoms supported on γ-Al2O3with varying hydroxyl contents during NO reduction by CO [J]. ACS Catalysis, 2022,12(19):11697-11715. [42] Zheng Y, Liu Q, Shan C, et al. Defective ultrafine MnOnanoparticles confined within a carbon matrix for low-temperature oxidation of volatile organic compounds [J]. Environmental Science & Technology, 2021,55(8):5403-5411. [43] Zhong J, Zeng Y, Chen D, et al. Toluene oxidation over Co3+-rich spinel Co3O4: Evaluation of chemical and by-product species identified by in situ DRIFTS combined with PTR-TOF-MS [J]. Journal of Hazardous Materials, 2020,386121957. [44] Marinho A L A, Toniolo F S, Noronha F B, et al. Highly active and stable Ni dispersed on mesoporous CeO2-Al2O3catalysts for production of syngas by dry reforming of methane [J]. Applied Catalysis B: Environmental, 2021,281119459. [45] Si W, Wang Y, Zhao S, et al. A facile method for in situ preparation of the MnO2/LaMnO3catalyst for the removal of toluene [J]. Environmental Science & Technology, 2016,50(8):4572-4578. [46] Wang Q, Li G, Zhao B, et al. Investigation on properties of a novel ceria-zirconia-praseodymia solid solution and its application in Pd-only three-way catalyst for gasoline engine emission control [J]. Fuel, 2011,90(10):3047-3055. [47] Fahed S, Pointecouteau R, Aouine M, et al. Pr-rich cerium- zirconium-praseodymium mixed oxides for automotive exhaust emission control [J]. Applied Catalysis A: General, 2022,644118800. [48] Jiang Y, Gao J, Zhang Q, et al. Enhanced oxygen vacancies to improve ethyl acetate oxidation over MnO-CeO2catalyst derived from MOF template [J]. Chemical Engineering Journal, 2019,37178-37187. [49] Siakavelas G I, Charisiou N D, Alkhoori S, et al. Highly selective and stable nickel catalysts supported on ceria promoted with Sm2O3, Pr2O3and MgO for the CO2methanation reaction [J]. Applied Catalysis B: Environmental, 2021,282119562. [50] Cárdenas-Arenas A, Quindimil A, Davó-qui?onero A, et al. Design of active sites in Ni/CeO2catalysts for the methanation of CO2: tailoring the Ni-CeO2contact [J]. Applied Materials Today, 2020,19100591. [51] Papageridis K N, Charisiou N D, Douvartzides S L, et al. Effect of operating parameters on the selective catalytic deoxygenation of palm oil to produce renewable diesel over Ni supported on Al2O3, ZrO2and SiO2catalysts [J]. Fuel Processing Technology, 2020,209106547. [52] Grosvenor A P, Biesinger M C, Smart R S C, et al. New interpretations of XPS spectra of nickel metal and oxides [J]. Surface Science, 2006,600(9):1771-1779. [53] Tang C, Li J, Yao X, et al. Mesoporous NiO-CeO2catalysts for CO oxidation: Nickel content effect and mechanism aspect [J]. Applied Catalysis A: General, 2015,49477-49486. [54] Wang W W, Yu W Z, Du P P, et al. Crystal Plane Effect of Ceria on Supported Copper Oxide Cluster Catalyst for CO Oxidation: Importance of Metal-Support Interaction [J]. ACS Catalysis, 2017, 7(2):1313-1329. [55] Kang L, Han L, Wang P, et al. SO2-Tolerant NOReduction by Marvelously Suppressing SO2Adsorption over FeδCe1?δVO4Catalysts [J]. Environmental Science & Technology, 2020,54(21):14066-14075. [56] Trovarelli A. Catalytic Properties of Ceria and CeO2-Containing Materials [J]. Catalysis Reviews, 1996,38(4):439-520. [57] Zheng X H, Li Y L, Zhang L Y, et al. Insight into the effect of morphology on catalytic performance of porous CeO2nanocrystals for H2S selective oxidation [J]. Applied Catalysis B: Environmental, 2019, 25298-252110. [58] Ahn K, Yoo D S, Prasad D H, et al. Role of multivalent Pr in the formation and migration of oxygen vacancy in Pr-Doped ceria: Experimental and first-principles investigations [J]. Chemistry of Materials, 2012,24(21):4261-4267. [59] Michel K, Bj?rheim T S, Norby T, et al. Importance of the Spin-Orbit Interaction for a Consistent Theoretical Description of Small Polarons in Pr-Doped CeO2[J]. The Journal of Physical Chemistry C, 2020, 124(29):15831-15838. [60] 吳筱笛,吳曉東,張穎一,等.Pr-Ce-Zr復(fù)合氧化物的結(jié)構(gòu)與儲氧性能研究 [J]. 