李焱,林泳峰,劉文美,鄒澤華,劉光明,劉慶梅*
茶多糖研究的現狀與發(fā)展趨勢
李焱1,林泳峰1,劉文美2,3,4,鄒澤華2,3,4,劉光明1,劉慶梅1*
1. 集美大學海洋食品與生物工程學院,福建省海洋功能食品工程技術研究中心,福建 廈門 361021;2. 廈門和美科盛生物技術有限公司,福建 廈門 361026;3. 三明市明八味產業(yè)研究院,福建 三明 353000;4. 長汀縣綠色經濟生態(tài)健康產業(yè)研究院,福建 龍巖 366300
茶多糖是茶葉中的重要活性成分,研究茶多糖的性質、推動茶多糖產品的開發(fā)將有利于茶產業(yè)及健康產業(yè)的發(fā)展。對Web of Science數據庫中近十年茶多糖相關文獻進行了可視化分析。結果顯示,2013—2022年,茶多糖相關主題發(fā)文量總體呈增長趨勢;關鍵詞的共現、突現、頻次分析結果均表明茶多糖的抗氧化性是持續(xù)的研究熱點,這也可能是未來研究的主要趨勢之一。當前,全球范圍內茶多糖的研究主要集中在單糖組成、溶解性、乳化性等理化性質和抗氧化、抗腫瘤、抗糖尿病等生物活性方面。茶多糖雖具有多種生物活性,但相關的機理解析仍不夠深入;最新研究表明茶多糖能夠影響腸道菌群,具有良好的益生元潛力。另外,茶多糖相關產品的轉化和開發(fā)尤為不足,研究者們未來可聚焦于利用茶多糖開發(fā)生物膜制品、藥物遞送產品及功能性食品等??偨Y茶多糖領域研究的主要內容和熱點方向,旨在為該領域的研究者及茶多糖產業(yè)的發(fā)展提供參考。
茶多糖;可視化分析;抗氧化;腸道菌群
茶葉源自中國,目前已傳播至160多個國家,是全球消費最廣泛的植物性飲料[1]。茶葉主要分為綠茶、紅茶、黃茶、白茶、烏龍茶和黑茶六大類[2]。茶葉中的生物活性成分主要有茶多酚和茶多糖等[3],茶多糖主要來源于茶葉、茶花和茶葉籽[4];與茶多酚相比,茶多糖更為穩(wěn)定,關于其性質、活性、結構的研究正處于初步探索階段。目前,研究者們通常采用熱水提取、酶法處理或超聲輔助提取茶多糖,并發(fā)現茶多糖具有抗氧化、抗腫瘤、免疫調節(jié)、抗糖尿病等生物活性[4],有望將其應用于功能性食品及醫(yī)藥制劑[5]。
統(tǒng)計分析文獻數據,能夠捕捉對應研究領域的研究動態(tài),通過分析最近一段時間內的研究熱點,還能預測該領域的研究趨勢[6-7]。隨著茶產業(yè)的發(fā)展,關于茶多糖的研究內容也逐漸豐富,但目前尚缺乏對其進行統(tǒng)計分析的科學文獻數據,關于茶多糖研究現狀與發(fā)展趨勢的系統(tǒng)總結尚不完善。因此,本文對Web of Science(WOS)數據庫中關于茶多糖研究的文獻進行了可視化分析,并基于分析結果解析了茶多糖研究的現狀和發(fā)展趨勢,旨在闡明茶多糖的研究熱點,預測其發(fā)展方向,為深入研究茶多糖的生物活性及產品開發(fā)提供理論指導,為相關領域的研究者們提供參考。
可視化分析結果能夠顯示某一研究的總體發(fā)展趨勢,揭示相關研究領域的熱度時期以及學者們的重視程度[8-9]。2013—2022年WOS數據庫中以茶多糖為主題的文獻共計827篇,年發(fā)文量總體呈穩(wěn)步增長趨勢,近5年的發(fā)文量占據整體區(qū)間的68.32%;由此可見,近年來茶多糖研究已受到越來越多研究者的重視。
