亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        ZL205A鋁合金動(dòng)態(tài)力學(xué)性能及其本構(gòu)模型

        2023-10-18 02:56:20時(shí)彥浩辛志杰魯輝虎崔靖黃曉斌
        精密成形工程 2023年10期
        關(guān)鍵詞:力學(xué)性能實(shí)驗(yàn)模型

        時(shí)彥浩,辛志杰,魯輝虎*,崔靖,黃曉斌

        ZL205A鋁合金動(dòng)態(tài)力學(xué)性能及其本構(gòu)模型

        時(shí)彥浩1,2,辛志杰1,2,魯輝虎1,2*,崔靖1,2,黃曉斌1,2

        (1.中北大學(xué) 機(jī)械工程學(xué)院,太原 030051; 2.惡劣環(huán)境下智能裝備技術(shù)山西省重點(diǎn)實(shí)驗(yàn)室,太原 030051)

        研究ZL205A鋁合金在不同溫度和不同應(yīng)變速率下的流動(dòng)應(yīng)力行為,為材料數(shù)值模擬提供參數(shù)依據(jù)。利用高低溫電子萬能材料實(shí)驗(yàn)機(jī)和霍普金森壓桿設(shè)備,在不同變形溫度(20~400 ℃)和應(yīng)變速率(10?4~2 200 s?1)下進(jìn)行準(zhǔn)靜態(tài)拉伸實(shí)驗(yàn)、高溫拉伸實(shí)驗(yàn)以及高應(yīng)變率動(dòng)態(tài)壓縮實(shí)驗(yàn)。對(duì)實(shí)驗(yàn)所得真應(yīng)力-應(yīng)變曲線進(jìn)行力學(xué)性能分析,考慮到霍普金森實(shí)驗(yàn)下的材料絕熱溫升,構(gòu)建了ZL205A鋁合金的Johnson-Cook本構(gòu)模型,并將該模型與實(shí)驗(yàn)數(shù)據(jù)進(jìn)行比對(duì)驗(yàn)證。在室溫低應(yīng)變率(20 ℃、10?4~10?1s?1)條件下,隨應(yīng)變率的增大,材料的流動(dòng)應(yīng)力變化不明顯;當(dāng)材料屈服后,隨著應(yīng)變的增大,材料流動(dòng)應(yīng)力增大的趨勢(shì)變大,應(yīng)變硬化作用占主導(dǎo)。在室溫高應(yīng)變率(20 ℃、500~2 200 s?1)條件下,材料的屈服強(qiáng)度和流動(dòng)應(yīng)力與室溫低應(yīng)變率時(shí)的數(shù)據(jù)變化不大,考慮到高應(yīng)變率下的實(shí)驗(yàn)時(shí)間短、變形大,材料變形產(chǎn)生的熱量來不及散出,受溫度升高的影響,材料在高應(yīng)變率范圍內(nèi)的應(yīng)變率強(qiáng)化效應(yīng)不明顯。在高溫低應(yīng)變率(100~400 ℃/0.001 s?1)條件下,材料的屈服強(qiáng)度和流動(dòng)應(yīng)力隨溫度的升高而迅速降低,表現(xiàn)出較高的溫度敏感性,當(dāng)溫度高于200 ℃時(shí),材料產(chǎn)生拉應(yīng)力回調(diào)現(xiàn)象。根據(jù)材料真應(yīng)力-應(yīng)變曲線,獲得了材料的Johnson-Cook本構(gòu)參數(shù),該模型能較準(zhǔn)確地預(yù)測(cè)材料在不同狀態(tài)下的流動(dòng)應(yīng)力行為。

