陳蔓瑩,莫泳鋒,覃洪宇,葉雨
生物信息學(xué)分析腎透明細(xì)胞癌中NLR信號(hào)通路的作用和臨床意義
陳蔓瑩1,2,莫泳鋒1,2,覃洪宇1,2,葉雨1,2
1.廣西醫(yī)科大學(xué)第二臨床醫(yī)學(xué)院,廣西南寧 530000;2.廣西醫(yī)科大學(xué)第二附屬醫(yī)院急診科,廣西南寧 530000
探討寡聚化核苷酸結(jié)合結(jié)構(gòu)域樣受體(nucleotide-binding structural domain-like receptor,NLR)信號(hào)通路在腎透明細(xì)胞癌(clear cell renal cell carcinoma,ccRCC)中的作用和臨床意義,為尋找新靶點(diǎn)提供參考。從癌癥基因組圖譜(The Cancer Genome Atlas,TCGA)、基因表達(dá)綜合(gene expression omnibus,GEO)、ArrayExpress和GEPAI2.0等數(shù)據(jù)庫(kù)中下載ccRCC相關(guān)數(shù)據(jù),利用R軟件分析NLR信號(hào)通路在正常組織和癌組織中的富集差異,及其與T、N、M、腫瘤分級(jí)和分期等臨床指標(biāo)間的相關(guān)性,進(jìn)一步分析該通路與ccRCC患者預(yù)后的關(guān)系,單細(xì)胞測(cè)序數(shù)據(jù)用于聚類(lèi)和基因表達(dá)分析,通過(guò)免疫逃逸相關(guān)的基因集富集分析(gene set enrichment analysis,GSEA)和相關(guān)分析研究免疫與通路的關(guān)系,用免疫治療數(shù)據(jù)進(jìn)行生存分析和構(gòu)建免疫相關(guān)生存預(yù)后模型。NLR信號(hào)通路在ccRCC中異常富集(<0.05),其富集趨勢(shì)與各臨床指標(biāo)趨勢(shì)相同,高富集該信號(hào)通路與不良預(yù)后有關(guān)(<0.05),上調(diào)NLR信號(hào)通路與下調(diào)NK細(xì)胞、M1巨噬細(xì)胞,上調(diào)中性粒細(xì)胞、巨噬細(xì)胞等免疫細(xì)胞浸潤(rùn)水平相關(guān),同時(shí)分析表明該通路與免疫逃逸間存在相互作用,基于11個(gè)差異基因構(gòu)建的免疫治療生存預(yù)后模型預(yù)測(cè)患者1年、3年、5年生存率的受試者工作特征曲線(xiàn)曲線(xiàn)下面積分別為0.64、0.69、0.75。NLR信號(hào)通路是ccRCC的關(guān)鍵生物途徑,與免疫逃逸之間的竄擾促使ccRCC發(fā)生、發(fā)展,11個(gè)NLR通路相關(guān)基因成功構(gòu)建免疫療法的生存預(yù)后模型,免疫療法中它們可能是預(yù)后生物標(biāo)志物和潛在治療靶點(diǎn)。
腎透明細(xì)胞癌;寡聚化核苷酸結(jié)合結(jié)構(gòu)域樣受體信號(hào)通路;單細(xì)胞測(cè)序分析;免疫逃逸;生存預(yù)后模型
全球范圍內(nèi),ccRCC的發(fā)病率與死亡率逐年升高[1-2],酪氨酸激酶抑制劑和免疫檢查點(diǎn)抑制劑單藥或聯(lián)合治療的中位無(wú)進(jìn)展生存期最高為2年,中位總生存期不超5年[3]。因此仍需進(jìn)一步探索ccRCC發(fā)生、發(fā)展的關(guān)鍵生物途徑和關(guān)鍵機(jī)制,為尋找新的關(guān)鍵靶點(diǎn)提供理論參考。NLR信號(hào)通路在調(diào)控非特異性免疫反應(yīng)中具有重要作用。它通過(guò)NLRC和NLRP兩個(gè)NOD受體亞家族識(shí)別非特異性抗原,介導(dǎo)自噬和炎癥等反應(yīng)發(fā)生[4-5]。研究表明,NLR信號(hào)通路參與了多種腫瘤發(fā)生、增殖和侵襲。