Citespace知識可視化軟件是華裔學者陳超美開發(fā)的知識圖譜繪制工具[10],其分析圖譜能夠直觀展現科學知識領域的信息全景,探索該領域的關鍵文獻、熱點研究和前沿方向[7,11]。以Web of Science為檢索平臺,查找主題詞為“tea polysaccharide”的文章。對WOS數據庫中2013年1月1日—2022年12月31日發(fā)表的核心文獻進行專業(yè)檢索,勾選論文、綜述選項,設置語種為英語,共篩選出827篇文獻(2023年1月2日檢索)。在JAVA運行環(huán)境下[10],使用Citespace軟件6.1.R6版本對篩選的827篇文獻的Keywords進行共現分析、聚類分析和突顯分析。
關鍵詞是對文獻核心內容的提煉和概括,代表文章的主題。對以“tea polysaccharide”為主題詞所篩選文獻的關鍵詞進行可視化分析,可以解釋WOS數據庫中2013—2022年茶多糖的研究現狀與發(fā)展趨勢。圖1為WOS數據庫中茶多糖研究的關鍵詞共現圖譜,每個節(jié)點代表1個關鍵詞,節(jié)點的大小代表關鍵詞出現的頻次,關鍵詞間的連線表示兩者出現在同一篇文章中;線條的粗細代表關鍵詞之間關系的重要程度[12]。由圖1可知,除主題詞“tea polysaccharide”之外,茶多糖研究領域高頻且重要的關鍵詞有antioxidant activity、green tea和in vitro等,即抗氧化活性、綠茶多糖、體外研究是近十年來茶多糖研究的主要關注點。關鍵詞共現圖譜中有出現polyphenol(茶多酚),表示在茶多糖相關的研究中通常會涉及茶多酚[13-14]。
關鍵詞突現指的是某一關鍵詞在短時間內的使用頻次顯著增加,關鍵詞突現分析可揭示某一研究領域快速增長的熱點,預測對應學科研究的新興趨勢[15]。利用Citespace軟件獲得2013—2022年間茶多糖研究的突現關鍵詞如圖2所示。由圖2可知,不同年份研究者所關注的研究熱點不同。第一階段為2013—2018年,茶多糖研究突現的關鍵詞主要有acidic polysaccharide(酸性多糖)、response surface methodology(響應面法)、epigallocatechin gallate(沒食子酸),說明這一階段茶多糖的研究熱點主要為提取茶多糖、分析茶多糖的物理性質。第二階段為2017—2020年,突現的關鍵詞主要有immunomodulatory activity(免疫調節(jié)活性)、water soluble polysaccharide(水溶性多糖),說明這一階段茶多糖的研究熱點主要為茶多糖的免疫調節(jié)活性及理化性質。第三階段為2019—2022年,突現的關鍵詞主要有tea polysaccharide conjugate(茶多糖偶聯物)和chain fatty acid(鏈式脂肪酸),說明這一階段茶多糖的研究熱點主要為茶多糖偶聯物及其與腸道菌群的關系。由于茶多糖的生物活性與其結構特性密切相關[16],所以在這3個階段中雖然研究熱點不同,但均呈現理化性質與生物活性共同發(fā)展的特點。
圖1 WOS數據庫中茶多糖的關鍵詞共現圖譜
研究熱點指某研究領域中被關注的焦點,可代表某一階段中該研究領域所聚焦的主要問題;關鍵詞的出現頻次可揭示科學研究的熱點及趨勢[17]。利用文獻計量分析平臺(https://bibliometric.com)對827篇文獻的主要關鍵詞在每年出現的次數進行累加,得到WOS數據庫中茶多糖研究的主要關鍵詞年度分布(圖3)。由圖3可知,關鍵詞頻數呈現逐年上升趨勢。其中,polysaccharide(多糖)與tea polysaccharide(茶多糖)的出現頻次總體上呈穩(wěn)定上升趨勢。由于茶多糖相關文獻的年度發(fā)文量與年度關鍵詞頻數都呈現逐年上升的趨勢,因此,可以初步預測未來與茶多糖相關的研究可能會越來越多。