        ZL205A鋁合金;霍普金森;溫度敏感性;Johnson-Cook本構(gòu)模型;絕熱溫升

        鋁合金是一種常見的金屬材料,因具有高強(qiáng)度、高韌性、高比強(qiáng)度和良好的切削性等特點(diǎn),被廣泛應(yīng)用于航空航天、汽車發(fā)動(dòng)機(jī)等大型輕量化結(jié)構(gòu)件中[1-2]。在實(shí)際使用過程中,鋁合金材料常在高溫、高速?zèng)_擊環(huán)境下服役,這對(duì)鑄造鋁合金的性能提出了更高的要求。為了保證鋁合金構(gòu)件在復(fù)雜工作環(huán)境下的可靠性,研究它在溫度、等效應(yīng)變和應(yīng)變率復(fù)合作用下的動(dòng)態(tài)力學(xué)性能及本構(gòu)模型成為研究熱點(diǎn),這也是鋁合金材料切削仿真和機(jī)理分析的基礎(chǔ)[3-6]。基于實(shí)驗(yàn)數(shù)據(jù)的經(jīng)驗(yàn)本構(gòu)模型,Johnson等[7]提出了一種等效應(yīng)力隨等效應(yīng)變、應(yīng)變率和溫度變化的Johnson- Cook(J-C)模型,該模型在材料的本構(gòu)模型研究中得到了廣泛的應(yīng)用[8-12]。Zhang等[13]研究了7075鋁合金在準(zhǔn)靜態(tài)、中應(yīng)變率和高應(yīng)變率下的動(dòng)態(tài)力學(xué)性能,擬合了材料的J-C本構(gòu)模型,研究表明,該模型能夠反映材料的應(yīng)變硬化效應(yīng)和應(yīng)變率強(qiáng)化效應(yīng)。Tan等[14]研究了7050-T7451鋁合金在應(yīng)變率為10?3~2 900 s?1時(shí)的應(yīng)變硬化作用和應(yīng)變率強(qiáng)化作用,提出一種修正的J-C本構(gòu)模型,且預(yù)測(cè)效果準(zhǔn)確。張子群等[15]利用分離式霍普金森壓桿(SHPB)實(shí)驗(yàn)研究了2219鋁合金在應(yīng)變率為10?3~3 000 s?1、溫度為23~400 ℃條件下的動(dòng)態(tài)力學(xué)性能,并擬合了材料的J-C本構(gòu)模型,研究發(fā)現(xiàn),2219鋁合金的流動(dòng)應(yīng)力有較大的溫度敏感性和較低的應(yīng)變率敏感性,在高溫狀態(tài)下材料會(huì)發(fā)生熱軟化現(xiàn)象。方進(jìn)秀等[16]研究了5052鋁合金在應(yīng)變率為10?4~4 000 s?1條件下的動(dòng)態(tài)力學(xué)性能,擬合了J-C本構(gòu)模型并對(duì)模型進(jìn)行了修正,研究發(fā)現(xiàn),材料有明顯的應(yīng)變率效應(yīng)。Liu等[17]通過設(shè)計(jì)一系列拉伸實(shí)驗(yàn)對(duì)ZL109鋁合金進(jìn)行了分析,獲得了材料的彈塑性性能,并擬合了J-C本構(gòu)模型,通過對(duì)比切削實(shí)驗(yàn)和仿真數(shù)據(jù)驗(yàn)證了本構(gòu)模型參數(shù)的有效性。鄧云飛等[18]利用霍普金森壓桿實(shí)驗(yàn)研究了6061-T651鋁合金的動(dòng)態(tài)力學(xué)性能,修正了J-C本構(gòu)模型并且驗(yàn)證了其可用性,研究發(fā)現(xiàn),6061-T651鋁合金存在明顯的應(yīng)變率硬化效應(yīng)和溫度軟化效應(yīng),但是材料對(duì)應(yīng)變強(qiáng)化效應(yīng)不明顯。

        ZL205A合金是我國(guó)自行研制的高強(qiáng)韌鑄造鋁合金,具備優(yōu)異的室溫力學(xué)性能和加工性能,廣泛應(yīng)用在大型受力結(jié)構(gòu)件上[19]。目前對(duì)ZL205A的研究大都集中在鑄造以及淬火過程中[20-24],而有關(guān)ZL205A合金在高溫、高應(yīng)變率環(huán)境下的動(dòng)態(tài)力學(xué)性能和仿真分析所需要的Johnson-Cook本構(gòu)模型的研究鮮有報(bào)道。本文利用Instron3382高低溫電子萬能材料實(shí)驗(yàn)機(jī)和霍普金森壓桿設(shè)備,研究了ZL205A鋁合金材料在不同狀態(tài)下的流動(dòng)應(yīng)力,擬合了ZL205A鋁合金的Johnson-Cook本構(gòu)模型。

        1 實(shí)驗(yàn)

        實(shí)驗(yàn)材料ZL205A鋁合金的化學(xué)成分如表1所示。準(zhǔn)靜態(tài)拉伸實(shí)驗(yàn)和準(zhǔn)靜態(tài)高溫拉伸實(shí)驗(yàn)均在Instron3382高低溫電子萬能拉伸實(shí)驗(yàn)機(jī)上進(jìn)行,如圖1a所示。進(jìn)行準(zhǔn)靜態(tài)高溫拉伸實(shí)驗(yàn)時(shí)需要配合使用高溫爐,如圖1b所示。進(jìn)行高應(yīng)變率動(dòng)態(tài)壓縮實(shí)驗(yàn)時(shí)需使用霍普金森壓桿設(shè)備,如圖1c所示。