已有的研究中,激活該信號(hào)通路可誘導(dǎo)大部分癌癥發(fā)生與進(jìn)展,其中包括結(jié)直腸癌[6]、乳腺癌[7]、皮膚癌[8]、肝癌[9]、非小細(xì)胞肺癌[10]等,也可抑制胃癌、膀胱癌和部分肝癌增殖與轉(zhuǎn)移[11-12]。而ccRCC中,有研究發(fā)現(xiàn)NLR信號(hào)通路是患者生存和腫瘤進(jìn)展的危險(xiǎn)因素[13],高表達(dá)NLRP3可誘導(dǎo)癌細(xì)胞轉(zhuǎn)移[14],然而有關(guān)該生物途徑在ccRCC中的臨床意義、具體作用仍缺乏明確的研究。
本研究基于公共數(shù)據(jù)庫(kù)的測(cè)序數(shù)據(jù)和臨床信息,使用相關(guān)R軟件包分析NLR信號(hào)通路在ccRCC組織中的富集情況,探討其與患者預(yù)后和腫瘤分級(jí)、分期等臨床指標(biāo),以及與腫瘤免疫浸潤(rùn)和免疫逃逸間的關(guān)系,探索該信號(hào)通路的作用和其發(fā)揮作用時(shí)參與的生物過(guò)程,明確其臨床預(yù)后價(jià)值。為研究ccRCC發(fā)生、發(fā)展的機(jī)制提供部分理論支撐,為尋找新的腫瘤預(yù)后生物標(biāo)志物和腫瘤治療的新靶點(diǎn)提供新的理論依據(jù)。
從TCGA數(shù)據(jù)庫(kù)下載534例ccRCC數(shù)據(jù)和72例癌旁數(shù)據(jù),利用R軟件(4.1.3版本)對(duì)轉(zhuǎn)錄數(shù)據(jù)進(jìn)行Log2(TPM+1)轉(zhuǎn)換。自ArrayExpress數(shù)據(jù)庫(kù)(https://www.ebi.ac.uk/biostudies/arrayexpress)下載E-MTAB-1980隊(duì)列數(shù)據(jù)。GSE178481單細(xì)胞測(cè)序數(shù)據(jù)從GEO數(shù)據(jù)庫(kù)下載。在GEPAI2.0數(shù)據(jù)庫(kù)(http://gepia2.cancer-pku.cn/#index)獲得ccRCC差異性表達(dá)基因3183個(gè)(<0.05),其中高表達(dá)基因579個(gè),低表達(dá)基因2604個(gè)。
TCGA和E-MTAB-1980隊(duì)列數(shù)據(jù)中,利用ssGSEA R軟件包對(duì)NLR基因集進(jìn)行ssGSEA評(píng)分,用于評(píng)估該通路活性水平和富集程度。通過(guò)相關(guān)R軟件包(NMF包)對(duì)TCGA-KIRC和E-MTAB-1980隊(duì)列進(jìn)行無(wú)監(jiān)督聚類(lèi)分析(NMF分析),將樣本分組。
使用相關(guān)R軟件包分析ccRCC的T、N、M分期、腫瘤分級(jí)和臨床分期與NLR信號(hào)通路之間的關(guān)系。TCGA-KIRC和E-MTAB-1980隊(duì)列聚類(lèi)分組后進(jìn)行生存分析,其中E-MTAB-1980隊(duì)列作為外部驗(yàn)證。
GEPAI2.0數(shù)據(jù)庫(kù)的差異表達(dá)基因與NLR基因集交集后獲得11個(gè)差異上調(diào)基因,使用Seurat R軟件包對(duì)ccRCC的單細(xì)胞數(shù)據(jù)進(jìn)行免疫與非免疫細(xì)胞分群,而后對(duì)免疫細(xì)胞進(jìn)一步聚類(lèi)和分析NLR基因集差異基因主要富集的免疫細(xì)胞。
使用GZMA與PRL1表達(dá)量的幾何平均值代表溶細(xì)胞活性評(píng)分(cytolytic activity score,CYT),通過(guò)相關(guān)R軟件包獲得CYT和差異基因間的相關(guān)性列表,進(jìn)行GSEA分析和相關(guān)性分析。