中國稀土學(xué)報(bào), 2008,(3):272-275. Wu Y D, Wu X D, Zhang Y Y, et al. Study on structure and oxygen storage properties of Pr-Ce-Zr composite oxides [J]. Journal of the Chinese Society of Rare Earths, 2008,(3):272-275. [61] Waldvogel A, Fasolini A, Basile F, et al. Effect of the support synthetic method on the activity of Ni/CeZrPr mixed oxide in the Co-methanation of CO2/CO mixtures for application in power-to-gas with Co-electrolysis [J]. Energy & Fuels, 2021,35(16):13304-13314. [62] Mo S, Zhang Q, Li J, et al. Highly efficient mesoporous MnO2catalysts for the total toluene oxidation: Oxygen-Vacancy defect engineering and involved intermediates using in situ DRIFTS [J]. Applied Catalysis B: Environmental, 2020,264118464. [63] Xu Z, Li Y, Lin Y, et al. A review of the catalysts used in the reduction of NO by CO for gas purification [J]. Environmental Science and Pollution Research, 2020,27(7):6723-6748. 致謝:感謝本課題組楊超老師對本文英文部分的修改及潤色. Pr-doped Ni~(Ce-Zr)O2/Al2O3for TWC reaction: Defect property-activity relationship. ZHANG Tong, LI Qiao-yan, WANG Xiao-yan, LIANG Mei-sheng*, LAI Zhuo-jun (College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China)., 2023,43(10):5157~5169 To investigate the influence of defect structures in CeZrOcatalysts, which induced by rare earth metal doping, on the control of automotive exhaust pollution, series of Ni~(Ce6Zr4-xPr)O2/Al2O3catalysts with varied Pr doping content were synthesized, and their TWC activities and SO2resistance performance were tested. The prepared catalysts were also systematically characterized. The collected results suggested that two kinds of defects in Ni~(Ce-Zr)O2/Al2O3were generated after Pr doping, including oxygen vacancies (Ov) and lattice distortion, whose types and concentrations depended on the Pr doping content. The results also indicated that Ovplay a vital role on the catalytic performance, whereas lattice distortion play a small effect on it. In addition, it is found that the concentrations of Ovin as-prepared catalysts determined their TWC catalytic performance, the Ni~(Ce6Zr3Pr1)O2/Al2O3catalyst with most Ovconcentrations performed superior three-way catalytic performance at 200~600℃ and also exhibited excellent anti-sulfur poisoning performance after introducing 100ppm SO2at 600℃. This is because Ovnot only promoted the dispersion of NiO, accelerating the migration and diffusion of bulk oxygen to form active oxygen species, thus promoting the adsorption and oxidation of CO and HC species on the catalyst, but also the Ovcan weaken the N-O bonds boosting the dissociative adsorption and reduction of NO species. Ni~(Ce-Zr-Pr)O2;Pr-doped;oxygen vacancy (Ov);lattice distortion;defect properties-activity relationship X703.5 A 1000-6923(2023)10-5157-13 2023-03-13 山西省基礎(chǔ)研究計(jì)劃項(xiàng)目(202203021211140;20210302124131) * 責(zé)任作者, 教授, liangmeisheng@tyut.edu.cn 張 彤(1998-),男,山西呂梁人,太原理工大學(xué)碩士研究生,主要從事大氣污染控制脫硝方向研究.zhangtong-98@163.com. 張 彤,李巧艷,王小燕,等.Pr摻雜Ni~(Ce-Zr)O2/Al2O3用于三效催化(TWC)反應(yīng):缺陷性質(zhì)-活性關(guān)系 [J]. 中國環(huán)境科學(xué), 2023,43(10):5157-5169. Zhang T, Li Q Y, Wang X Y, et al. Pr-doped Ni~(Ce-Zr)O2/Al2O3for TWC reaction: defect property-activity relationship [J]. China Environmental Science, 2023,43(10):5157-5169.2.3 催化劑的化學(xué)與結(jié)構(gòu)表征分析
2.3 Raman
2.4 氧空位影響機(jī)理的探討
3 結(jié)論