        按照GB/T 228—2002制備室溫準(zhǔn)靜態(tài)拉伸實(shí)驗(yàn)試樣,如圖2a所示。試樣直徑為5 mm,實(shí)驗(yàn)溫度為20 ℃,標(biāo)距段長(zhǎng)度為25 mm,參考應(yīng)變率為0.001 s?1,加載應(yīng)變率為0.1~0.0001 s?1,共設(shè)置4組實(shí)驗(yàn),每組實(shí)驗(yàn)重復(fù)5次以降低誤差對(duì)實(shí)驗(yàn)結(jié)果的影響。按照GB/T 228.2—2015制備高溫拉伸實(shí)驗(yàn)光滑圓棒試樣,如圖2b所示。為了盡量消除高溫實(shí)驗(yàn)的不確定性,將有效直徑設(shè)置為8 mm,標(biāo)距段長(zhǎng)度為40 mm,實(shí)驗(yàn)溫度為100~400 ℃,加載應(yīng)變率為0.001 s?1,每組實(shí)驗(yàn)重復(fù)5次?;羝战鹕瓑簵U實(shí)驗(yàn)試樣為直徑10 mm、長(zhǎng)度5 mm的圓柱體,實(shí)驗(yàn)溫度為20 ℃,加載應(yīng)變率為500~2 200 s?1。

        表1 ZL205A鋁合金化學(xué)成分

        Tab.1 Chemical compositions of ZL205A aluminum alloy wt.%

        圖1 實(shí)驗(yàn)設(shè)備

        圖2 力學(xué)性能測(cè)試試樣

        2 結(jié)果與分析

        2.1 室溫準(zhǔn)靜態(tài)拉伸實(shí)驗(yàn)

        利用Instron3382高低溫電子萬能拉伸實(shí)驗(yàn)機(jī)對(duì)材料進(jìn)行室溫準(zhǔn)靜態(tài)拉伸實(shí)驗(yàn),利用全自動(dòng)引伸計(jì)得到材料在室溫低應(yīng)變率下的真應(yīng)力-應(yīng)變曲線,如圖3所示。可以看到,在準(zhǔn)靜態(tài)條件下,隨著應(yīng)變率的升高,材料流動(dòng)應(yīng)力的變化并不明顯,表現(xiàn)出對(duì)應(yīng)變率的低敏感性。當(dāng)材料屈服后,隨著應(yīng)變的增大,材料流動(dòng)應(yīng)力增大的趨勢(shì)變大,表現(xiàn)出較強(qiáng)的應(yīng)變硬化效應(yīng)。

        圖3 ZL205A室溫低應(yīng)變率下應(yīng)力-應(yīng)變曲線

        2.2 霍普金森壓桿實(shí)驗(yàn)

        為研究材料的應(yīng)變率效應(yīng)以及在高應(yīng)變率下的動(dòng)態(tài)力學(xué)性能,進(jìn)行了霍普金森壓桿(SHPB)實(shí)驗(yàn)。本次實(shí)驗(yàn)所用設(shè)備主要由氣炮、子彈、入射桿、透射桿以及應(yīng)變測(cè)試系統(tǒng)組成,氣炮氣壓的范圍為0.2~0.8 MPa,共進(jìn)行7組實(shí)驗(yàn),獲得了7組有效數(shù)據(jù),對(duì)應(yīng)的應(yīng)變率為500~2 200 s?1。試件變形的過程基于一維應(yīng)力波以及均勻變形假設(shè)理論[25]。示波器記錄的SHPB動(dòng)態(tài)壓縮實(shí)驗(yàn)典型波形如圖4所示。

        圖4 示波器記錄的SHPB動(dòng)態(tài)壓縮實(shí)驗(yàn)典型波形

        對(duì)圖4中的波形數(shù)據(jù)進(jìn)行處理,得到材料在不同應(yīng)變率下的真應(yīng)力-應(yīng)變曲線,如圖5所示??梢钥吹?,與室溫低應(yīng)變率下的數(shù)據(jù)相比,在高應(yīng)變率下,材料的彈性模量明顯減小,材料的屈服強(qiáng)度和流動(dòng)應(yīng)力增大趨勢(shì)均不明顯。在高應(yīng)變率范圍內(nèi),材料的卸載應(yīng)變逐漸增大,材料的屈服強(qiáng)度和流動(dòng)應(yīng)力變化不明顯,表現(xiàn)出對(duì)應(yīng)變率變化的不敏感性。這是因?yàn)樵诟邞?yīng)變率下,材料瞬間的變形會(huì)產(chǎn)生大量的熱量,導(dǎo)致試樣變形區(qū)的溫度升高,材料性能下降,材料的應(yīng)變率強(qiáng)化效應(yīng)被熱軟化作用抵消了一部分。

        圖5 ZL205A室溫高應(yīng)變率下應(yīng)力-應(yīng)變曲線

        由于材料表現(xiàn)出對(duì)應(yīng)變率變化的不敏感性,考慮到絕熱溫升效應(yīng),其計(jì)算公式如式(1)所示[26],對(duì)材料應(yīng)力-應(yīng)變曲線進(jìn)行積分運(yùn)算,得到材料在不同應(yīng)變率下的溫升數(shù)值,如表2所示。

        表2 不同應(yīng)變率下對(duì)應(yīng)的絕熱溫升

        Tab.2 Corresponding adiabatic temperature rise at different strain rates

        式中:Δ為絕熱溫升數(shù)值,℃;為等效流動(dòng)應(yīng)力;為等效塑性應(yīng)變;為塑性功轉(zhuǎn)化成熱的因子;為材料密度;c為材料的比定壓熱容。