自Miao等[15]的研究中下載ccRCC免疫治療數(shù)據(jù),進(jìn)行生存分析,利用11個(gè)差異基因構(gòu)建免疫治療生存預(yù)后模型,通過(guò)列線(xiàn)圖可視化,使用受試者操作特征(receiver operator characteristic,ROC)曲線(xiàn)評(píng)估該模型的預(yù)測(cè)效能。
利用ssGSEA R軟件包對(duì)NLR基因集評(píng)分,分析癌組織和正常腎組織間的評(píng)分差異。結(jié)果如圖1A所示,NLR受體信號(hào)通路在ccRCC中顯著富集。臨床病理特征相關(guān)性分析顯示,兩個(gè)數(shù)據(jù)集中,NLR信號(hào)通路評(píng)分與病理N分期均顯著相關(guān)(<0.05)。而與T、M分期、腫瘤分級(jí)和臨床分期在TCGA數(shù)據(jù)集中顯著相關(guān)(<0.05,圖1B),在E-MTAB-1980數(shù)據(jù)集中高富集該信號(hào)通路與更高的T、M分期、腫瘤分級(jí)和臨床分期的趨勢(shì)變化差異無(wú)統(tǒng)計(jì)學(xué)意義(0.05,圖1C)。該結(jié)果表明NLR信號(hào)通路影響ccRCC的進(jìn)展,增強(qiáng)該信號(hào)通路可能會(huì)誘導(dǎo)癌細(xì)胞遷移。
圖1 通路富集差異與臨床特征的相關(guān)性分析
A.NLR信號(hào)通路的富集差異;B.TCGA-KIRC樣本中臨床特征的相關(guān)性分析;C.E-MTAB-1980隊(duì)列中臨床特征的相關(guān)性分析
基于NLR基因集進(jìn)行NMF分析(圖2A、B),將TCGA-KIRC樣本和E-MTAB-1980隊(duì)列樣本分別分為高、低組,進(jìn)行Kaplan-Meier分析。結(jié)果如圖2C、D所示,NLRhigh組的總生存期(OS)顯著低于NLRlow組。
利用R軟件評(píng)估22種免疫浸潤(rùn)細(xì)胞在ccRCC中的浸潤(rùn)水平,分析NLR信號(hào)通路與腫瘤免疫浸潤(rùn)間的關(guān)系,結(jié)果如圖3A所示,高表達(dá)NLR信號(hào)通路與更高的幼稚B細(xì)胞、巨噬細(xì)胞M0、中性粒細(xì)胞、漿細(xì)胞、活化的記憶性CD4+T細(xì)胞、濾泡輔助性T細(xì)胞(Tfh)和Treg細(xì)胞等免疫細(xì)胞浸潤(rùn)水平顯著相關(guān)(<0.05);低表達(dá)NLR信號(hào)通路則與浸潤(rùn)程度更高的靜息DC細(xì)胞、巨噬細(xì)胞M1、肥大細(xì)胞、NK細(xì)胞和靜息的記憶性CD4+T細(xì)胞等免疫細(xì)胞顯著相關(guān)(<0.05)。
圖2 生存分析
A-B.TCGA-KIRC數(shù)據(jù)的NLR聚類(lèi)分組;C.TCGA-KIRC樣本的生存曲線(xiàn);D.E-MTAB-1980隊(duì)列的生存曲線(xiàn)
圖3 免疫分析與單細(xì)胞測(cè)序分析
A.NLR信號(hào)通路與免疫細(xì)胞浸潤(rùn)水平的相關(guān)分析;B.差異基因和NLR基因集的交集;C.兩聚類(lèi)結(jié)果;D.兩聚類(lèi)中差異基因的表達(dá)分布;E、F.11個(gè)基因在各免疫細(xì)胞亞群中的表達(dá)
注:*<0.05,**<0.01,***<0.001