antioxidant(抗氧化性)的出現頻次雖有所波動,但其每年出現頻次均位居第二,說明在世界范圍內茶多糖的研究熱點主要聚焦于抗氧化性。在被分析的827篇文獻中,用細胞試驗對茶多糖抗氧化活性驗證的研究還較少,考慮到茶多糖的生物安全性,用細胞試驗驗證其抗氧化性可能會成為新的趨勢。chain fatty acid是2019—2022年間的突現關鍵詞(圖2),關鍵詞gut microbiota的出現頻數在2019年和2022年明顯上升(圖3),說明茶多糖對腸道菌群的影響在2019—2022年成為了新的研究熱點。茶多糖雖然不能被機體消化吸收,但其能作為腸道菌群的碳源可以通過影響菌群比例和豐度發(fā)揮益生元作用[18]。例如,Li等[19]研究發(fā)現,茶多糖通過調節(jié)腸道菌群、改善宿主代謝,發(fā)揮降血糖和降血脂的作用。紅茶水提物能夠通過調節(jié)腸道微生物群和宿主組織中的基因表達來減少飲食誘導的小鼠肥胖[20]。由此可見,茶多糖可通過影響腸道菌群發(fā)揮改善疾病的作用。
圖2 WOS數據庫中茶多糖研究的關鍵詞突現分析
圖3 WOS數據庫中茶多糖研究主要關鍵詞年度分布
學者們對茶多糖的研究主要集中于理化性質解析及生物活性探索方面。WOS數據庫中,發(fā)表茶多糖相關文章的期刊學科類別主要為食品科學及科技(Food Science & Technology,341篇)、化學應用(Chemistry Applied,234篇)、生物化學和分子生物學(Biochemistry & Molecular Biology,213篇),說明茶多糖的主要發(fā)展方向為食品科學、化學和生物學,主要涉及茶多糖的抗氧化性[21-23]、茶多糖對腸道菌群的影響[18,24-26]和茶多糖的結構特性[27-28]研究。
茶多糖的理化性質包括單糖組成、糖醛酸和蛋白質的含量、平均分子量、溶解度、粘度、乳化性及茶多糖的結構[29-30]。研究表明,茶多糖通常由半乳糖、阿拉伯糖、鼠李糖等2~10個單糖經糖苷鍵連接而成[30],不同原料或不同制備方法得到的茶多糖具有不同的單糖組成。糖醛酸是糖中伯羥基被氧化成羧基后形成的化合物及其衍生物,在茶多糖中比其他組分更穩(wěn)定[31],含有糖醛酸的茶多糖組分可能具有更高的生物活性[4]。研究發(fā)現,茶多糖在反復脫蛋白后仍然含有少量蛋白質,說明大多數茶多糖是與蛋白質結合的多糖偶聯物[4]。值得注意的是,隨著發(fā)酵及儲存時間的延長,茶多糖的糖醛酸及蛋白質含量可能會升高[32],從不同發(fā)酵程度茶葉中提取的茶多糖在生物活性上也有差異[33]。平均分子量是判斷多糖化學性質的重要指標,由于茶多糖的原料較為豐富,所以不同來源的茶多糖的分子量分布范圍較廣。分子量小的多糖可能具有更低的粘度,因此更容易進入細胞[30],其生物活性也就越高[34-35]。但分子量太小的多糖可能無法形成活性結構,例如,Wang等[36]研究發(fā)現,茶葉籽多糖的分子量較小,與分子量較大的茶葉多糖和茶花多糖相比,其抗氧化作用更弱。茶多糖含有較多極性基團[37],因此具有很強的親水性,其親水性與分子量有關,分子量小的茶多糖溶解度更高[30]。適當加熱會促進茶多糖的溶解,這也是大多數研究選擇用熱水提取茶多糖的原因。多糖分子在溶液中以無規(guī)卷曲的形式存在[38],所以多糖在水溶液中具有高粘度,甚至形成凝膠。目前的研究發(fā)現,茶多糖的分子量與其粘度呈正相關[39]。乳化劑是生產食品、藥品、化妝品的重要原料,從天然植物中提取的多糖作為乳化劑或許會有更高的生物安全性。近年來,研究者們陸續(xù)開始探索茶多糖的乳化特性。Chen等[40]研究發(fā)現,不同分子量的綠茶多糖在乳化性能上具有差異。Li等[41]從青磚茶中獲得了具有良好乳化性能和抗氧化活性的茶多糖綴合物。茶多糖的化學結構包括糖苷鍵的類型及位置、單糖序列、分子鏈構象等[4,29-30]。研究表明,不同的糖苷鍵還可能會影響茶多糖的生物活性[42],具有1→3糖苷鍵和1→6糖苷鍵的茶多糖通常具有生物活性[43-45]。但總的來說,由于茶多糖是一種復雜的大分子雜多糖,因此目前仍沒有理想的方法闡述其結構與生物活性之間的關系。