        2.3 準(zhǔn)靜態(tài)高溫拉伸實(shí)驗(yàn)

        為研究材料的熱軟化效應(yīng)以及材料在高溫下的動(dòng)態(tài)力學(xué)性能,進(jìn)行了高溫拉伸實(shí)驗(yàn)。利用萬能拉伸實(shí)驗(yàn)機(jī)的軟件系統(tǒng)得到材料在不同溫度、準(zhǔn)靜態(tài)條件下的真應(yīng)力-應(yīng)變曲線,如圖6所示。可以看到,隨溫度的升高,應(yīng)力-應(yīng)變曲線下移的現(xiàn)象非常明顯,材料的卸載應(yīng)變顯著減小。當(dāng)溫度高于200 ℃時(shí),材料表現(xiàn)出拉應(yīng)力回調(diào)現(xiàn)象。因?yàn)椴牧辖M織中大量彌散分布的相(CuAl2的過渡相)能使α固溶體的結(jié)晶點(diǎn)陣畸變,并能封閉晶粒間的滑移面,具有強(qiáng)化作用[21],隨著溫度的升高,Cu在α固溶體中的溶解度迅速上升,相消失,相生成(見圖7),使晶粒間產(chǎn)生滑移,所以材料在高溫下具有拉應(yīng)力回調(diào)現(xiàn)象。ZL205A有嚴(yán)重的熱裂傾向,隨著溫度的升高,材料的性能迅速下降,材料對(duì)溫度表現(xiàn)出很強(qiáng)的敏感性。

        圖6 0.001 s?1應(yīng)變率下ZL205A高溫拉伸應(yīng)力-應(yīng)變曲線

        圖7 ZL205A鋁合金θ'-Al2Cu強(qiáng)化相與θ'' 相

        3 本構(gòu)模型及參數(shù)標(biāo)定

        3.1 材料的本構(gòu)模型

        為了對(duì)材料的有限元仿真提供數(shù)據(jù)支撐,基于材料的力學(xué)性能實(shí)驗(yàn),構(gòu)建材料的本構(gòu)模型。本文選擇Johnson-Cook本構(gòu)模型,如式(2)所示[7]。

        3.2 本構(gòu)模型擬合

        在擬合J-C本構(gòu)模型第一項(xiàng)時(shí),選擇參考應(yīng)變率下的室溫準(zhǔn)靜態(tài)拉伸實(shí)驗(yàn)數(shù)據(jù):溫度為20 ℃,應(yīng)變率為0.001 s?1。此時(shí)應(yīng)變率項(xiàng)和溫度項(xiàng)都為1,式(2)可以簡(jiǎn)化為式(3)。

        屈服強(qiáng)度為材料工程應(yīng)力-應(yīng)變曲線中產(chǎn)生0.2%殘余變形時(shí)的應(yīng)力,應(yīng)變強(qiáng)化常數(shù)和應(yīng)變強(qiáng)化系數(shù)可利用材料真實(shí)應(yīng)力-應(yīng)變曲線屈服點(diǎn)和縮頸點(diǎn)之間的數(shù)據(jù)擬合得到。經(jīng)計(jì)算可知,=297.94 MPa,=735.56 MPa,=0.66。

        對(duì)于材料的準(zhǔn)靜態(tài)高溫拉伸實(shí)驗(yàn),當(dāng)=0、材料剛屈服時(shí),應(yīng)變率項(xiàng)為1。此時(shí)式(2)可以簡(jiǎn)化為式(4)。

        在參考溫度20 ℃條件下,材料的熔點(diǎn)溫度為544~633 ℃,為了方便計(jì)算,取中間值588.5 ℃。對(duì)應(yīng)變率為0.001 s?1的室溫準(zhǔn)靜態(tài)拉伸實(shí)驗(yàn)數(shù)據(jù)和準(zhǔn)靜態(tài)高溫拉伸實(shí)驗(yàn)數(shù)據(jù)進(jìn)行擬合,得到=1.303。

        對(duì)于材料的霍普金森桿實(shí)驗(yàn),當(dāng)材料剛屈服、=0時(shí),式(2)可以簡(jiǎn)化為式(5)。

        由于在高應(yīng)變率下,材料的瞬間變形會(huì)產(chǎn)生大量熱量,導(dǎo)致試樣變形區(qū)的溫度升高,因此,為了使擬合結(jié)果更加準(zhǔn)確,將不同應(yīng)變率下對(duì)應(yīng)的絕熱溫升(見表2)代入擬合過程,得到=0.006 72。