取2852個(gè)差異表達(dá)基因與該信號(hào)通路的62個(gè)基因的交集,獲得11個(gè)差異性高表達(dá)基因(CXCL2、TRIP6、MAPK1、IKBKB、CCL2、MAPK10、IL18、MAPK13、CCL13、MAPK11、MAPK12,圖3B)。利用Seurat包對(duì)單細(xì)胞測(cè)序數(shù)據(jù)進(jìn)行質(zhì)控、標(biāo)準(zhǔn)化后,將細(xì)胞分為免疫細(xì)胞、非免疫細(xì)胞兩類(lèi)(圖3C),分析11個(gè)基因的分布情況,發(fā)現(xiàn)它們主要表達(dá)于免疫細(xì)胞(圖3D)。繼續(xù)對(duì)免疫細(xì)胞分群和可視化各免疫細(xì)胞群中差異基因的表達(dá),結(jié)果如圖3E、F所示,在癌組織中,11個(gè)差異基因主要表達(dá)于巨噬細(xì)胞、M1、M2型巨噬細(xì)胞、單核細(xì)胞、NK細(xì)胞、DC細(xì)胞和CD8+T細(xì)胞。
依據(jù)CYT其中位值將TCGA樣本分為兩組(CYTHigh和CYTLow)進(jìn)行GSEA分析,發(fā)現(xiàn)NLR信號(hào)通路顯著富集于CYTHigh組(圖4A),相關(guān)性分析表明NLR信號(hào)通路與CYT呈顯著正相關(guān)(=0.520,<0.001,圖4B)。
由圖5A可見(jiàn),免疫治療相關(guān)生存分析發(fā)現(xiàn),高富集NLR信號(hào)通路的患者預(yù)后不良。利用11個(gè)差異表達(dá)基因構(gòu)建免疫療法的預(yù)后預(yù)測(cè)模型,使用列線(xiàn)圖可視化該模型(圖5B),ROC曲線(xiàn)分析評(píng)估該模型的預(yù)后預(yù)測(cè)效能,如圖5C所示,免疫治療中,ccRCC患者1年、3年、5年的總生存預(yù)后AUC分別為0.64、0.69、0.75,在ccRCC的免疫療法中,該模型對(duì)患者的預(yù)后預(yù)測(cè)具有良好的敏感度和特異性。
圖4 免疫逃逸相關(guān)性分析
A.GSEA富集;B.NLR信號(hào)通路與免疫逃逸相關(guān)性
圖5 生存預(yù)后預(yù)測(cè)
A.免疫療法中的總生存曲線(xiàn);B.預(yù)后生存模型的列線(xiàn)圖;C.ROC曲線(xiàn)分析
NLR信號(hào)通路通過(guò)介導(dǎo)自噬、炎癥、血管生成、細(xì)胞焦亡等生物過(guò)程參與了多種腫瘤發(fā)生、發(fā)展[13, 17-18]。本研究通過(guò)對(duì)公開(kāi)數(shù)據(jù)庫(kù)中的測(cè)序數(shù)據(jù)和臨床信息進(jìn)行整合分析,探索NLR信號(hào)通路在ccRCC中的臨床意義和具體作用,為進(jìn)一步理解ccRCC的發(fā)生、發(fā)展機(jī)制和尋找新的有效靶點(diǎn)提供理論依據(jù)。
通過(guò)ssGSEA評(píng)分定量NLR信號(hào)通路的活性和富集水平,發(fā)現(xiàn)NLR信號(hào)通路在ccRCC組織中顯著富集,并且其富集趨勢(shì)與更高的T、N、M分期、腫瘤分級(jí)和腫瘤分期趨勢(shì)一致,生存分析則表明激活該信號(hào)通路時(shí),患者預(yù)后不良。
利用R軟件分析NLR基因集與免疫浸潤(rùn)的相關(guān)性,使用單細(xì)胞測(cè)序數(shù)據(jù)進(jìn)行細(xì)胞聚類(lèi)和分析11個(gè)差異基因的表達(dá)分布,發(fā)現(xiàn)NLR信號(hào)通路與多種免疫細(xì)胞的浸潤(rùn)水平有關(guān),其中與DC細(xì)胞、M1巨噬細(xì)胞、肥大細(xì)胞、NK細(xì)胞等免疫細(xì)胞的浸潤(rùn)程度呈負(fù)相關(guān);與幼稚B細(xì)胞、M0巨噬細(xì)胞、中性粒細(xì)胞、Tfh和Treg細(xì)胞等呈正相關(guān)。ccRCC是免疫原性腫瘤,DC細(xì)胞通過(guò)抗原呈遞作用呈遞腫瘤新抗原可阻止ccRCC癌細(xì)胞免疫逃逸。