茶多糖具有抗氧化、抗癌、抗糖尿病、抗炎等生物活性。目前,已被報道的茶多糖約有120余種[44]。研究表明,青磚茶[46]、茯磚茶[47]、黃茶[48]等茶葉中的多糖均具有抗氧化活性[49-52]。多數研究通過茶多糖的1,1-二苯基-2-苦基肼(1,1-diphenyl-2-bitterhydrazine,DPPH)自由基、超氧陰離子自由基、羥基自由基清除活性等化學反應來驗證茶多糖的抗氧化性。近年來,逐漸有研究者利用體外細胞模型或小鼠模型來驗證茶多糖的抗氧化作用。例如,Fan等[53]通過構建人臍靜脈內皮細胞模型驗證了茶多糖的抗氧化活性。另外,研究者們通過細胞模型和動物模型驗證了茶多糖對乳腺癌、胃癌、肝癌、結腸癌等的抑制作用[4]。Liu等[54]研究表明,綠茶多糖可通過抑制小鼠結腸癌細胞的增殖和侵襲發(fā)揮抗癌潛力。Wang等[55]研究發(fā)現,紫陽綠茶中的富硒茶多糖能夠在體內外抑制人骨肉瘤U-2 OS細胞增殖,發(fā)揮抗癌作用。由成熟茶葉制成的茶飲在中國和日本民間被用來治療糖尿病[31],Wang等[56]的研究表明,五峰綠茶中發(fā)揮治療糖尿病效果的關鍵成分是茶多糖。目前報道具有抗糖尿病活性的茶多糖主要來源于綠茶,茶多糖抗糖尿病活性可能是通過調控cAMP-PKA或PI3K/Akt信號通路實現的[56-57]。Chung等[58]研究認為,茶多糖具有降血糖作用,其作用機理可能通過抑制淀粉水解成葡萄糖,延緩葡萄糖的吸收和運輸,從而降低血糖。此外,研究者們還發(fā)現茶多糖具有抗炎活性和免疫調節(jié)活性。例如,Zhao等[59]發(fā)現,富硒茶多糖通過增強腸道屏障、調節(jié)腸道菌群改善了小鼠的潰瘍性結腸炎。Kim等[60]從綠茶中提取了兒茶素、黃酮醇及粗多糖,發(fā)現三者的聯合治療能減弱氣道上皮細胞中粉塵顆粒誘導的炎癥基因表達。茶多糖可通過降低促炎細胞因子水平,增加抗炎細胞因子水平的方式改善小鼠結腸炎[61]。Cheng等[62]通過昆明小鼠的S-180癌癥異種移植模型驗證了富硒茶多糖的免疫調節(jié)活性。同時,茶多糖的結構與其生物活性之間具有密不可分的關系[44],Chen等[27]研究發(fā)現,超高壓處理后的茶多糖的初級和空間結構均被改變,其糖醛酸含量和生物活性提高。也有研究者稱,活性多糖的結構直接決定其生物活性[63];楊玉潔等[64]對具有降血糖活性的多糖進行了系統(tǒng)總結,發(fā)現多糖的降血糖活性與其分子量、單糖組成、糖苷鍵、高級結構及多糖基團相關。目前的研究雖發(fā)現茶多糖具有多種生物活性,但尚缺乏對其構效關系的解析,部分文獻雖同時探索了茶多糖的理化性質及生物活性,但并未研究其相互作用關系。因此,研究者們在解析茶多糖的結構和生物活性時也應重點關注其構效關系。
隨著相關研究的深入,茶多糖具有多種生物活性的優(yōu)勢逐漸凸顯,但目前的研究仍處于對其生物活性的初步探究階段,尚未對相關機理進行深入解析。同時,與茶多糖生物活性相關的產品轉化也相對較少。因此,為促進茶多糖的開發(fā)利用,研究者們未來需要深入探究茶多糖對應生物活性的作用機理、開發(fā)與之生物活性對應的健康產品。