        3.3 擬合結(jié)果

        Johnson-Cook本構(gòu)模型的本質(zhì)是描述材料在不同狀態(tài)下的真實(shí)應(yīng)力-應(yīng)變曲線,將應(yīng)變數(shù)據(jù)代入本構(gòu)模型,可以擬合得到材料的應(yīng)力-應(yīng)變曲線,對(duì)比擬合曲線與實(shí)驗(yàn)數(shù)據(jù),可以判斷本構(gòu)模型的準(zhǔn)確性。將室溫準(zhǔn)靜態(tài)拉伸實(shí)驗(yàn)數(shù)據(jù)與Johnson-Cook模型擬合結(jié)果進(jìn)行對(duì)比,如圖8所示??梢钥吹?,在室溫準(zhǔn)靜態(tài)條件下,實(shí)驗(yàn)數(shù)據(jù)與擬合結(jié)果近似重合。將室溫下高應(yīng)變率實(shí)驗(yàn)數(shù)據(jù)與Johnson-Cook模型擬合結(jié)果進(jìn)行對(duì)比,如圖9所示。可以看到,不同應(yīng)變率對(duì)應(yīng)的真應(yīng)力-應(yīng)變曲線與擬合結(jié)果的增長(zhǎng)趨勢(shì)基本一致,在材料屈服點(diǎn)到縮頸點(diǎn)之間,材料相應(yīng)的應(yīng)力值相差不大。將準(zhǔn)靜態(tài)、應(yīng)變率為0.001 s?1、不同溫度下的實(shí)驗(yàn)數(shù)據(jù)與Johnson-Cook模型擬合結(jié)果進(jìn)行對(duì)比,如圖10所示,可以看到,由于高溫拉伸實(shí)驗(yàn)材料出現(xiàn)了拉應(yīng)力回調(diào)現(xiàn)象,隨著材料應(yīng)變的增大,擬合結(jié)果存在誤差,但擬合整體趨勢(shì)良好。

        圖8 ZL205A在室溫低應(yīng)變率下實(shí)驗(yàn)數(shù)據(jù)與擬合結(jié)果對(duì)比

        圖9 ZL205A在室溫高應(yīng)變率下實(shí)驗(yàn)數(shù)據(jù)與擬合結(jié)果對(duì)比

        圖10 ZL205A在應(yīng)變率為0.001 s?1時(shí)不同溫度下實(shí)驗(yàn)數(shù)據(jù)與擬合結(jié)果對(duì)比

        4 結(jié)論

        設(shè)計(jì)了應(yīng)變率為10?4~10?1s?1的室溫準(zhǔn)靜態(tài)拉伸實(shí)驗(yàn)、溫度為100~400 ℃的準(zhǔn)靜態(tài)高溫拉伸實(shí)驗(yàn)以及應(yīng)變率為500~2 200 s?1的霍普金森壓桿實(shí)驗(yàn),并對(duì)實(shí)驗(yàn)數(shù)據(jù)進(jìn)行處理,對(duì)所得真應(yīng)力-應(yīng)變曲線進(jìn)行分析,得出以下結(jié)論:

        1)ZL205A鋁合金在室溫低應(yīng)變率下和室溫高應(yīng)變率下均表現(xiàn)出較強(qiáng)的應(yīng)變硬化效應(yīng),當(dāng)材料屈服后,隨著應(yīng)變的增大,材料流動(dòng)應(yīng)力增大的趨勢(shì)變大,材料的抗拉強(qiáng)度高于屈服強(qiáng)度,可達(dá)160 MPa。

        2)對(duì)比準(zhǔn)靜態(tài)與高應(yīng)變率條件下的數(shù)據(jù)可知,材料的流動(dòng)應(yīng)力變化不大,應(yīng)變率強(qiáng)化效應(yīng)不明顯。這是由于在高應(yīng)變率條件下,絕熱溫升的作用使材料的應(yīng)變率強(qiáng)化效應(yīng)被溫度軟化作用抵消了一部分。

        3)ZL205A鋁合金對(duì)溫度有很高的敏感性,其流動(dòng)應(yīng)力和卸載應(yīng)變隨著溫度的升高而迅速降低,表現(xiàn)出高溫脆化現(xiàn)象。當(dāng)溫度達(dá)到200 ℃時(shí),材料性能迅速降低,并且會(huì)出現(xiàn)拉應(yīng)力回調(diào)現(xiàn)象。當(dāng)溫度為250 ℃時(shí),材料的流動(dòng)應(yīng)力和卸載應(yīng)變只有室溫下的一半。

        4)在室溫準(zhǔn)靜態(tài)拉伸實(shí)驗(yàn)、考慮絕熱溫升的室溫高應(yīng)變率拉伸實(shí)驗(yàn)和高溫拉伸實(shí)驗(yàn)的基礎(chǔ)上,擬合出了ZL205A鋁合金Johnson-Cook本構(gòu)模型的5個(gè)參數(shù),其中=297.94 MPa,=735.56 MPa,=0.66,=0.006 72,=1.303。該擬合結(jié)果具有良好的準(zhǔn)確性,可以較好地預(yù)測(cè)材料在屈服至頸縮階段的流動(dòng)應(yīng)力行為,為ZL205A鋁合金數(shù)值模擬和有限元仿真提供依據(jù)。

        [1] 鄧肖峰, 王凱, 石偉. ZL205A鋁合金淬火過程本構(gòu)模型及數(shù)值模擬[J]. 材料熱處理學(xué)報(bào), 2021, 42(8): 125-136.DENG Xiao-feng, Wang Kai, Shi Wei. Constitutive model and numerical simulation of ZL205A aluminum alloy during quenching[J]. Transactions of Materials and Heat Treatment, 2021, 42(8): 125-136.