更低級(jí)的ccRCC與更高的肥大細(xì)胞、巨噬細(xì)胞浸潤(rùn)有關(guān),成熟的巨噬細(xì)胞分化為M1、M2巨噬細(xì)胞并多以M1、M2連續(xù)體存在,M1巨噬細(xì)胞和肥大細(xì)胞合成分泌促炎因子誘導(dǎo)炎癥發(fā)生,M2巨噬細(xì)胞是促癌相關(guān)細(xì)胞,發(fā)揮炎癥抑制作用,當(dāng)連續(xù)體狀態(tài)失衡可導(dǎo)致ccRCC發(fā)生與進(jìn)展[19-20]。中性粒細(xì)胞由TGF-β信號(hào)介導(dǎo)與Tfh、Treg細(xì)胞共同參與腫瘤免疫抑制作用,促使腫瘤進(jìn)展[21]。此外該信號(hào)通路的11個(gè)差異表達(dá)基因主要在NK細(xì)胞、中性粒細(xì)胞、巨噬細(xì)胞、M1、M2型巨噬細(xì)胞群中富集,并且該信號(hào)通路與免疫逃逸呈正相關(guān),激活該通路不利于免疫治療后患者的生存。因此在ccRCC中增強(qiáng)NLR信號(hào)通路可能下調(diào)NK細(xì)胞、巨噬細(xì)胞M1,上調(diào)中性粒細(xì)胞、M0巨噬細(xì)胞等的浸潤(rùn)水平,調(diào)節(jié)腫瘤浸潤(rùn)性免疫細(xì)胞的浸潤(rùn)水平和構(gòu)成,與免疫逃逸相互竄擾,參與腫瘤發(fā)生和發(fā)展。
NLR基因集的11個(gè)差異表達(dá)基因主要參與NF-κB和MAPK生物途徑的信號(hào)傳導(dǎo)。NF-κB和MAPK信號(hào)通路等調(diào)控癌組織的細(xì)胞因子水平是NLR信號(hào)通路影響癌癥進(jìn)展的主要機(jī)制[17]?;蚣?,CCL2、CCL7、CCL8、CCL11、CCL13是一組趨化因子,它們通過(guò)募集腫瘤相關(guān)成纖維細(xì)胞和腫瘤相關(guān)巨噬細(xì)胞,參與癌細(xì)胞與兩類(lèi)細(xì)胞間的相互作用,調(diào)節(jié)MAPK信號(hào)通路,誘導(dǎo)上皮-間充質(zhì)轉(zhuǎn)化,促使癌細(xì)胞轉(zhuǎn)移和侵襲[22-23]。基因集的CXCL1、CXCL2、CXCL8作為NF-κB依賴(lài)性趨化因子,可通過(guò)上調(diào)腫瘤相關(guān)巨噬細(xì)胞和中性粒細(xì)胞抑制腫瘤免疫反應(yīng),誘導(dǎo)癌癥轉(zhuǎn)移[24-26]。
綜上所述,本研究通過(guò)生物信息學(xué)技術(shù),利用多個(gè)組織測(cè)序數(shù)據(jù)和單細(xì)胞測(cè)序數(shù)據(jù)分析證明了NLR信號(hào)通路是影響ccRCC發(fā)生、發(fā)展的關(guān)鍵生物途徑,可能通過(guò)NF-κB和MAPK信號(hào)調(diào)節(jié)與免疫逃逸間的免疫竄擾,誘導(dǎo)ccRCC的發(fā)生與進(jìn)展。免疫療法的生存預(yù)后中,增強(qiáng)NLR信號(hào)通路與免疫治療的不良預(yù)后有關(guān),基于11個(gè)差異基因所構(gòu)建的生存預(yù)后模型在預(yù)測(cè)免疫療法的生存預(yù)后上具有良好的準(zhǔn)確性。因此該基因集的11個(gè)差異基因可作為生物標(biāo)志物和潛在靶點(diǎn)進(jìn)行深入研究,同時(shí)后續(xù)可以通過(guò)探索介導(dǎo)該信號(hào)通路的基因?qū)ふ腋袧摿Φ纳飿?biāo)志物和藥物作用靶點(diǎn)。
[1] SUNG W W, KO P Y, CHEN W J, et al. Trends in the kidney cancer mortality-to-incidence ratios according to health care expenditures of 56 countries[J]. Sci Rep, 2021, 11(1): 1479.