本文總結了茶多糖發(fā)揮生物活性的相關機理,如圖4所示?,F有的研究雖表明茶多糖具有多種生物活性,但對其發(fā)揮生物活性的作用機理的探究尚有不足。盡管許多研究者們發(fā)現了茶多糖具有抗氧化活性,但大多數研究都僅通過體外化學反應進行驗證,目前還缺乏解析茶多糖在動物體內抗氧化機制的研究。利用小鼠模型驗證茶多糖抗氧化性的研究通常僅測定了小鼠肝/腎和血液中超氧化物歧化酶、谷胱甘肽過氧化物酶等生化參數值[65-66],而未對茶多糖在小鼠體內發(fā)揮抗氧化活性的途徑進行解析。
相比之下,研究茶多糖發(fā)揮降血糖、抗癌、免疫調節(jié)作用的文獻已開始探索相關作用機理。除了前文提到的抑制淀粉水解成葡萄糖外,茶多糖發(fā)揮抗糖尿病活性的另一可能途徑是通過在體內清除自由基,減弱自由基對胰島細胞的損傷,使胰島素分泌增加,提高胰島素敏感性,誘導葡萄糖激酶的生成,促進糖分解以降低血糖[67]。此外,Xu等[31]研究表明,茶多糖偶聯物的潛在抗腫瘤機制主要為直接抑制腫瘤細胞生長,促進腫瘤細胞凋亡,或通過改善免疫系統(tǒng)促進癌細胞的早期凋亡,但與上述機制相關的信號通路還有待探索。免疫調節(jié)作用是天然植物多糖的重要活性之一,已有研究表明,茶多糖可通過增加toll樣受體7的吞噬活性[68]、增加自然殺傷細胞活性[69]、調節(jié)炎癥相關細胞因子[70]等方式發(fā)揮免疫調節(jié)作用。
腸道是機體最大的免疫器官,茶多糖的免疫調節(jié)作用主要通過影響腸道免疫來實現,這是因為茶多糖不會被口腔及胃腸道內的酶所消化,而是在進入大腸后作為碳源被腸道菌群利用[24];菌群代謝產生的短鏈脂肪酸、吲哚衍生物、多胺等物質經腸道吸收后能參與調節(jié)機體的生理功能,發(fā)揮抗炎、免疫調節(jié)等作用[71]。正因如此,大多數利用動物模型探究茶多糖抗炎活性的研究都與結腸炎[59]或由結腸炎誘導的癌變[54,61]有關。此外,Chen等[72]利用體外結腸發(fā)酵模型也證明了腸道菌群可通過利用茯磚茶多糖產生短鏈脂肪酸等有利代謝產物改變發(fā)酵體系pH,進而改善炎癥性腸病患者的腸道菌群比例和豐度。綜上所述,茶多糖通過調節(jié)腸道菌群的代謝影響腸道穩(wěn)態(tài)可能是其發(fā)揮各種生物活性的重要途徑[31]。因此,研究者們在對茶多糖改善機體疾病的研究中可重點關注茶多糖對腸道穩(wěn)態(tài)的調節(jié)。
已有研究證明,動植物多糖及海藻多糖可作為食品保鮮薄膜改善果蔬、肉類、海產品等食物的貯藏品質[73]。與合成薄膜相比,多糖薄膜具有更好的氣體阻隔性能,以及可食用和可生物降解等優(yōu)點[74]。然而,多糖在薄膜中會表現出較差的阻水性能,因此,為了改善薄膜的耐水性和機械性能,研究者們通常會在多糖薄膜中摻入蛋白質[75],使薄膜成為偶聯聚合物。在乳液體系里,偶聯物中的蛋白質會吸附在油表面,而親水部分則突出到水溶液中;當多糖鏈緩慢吸附到界面上后,蛋白質會被解開并暴露出疏水氨基酸,然后在油相中重新排列;至此,蛋白質和多糖分別分布于油水界面,使偶聯物形成粘彈性膜[76]。而茶多糖是一種多糖與蛋白質的偶聯物,兼具多糖及蛋白質作為食品保鮮膜的優(yōu)點,以及多種生物活性,所以具有開發(fā)成食品保鮮膜及生物膜的潛力。同時,茶多糖具有良好的乳化性能[40-41],故有望應用于飲料、烘焙食品、肉制品和果醬生產中,以增加產品的粘度和穩(wěn)定性,改善產品的質地,提高食品的質量[77]。