        [2] Georgantzia E, Gkantou M, Kamaris G S. Aluminium Alloys as Structural Material: A Review of Research[J]. Engineering Structures, 2021, 227: 111372.

        [3] 孟瑩, 付秀麗, 潘永智, 等. 考慮成形方向的航空鋁合金修正本構(gòu)模型的構(gòu)建[J]. 機(jī)械工程學(xué)報(bào), 2018, 54(22): 78-85.Meng Ying, Fu Xiu-li, Pan Yong-zhi, et al. Modified Johnson-Cook Constitutive Model of Aerial Aluminum Alloy 7050-T7415 Considering the Forming Direction Effect[J]. Journal of Mechanical Engineering, 2018, 54(22): 78-85.

        [4] Kotadia H R, Gibbons G, Das A, et al. A review of Laser Powder Bed Fusion Additive Manufacturing of aluminium alloys: Microstructure and properties[J]. Additive Manufacturing, 2021, 46: 102155.

        [5] Ali K S A, Mohanavel V, Vendan S A, et al. Mechanical and microstructural characterization of friction stir welded SiC and B4C reinforced aluminium alloy AA6061 metal matrix composites[J]. Materials, 2021, 14(11): 3110.

        [6] Salur E, Acarer M, ?avkliyildiz ?. Improving mechanical properties of nano-sized TiC particle reinforced AA7075 Al alloy composites produced by ball milling and hot pressing[J]. Materials Today Communications, 2021, 27: 102202.

        [7] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J]. Engineering Fracture Mechanics, 1983, 21: 541-548.

        [8] 林木森, 龐寶君, 張偉, 等. 5A06鋁合金的動(dòng)態(tài)本構(gòu)關(guān)系實(shí)驗(yàn)[J]. 爆炸與沖擊, 2009, 29(3): 306-311.Lin Mu-sen, Pang Bao-jun, Zhang Wei, et al. Experimental investigation on a dynamic constitutive relationship of 5A06 Al alloy[J]. Explosion and Shock Waves, 2009, 29(3): 306-311.

        [9] 田茂森, 陳剛, 沈四喜, 等. 52CrMoV4彈簧鋼熱變形行為的本構(gòu)模型[J]. 有色金屬工程, 2023, 13(3): 49-60.Tian Mao-sen, Chen Gang, Shen Si-xi, et al. Constitutive model of hot deformation behavior of 52CrMoV4 spring steel[J]. Nonferrous Metals Engineering, 2019, 13(3): 49-60.

        [10] 王姝儼, 吳道祥, 龍帥, 等. 基于GA優(yōu)化的7055鋁合金Johnson-Cook流變本構(gòu)建模及其FEA應(yīng)用[J]. 精密成形工程, 2023, 15(3): 105-111. WANG Shu-yan, Wu Dao-xiang, Long Shuai, et al. GA Optimized Johnson-Cook Constitutive Model for 7055 Aluminum Alloy and Its Application in FEA[J]. Journal of Netshape Forming Engineering, 2023, 15(3): 105-111.

        [11] Savaedi Z, Motallebi R, Mirzadeh H. A review of hot deformation behavior and constitutive models to predict flow stress of high-entropy alloys[J]. Journal of Alloys and Compounds, 2022, 903: 163964.

        [12] Li S, Sui J, Ding F, et al. Optimization of milling aluminum alloy 6061-T6 using modified Johnson-Cook model[J]. Simulation Modelling Practice and Theory, 2021, 111: 102330.

        [13] ZHANG D N, SHANGGUAN Q Q, XIE C J, et al. A modified Johnson-Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy[J]. Journal of Alloys and Compounds, 2015, 619: 186-194.

        [14] TAN J Q, ZHAN M, LIU S, et al. A modified Johnson-Cook model for tensile flow behaviors of 7050-T7451 aluminum alloy at high strain rates[J]. Materials Science and Engineering: A, 2015, 631: 214- 219.

        [15] 張子群, 姜兆亮, 魏清月. 2219鋁合金動(dòng)態(tài)力學(xué)性能及其本構(gòu)關(guān)系[J]. 材料工程, 2017, 45(10): 47-51. ZHANG Zi-qun, Jiang Zhao-liang, Wei Qing-yue. Dynamic Mechanical properties and Constitutive Equations of 2219 Aluminum alloy[J]. Journal of Materials Engineering, 2017, 45(10): 47-51.