[2] HE Y, LIANG D, LI D, et al. Incidence and mortality of laryngeal cancer in China, 2015[J]. Chin J Cancer Res, 2020, 32(1): 10–17.
[3] 李長(zhǎng)嶺, 齊雋, 陳立軍, 等. 晚期腎透明細(xì)胞癌一線(xiàn)靶向治療的優(yōu)化選擇中國(guó)專(zhuān)家共識(shí)(2022)[J]. 臨床泌尿外科雜志, 2022, 37(5): 329–337.
[4] 林巧衛(wèi), 張思, 陸維祺. NOD樣受體介導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo)通路及其與腫瘤關(guān)系的研究進(jìn)展[J]. 中國(guó)癌癥雜志, 2019, 29(3): 223–228.
[5] ZHANG W J, CHEN S J, HOU S C, et al. Inflammasomes and Fibrosis[J]. Front Immunol, 2021, 12: 643149.
[6] DENG Q, GENG Y, ZHAO L, et al. NLRP3 inflammasomes in macrophages drive colorectal cancer metastasis to the liver[J]. Cancer Lett, 2019, 442: 21–30.
[7] WANG Y, ZHANG H, XU Y, et al. NLRP3 induces the autocrine secretion of IL-1rectal cancer metastasis to the liver[J]. Sci Rep Sci, 2021, 560: 72–79.
[8] CI??Y?SKA M, BEDNARSKI I A, WóDZ K, et al. NLRP1 and NLRP3 inflammasomes as a new approach to skin carcinogenesis[J]. Oncol Lett, 2020, 19(3): 1649–1656.
[9] CHEN W, WEI T, CHEN Y, et al. Downregulation of IRAK1 prevents the malignant behavior of hepatocellular carcinoma cells by blocking activation of the MAPKs/ NLRP3/IL-1β pathway[J]. Onco Targets Ther, 2020, 13: 12787–12796.
[10] LU Z H, TU G J, FU S L, et al. BMI1 induces ubiquitination and protein degradation of Nod-like receptor family CARD domain containing 5 and suppresses human leukocyte antigen classⅠexpression to induce immune escape in non-small cell lung cancer[J]. Kaohsiung J Med Sci, 2022, 38(12): 1190–1202.
[11] WANG H, XU G, HUANG Z, et al. LRP6 targeting suppresses gastric tumorigenesis via P14(ARF)-Mdm2- P53-dependent cellular senescence[J]. Oncotarget, 2017, 8(67): 111597–111607.
[12] HU B, DING G Y, FU P Y, et al. NOD-like receptor X1 functions as a tumor suppressor by inhibiting epithelial- mesenchymal transition and inducing aging in hepatocellular carcinoma cells[J]. J Hematol Oncol, 2018, 11(1): 28.
[13] HE L, JIANG H, LAI Z, et al. Up-regulation expression and prognostic significance of Syntaxin4 in kidney renal clear cell carcinoma[J]. BMC Cancer, 2021, 21(1): 992.
[14] WANG K, XU T, RUAN H, et al. LXRKepromotes cell metastasis by regulating the NLRP3 inflammasome in renal cell carcinoma[J]. Cell Death Dis, 2019, 10(3): 159.
[15] MIAO D, MARGOLIS C A, GAO W, et al. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma[J]. Science, 2018, 359(6377): 801–806.
[16] ROONEY M S, SHUKLA S A, WU C J, et al. Molecular and genetic properties of tumors associated with local immune cytolytic activity[J]. Cell, 2015, 160(1-2): 48–61.
[17] LIU P, LU Z, LIU L, et al. NOD-like receptor signaling in inflammation-associated cancers: From functions to targeted therapies[J]. Phytomedicine, 2019, 64: 152925.
[18] WANG J, HUANG Z, LU H, et al. A pyroptosis-related gene signature to predict patients’ prognosis and immune landscape in liver hepatocellular carcinoma[J]. Comput Math Methods Med, 2022, 2022: 1258480.
[19] SU S, AKBARINEJAD S, SHAHRIYARI L. Immune classification of clear cell renal cell carcinoma[J]. Sci Rep, 2021, 11(1): 4338.