天然來源的多糖具有低毒性、可再生、生物相容性高等優(yōu)點,可用作藥物載體。Li等[78]利用茶多糖和玉米醇溶蛋白制備了包埋紫杉醇(一種抗癌藥)的納米顆粒,并通過體外試驗發(fā)現這種納米顆粒能起到緩慢釋放藥物的作用;Fan等[79]合成了一種負載Mn離子的茶多糖納米顆粒,并發(fā)現這種納米顆粒在小鼠體內具有比單獨使用茶多糖更有效的降血糖作用;由此可見,茶多糖作為藥物載體或微膠囊型藥品應用于醫(yī)藥領域。一些具有抗炎、抗氧化、抗癌作用的植物多糖常被應用于護膚品中[80],以預防皮膚的老化或癌變,表明茶多糖還具有應用于化妝品的潛力。基于茶多糖能夠調節(jié)腸道菌群,具有益生元特性,還可被用于開發(fā)為益生元產品,起到增強免疫力或改善疾病的作用。考慮到茶多糖的抗糖尿病特性,研究者們可將其開發(fā)為適宜糖尿病人食用的特殊醫(yī)學用途食品。此外,茶多糖雖已被證實具有多種生物活性,但與之相關的臨床產品及應用卻較為罕見??梢詤⒖嫉氖牵芯空邆儚狞S芪、人參等植物中提取了具有抗癌活性的多糖,并以靜脈注射液的形式將它們用于癌癥患者的臨床治療[81]。
圖4 茶多糖的生物活性及相關機理
Fig.4 Biological activity and related mechanism of tea polysaccharides
本文對茶多糖相關產品的轉化研究進行了總結(表1)??偟膩碚f,茶多糖具有優(yōu)良的乳化特性及抗氧化、抗癌、降血糖等多種生物活性,在功能性食品及醫(yī)藥產品方面具有巨大應用潛力;為促進茶多糖及茶產業(yè)的發(fā)展,研究者們還應重點關注茶多糖在功能性食品、生物膜、醫(yī)療制劑等方向的產品轉化。
表1 茶多糖的產品開發(fā)及應用前景
茶多糖是茶葉的重要成分及主要活性成分,解析茶多糖的理化性質、探究其生物活性,對開發(fā)茶多糖相關產品具有重大意義。促進茶多糖相關產品轉化不僅能推動茶產業(yè)發(fā)展,也有利于全民大健康產業(yè)的發(fā)展。近十年來,WOS數據庫中關于茶多糖研究的發(fā)文量逐年增多,本文對茶多糖相關研究進行了總結分析??偟膩碚f,茶多糖的理化性質及生物活性為該領域的主要研究熱點。在理化性質方面,大多數研究探索了茶多糖的單糖組成、平均分子量及糖醛酸含量。在生物活性方面,研究者們主要關注茶多糖的抗氧化活性,近年來逐漸開始探索其抗癌、抗炎、抗糖尿病等生物活性。2019—2022年關于茶多糖對腸道菌群影響的文章數量出現明顯增長,這或將成為解析茶多糖如何發(fā)揮生物活性的新途徑。
盡管現代研究已發(fā)現茶多糖具有抗氧化、抗癌、抗糖尿病等多種生物活性,但隨著發(fā)文量的增多,與之相關的產品轉化研究未見增長,關于其發(fā)揮生物活性的機理解析也不夠深入。這是由于茶多糖的結構復雜、多糖的結構測定和性質分析等未形成體系,給多糖的產品轉化和臨床應用帶來了很大的限制。隨著技術的進步,茶多糖產業(yè)的發(fā)展將更加迅猛。為促進茶多糖的開發(fā)和利用,需要對茶多糖進行更為深入地研究,以便解析其構效關系及發(fā)揮生物活性的作用機制。由于茶多糖具有特殊的理化性質及生物活性,可考慮食品保鮮劑、生物膜制品、藥物遞送載體、益生元產品、特醫(yī)食品、抗癌藥物等相關產品的轉化。
[1] 程利增, 朱將雄, 周慧, 等. 茶多糖提取純化、結構活性及應用研究進展[J]. 中國茶葉, 2021, 43(8): 7-15. Cheng L Z, Zhu J X, Zhou H, et al. Research progress on the extraction, purification, structures, activities and application of tea polysaccharides [J]. China Tea, 2021, 43(8): 7-15.