        [16] 方進(jìn)秀, 張興權(quán), 王會(huì)廷, 等. 5052鋁合金的動(dòng)態(tài)拉伸性能及其本構(gòu)模型[J]. 機(jī)械工程學(xué)報(bào), 2022, 58(8): 160-169.Fang Jin-xiu, Zhang Xing-quan, Wang Hui-ting, et al. Dynamic tensile properties and constitutive model of 5052 aluminum alloy[J]. Journal of Mechanical Engineering, 2019, 58(8): 160-169.

        [17] LIU H, ZHAO J, SONG S, et al. Identification and verification of ZL109 aluminum alloy material parameters[J]. Materials Research Express, 2019, 6(11): 116560.

        [18] 鄧云飛, 張永, 吳華鵬, 等. 6061-T651鋁合金動(dòng)態(tài)力學(xué)性能及J-C本構(gòu)模型的修正[J]. 機(jī)械工程學(xué)報(bào), 2020, 56(20): 74-81.Deng Yun-fei, Zhang Yong, WU Hua-peng, et al. Dynamic Mechanical Properties and Modification of J-C Constitutive Model of 6061-T651 Aluminum Alloy[J]. Journal of Mechanical Engineering, 2019, 56(20): 74-81.

        [19] WANG M, LIU Y, ZAN T, et al. Residual stress test and simulation of incremental hole drilling method[J]. International Conference on Mechanical and Aerospace Engineering. 2016(7): 257-261.

        [20] 常濤. 低壓鑄造ZL205A合金界面換熱系數(shù)的研究[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2018: 30-43.Chang Tao. Research on the interfacial heat transfer coefficient of ZL205A alloy in low Pressure casting[D]. Harbin: Harbin Institute of Technology, 2018: 30-43.

        [21] 張海珍. ZL205A高強(qiáng)度鋁銅合金鑄造性能及工藝技術(shù)研究[D]. 太原: 中北大學(xué), 2010: 30-41.Zhang Hai-zhen. The Study on Casting Properties and Process Technology of ZL205A High Strength Aluminum Alloy[D]. Taiyuan: North University of China, 2010: 30-41.

        [22] 史玉童. ZL205A合金鑄造過程粘彈塑性本構(gòu)模型及筒形件變形規(guī)律[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2017: 25-50.Shi Yu-tong. The Visco-elasto-plastic constitutive Model of ZL205A alloy During the Solidification Process and the Deformation Rules of Cylindrical Shell[D]. Harbin: Harbin Institute of Technology, 2017: 25-50.

        [23] 郭廷彪, 馮瑞, 王炳, 等. 固溶及時(shí)效處理對(duì)ZL205A合金腐蝕性能的影響[J]. 材料熱處理學(xué)報(bào), 2023, 44(4): 87-94.Guo Ting-biao, Feng Rui, Wang Bing, et al. Effect of solution and aging treatment on corrosion properties of ZL205A alloy[J]. Transactions of Materials and Heat Treatment, 2023, 44(4): 87-94.

        [24] Luo L, Xia H Y, Luo L S, et al. Eliminating shrinkage defects and improving mechanical performance of large thin-walled ZL205A alloy castings by coupling travelling magnetic fields with sequential solidification[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(4): 865-877.

        [25] XIAO X, WANG Y, VERSHININ V V, et al. Effect of Lode angle in predicting the ballistic resistance of Weldox 700 E steel plates struck by blunt projectiles[J]. International Journal of Impact Engineering, 2019, 128: 46-71.

        [26] 郭偉國(guó). 4種新型艦艇鋼的塑性流變應(yīng)力及其本構(gòu)模型[J]. 金屬學(xué)報(bào), 2006, 42(5): 463-468. Guo Wei-guo. Plastic Flow Stresses and Constitutive Models of Four Newer Naval Vessel Steels[J]. Acta Metallurgica Sinica, 2006, 42(5): 463-468.

        Dynamic Mechanical Properties and Constitutive Model of ZL205A Aluminum Alloy

        SHI Yan-hao1,2, XIN Zhi-jie1,2, LU Hui-hu1,2*, CUI Jing1,2, HUANG Xiao-bin1,2

        (1.School of Mechanical Engineering, North University of China, Taiyuan 030051, China; 2.Shanxi Key Laboratory of Intelligent Equipment Technology in Harsh Environment, Taiyuan 030051, China)