[20] MOTOSHIMA T, MIURA Y, WAKIGAMI N, et al. Phenotypical change of tumor-associated macrophages in metastatic lesions of clear cell renal cell carcinoma[J]. Med Mol Morphol, 2018, 51(1): 57–63.
[21] WCULEK S K, BRIDGEMAN V L, PEAKMAN F, et al. Early Neutrophil responses to chemical carcinogenesis shape long-term lung cancer susceptibility[J]. iScience, 2020, 23(7): 101277.
[22] KORBECKI J, KOJDER K, SIMI?SKA D, et al. CC chemokines in a tumor: a review of pro-cancer and anti-cancer properties of the ligands of receptors CCR1, CCR2, CCR3, and CCR4[J]. Int J Mol Sci, 2020, 21(21): 8412.
[23] CHAKIRYAN N H, KIMMEL G J, KIM Y, et al. Geospatial cellular distribution of cancer-associated fibroblasts significantly impacts clinical outcomes in metastatic clear cell renal cell carcinoma[J]. Cancers (Basel), 2021, 13(15): 3743.
[24] ZHANG W, WU Q, WANG C, et al. AKIP1 promotes angiogenesis and tumor growth by upregulating CXC-chemokines in cervical cancer cells[J]. Mol Cell Biochem, 2018, 448(1-2): 311–320.
[25] PENG Z P, JIANG Z Z, GUO H F, et al. Glycolytic activation of monocytes regulates the accumulation and function of neutrophils in human hepatocellular carcinoma[J]. J Hepatol, 2020, 73(4): 906–917.
[26] XU X, YE L, ZHANG Q, et al. Group-2 innate lymphoid cells promote HCC progression through CXCL2- neutrophil-induced immunosuppression[J]. Hepatology, 2021, 74(5): 2526–2543.
Role and clinical significance of NLR signaling pathway in renal clear cell carcinoma were analyzed by bioinformatics
CHEN Manying, MO Yongfeng, QIN Hongyu, YE Yu
1.The Second Clinical Medical College of Guangxi Medical University, Nanning 530000, Guangxi, China; 2.Department of Emergency, the second Affiliated Hospital of Guangxi Medical, Nanning 530000, Guangxi, China
To investigate the role and clinical significance of the oligomerized nucleotide-binding structural domain-like receptor (NLR) signaling pathway in clear cell renal cell carcinoma (ccRCC), and to provide a reference for the search of new targets.The TCGA-KIRC, GSE178481, E-MTAB-1980 and ccRCC different-expressed gene sets were downloaded from The Cancer Genome Atlas (TCGA), gene expression synthesis (GEO), ArrayExpress and GEPAI2.0 databases, respectively. The enrichment difference of NLR signaling pathway in normal tissues and ccRCC, and the correlation between T, N, M, tumor grade and stage were analyzed using the R package. And then prognosis of patients with ccRCC was analyzed. Cluster and gene expression analysis were performed on single-cell sequencing data, and The relationship between NLR signaling pathways and immune escape was analyzed by gene set enrichment analysis (GSEA) and correlation analysis. Immunotherapy-related data were used for survival analysis and construction of immune-related survival prognostic models.NLR signaling pathway was abnormally enriched in ccRCC (<0.05), and its enrichment trend was the same as that of all clinical indicators. High enrichment of this signaling pathway was associated with poor prognosis (<0.05). The activated NLR signaling pathway was associated with down-regulation of NK cells and M1 macrophages, and up-regulation of neutrophils and macrophages etc. GSEA analysis and correlation analysis of immune escape indicated the interaction between this pathway and immune escape. The AUC of immunotherapy survival model constructed with 11 differential genes of NLR signaling pathway was 0.64, 0.69 and 0.75 in predicting 1-year, 3-year and 5-year survival, respectively.NLR signaling pathway is a key biological pathway of ccRCC, and this pathway interacts with immune escape and promotes the development of ccRCC and eleven NLR pathway related genes successfully constructed immunotherapy survival prognostic models, which may be prognostic biomarkers and potential therapeutic targets in immunotherapy.
Clear cell renal cell carcinoma; NLR signaling pathway; Single cell sequencing analysis; Immune escape; Survival prognosis model
R737.11
A
10.3969/j.issn.1673-9701.2023.26.018
葉雨,電子信箱:yeyu9698@163.com
(2022–12–07)
(2023–08–24)