        The work aims to study the flow stress behavior of ZL205A aluminum alloy at different temperatures and strain rates, and provide parameter basis for material finite element simulation. The quasi-static tensile test, high temperature tensile test and high strain rate dynamic compression test were carried out at different deformation temperatures (20-400 ℃) and strain rates (10?4-2 200 s?1) respectively with the high and low temperature electronic universal material testing machine and Hopkinson pressure bar equipment. The mechanical properties of the true stress-strain curve obtained from the test were analyzed. Considering the adiabatic temperature rise of the material under the Hopkinson test, the Johnson-Cook constitutive model of ZL205A aluminum alloy was constructed and compared with the test data. At low strain rates at room temperature (20 ℃, 10?4-10?1s?1), the flow stress of the material did not change significantly with the increase of strain rate. After the material yielding, the flow stress of the material increased with the increase of strain, and the strain hardening effect dominated.At high strain rates at room temperature (20 ℃, 500-2 200 s?1), the yield strength and flow stress of the material had little change compared with the data at low strain rates at room temperature. Considering that high strain rate testing had a short time and large deformation, the heat generated by material deformation could not be dissipated in time. Due to the influence of temperature rise, the strain rate strengthening effect of the material was not significant within the high strain rate range; At high temperatures and low strain rates (100-400 ℃/0.001 s?1), the yield strength and flow stress of the material rapidly decreased with the increase of temperature, exhibiting high temperature sensitivity. When the temperature exceeded 200 ℃, the material was accompanied by a tensile stress callback phenomenon. According to the true stress-strain curve of the material, the Johnson-Cook constitutive parameters of the material are obtained, which can accurately predict the flow stress behavior of the material in different states.

        ZL205A aluminum alloy; Hopkinson; temperature sensitivity; Johnson-Cook constitutive model; adiabatic temperature rise

        10.3969/j.issn.1674-6457.2023.010.012

        TG352

        A

        1674-6457(2023)010-0104-07

        2023-07-12

        2023-07-12

        國(guó)家自然科學(xué)基金(52105408,52075503);中北大學(xué)研究生科技立項(xiàng)(20221812)

        National Natural Science Foundation (52105408, 52075503);Graduate Science and Technology Project of North University of China (20221812)

        時(shí)彥浩, 辛志杰, 魯輝虎, 等. ZL205A鋁合金動(dòng)態(tài)力學(xué)性能及其本構(gòu)模型[J]. 精密成形工程, 2023, 15(10): 104-110.

        SHI Yan-hao, XIN Zhi-jie, LU Hui-hu, et al. Dynamic Mechanical Properties and Constitutive Model of ZL205A Aluminum Alloy[J]. Journal of Netshape Forming Engineering, 2023, 15(10): 104-110.

        責(zé)任編輯:蔣紅晨

        猜你喜歡
        力學(xué)性能實(shí)驗(yàn)模型
        一半模型
        記一次有趣的實(shí)驗(yàn)
        Pr對(duì)20MnSi力學(xué)性能的影響
        云南化工(2021年11期)2022-01-12 06:06:14
        重要模型『一線三等角』
        重尾非線性自回歸模型自加權(quán)M-估計(jì)的漸近分布
        做個(gè)怪怪長(zhǎng)實(shí)驗(yàn)
        Mn-Si對(duì)ZG1Cr11Ni2WMoV鋼力學(xué)性能的影響
        山東冶金(2019年3期)2019-07-10 00:54:00
        3D打印中的模型分割與打包
        NO與NO2相互轉(zhuǎn)化實(shí)驗(yàn)的改進(jìn)
        實(shí)踐十號(hào)上的19項(xiàng)實(shí)驗(yàn)
        太空探索(2016年5期)2016-07-12 15:17:55
        人妻激情偷乱视频一区二区三区 | 欧美精品一区二区蜜臀亚洲| 毛片免费在线观看网址| 精品人妻伦九区久久AAA片69| 久久久人妻一区精品久久久| 日本免费视频一区二区三区| 亚洲国产av无码精品| 少妇高潮潮喷到猛进猛出小说| 亚洲欧洲日韩免费无码h| 亚洲国产av精品一区二| 国产精品偷窥熟女精品视频| 欧美精品videosex极品| 久久婷婷综合色丁香五月| 精品视频在线观看一区二区有| 日本美女在线一区二区| 色噜噜久久综合伊人一本| 18无码粉嫩小泬无套在线观看 | 久精品国产欧美亚洲色aⅴ大片| 久久久久久av无码免费看大片| 国产乱色国产精品免费视频| 国产精品一区区三区六区t区| 精品国产一区二区三区性色| 自愉自愉产区二十四区| 色诱久久av| 国产一精品一aⅴ一免费| 国产精品一二三区亚洲| 99久久免费只有精品国产| 亚洲男同志网站| 国产精品一卡二卡三卡| 久久老熟女乱色一区二区 | 日本高清乱码中文字幕| 乱码丰满人妻一二三区| 婷婷四房播播| 一本久久a久久精品综合| 不卡的av网站在线观看| 国产成人精品日本亚洲11| 9丨精品国产高清自在线看| 亚洲福利一区二区不卡| 亚洲一区二区蜜桃视频| 亚洲精品无码久久久久y| 人人玩人人添人人澡|