[2] 翁昆, 張亞麗. GB/T 30766—2014《茶葉分類》簡介[J]. 中國標準導報, 2015(1): 34-35. Weng K, Zhang Y L. Introduction to GB/T 30766-2014 "Classification of Tea" [J]. China Quality and Standards Review, 2015(1): 34-35.
[3] 歐陽建, 周方, 盧丹敏, 等. 茶多糖調控肥胖作用研究進展[J]. 茶葉科學, 2020, 40(5): 565-575. Ouyang J, Zhou F, Lu D M, et al. Research progress of tea polysaccharides in regulating obesity [J]. Journal of Tea Science, 2020, 40(5): 565-575.
[4] Chen G, Yuan Q, Saeeduddin M, et al. Recent advances in tea polysaccharides: extraction, purification, physicochemical characterization and bioactivities [J]. Carbohydrate Polymers, 2016, 153: 663-678.
[5] 翁蔚, 李書魁, 張琴梅, 等. 茶多糖的組成與保健功效研究進展[J]. 中華中醫(yī)藥雜志, 2021, 36(12): 7261-7264. Weng W, Li S K, Zhang Q M, et al. Research progress of composition and health function of tea polysaccharide [J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2021, 36(12): 7261-7264.
[6] 李東旭, 陳富橋. 基于CiteSpace文獻計量分析的中國茶產業(yè)經濟研究現狀與展望[J]. 華中農業(yè)大學學報, 2022, 41(5): 57-67. Li D X, Chen F Q. Situation and prospect of studies on tea industry in China based on CiteSpace bibliometnic analysis [J]. Journal of Huazhong Agricultural University, 2022, 41(5): 57-67.
[7] 張鑫, 王吉, 胡靜榮, 等. 基于Citespace和文獻計量分析平臺的魚糜研究可視化分析[J]. 食品科學, 2023, 44(1): 362-370. Zhang X, Wang J, Hu J R, et al. Visual analysis of surimi research based on Citespace and bibliometric analysis platform [J]. Food Science, 2023, 44(1): 362-370.
[8] Sun Y Q, Wu S M, Gong G Y. Trends of research on polycyclic aromatic hydrocarbons in food: a 20-year perspective from 1997 to 2017 [J]. Trends in Food Science & Technology, 2019, 83: 86-98.
[9] Chen S Y, Han R, Liu H T. A bibliometric and visualization analysis of intermittent fasting [J]. Frontiers in Public Health, 2022, 10: 946795. doi: 10.3389/fpubh.2022.946795.
[10] 陳悅, 陳超美, 劉則淵, 等. CiteSpace知識圖譜的方法論功能[J]. 科學學研究, 2015, 33(2): 242-253. Chen Y, Chen C M, Liu Z Y, et al. The methodology function of CiteSpace mapping knowledge domains [J]. Studies in Science of Science, 2015, 33(2): 242-253.
[11] 周鈺, 劉慶梅, 張軍, 等. 基于Citespace對抗食物過敏研究領域的可視化分析[J]. 中國食品學報, 2021, 21(6): 366-374. Zhou Y, Liu Q M, Zhang J, et al. Visualization analysis of anti food allergy reasearch based on Citespace [J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(6): 366-374.
[12] 吳曉秋, 呂娜. 基于關鍵詞共現頻率的熱點分析方法研究[J]. 情報理論與實踐, 2012, 35(8): 115-119. Wu X Q, Lü N. Research on the hot spot analysis method based on keyword co occurrence frequency [J]. Information Studies: Theory & Application, 2012, 35(8): 115-119.
[13] Li X, Chen S, Li J E, et al. Chemical composition and antioxidant activities of polysaccharides fromtea [J]. Oxidative Medicine and Cellular Longevity, 2019, 2019: 1915967. doi: 10.1155/2019/1915967.
[14] Guo L, Guo J C, Zhu W C, et al. Optimized synchronous extraction process of tea polyphenols and polysaccharides from Huaguoshan Yunwu tea and their antioxidant activities [J]. Food and Bioproducts Processing, 2016, 100: 303-310.
[15] 穆軍芳, 張麗鑫, 楊光. 基于WOS的國際農業(yè)生態(tài)學研究熱點與前沿探究[J]. 中國生態(tài)農業(yè)學報(中英文), 2022: 1-12. [2023-05-09]. http://kns.cnki.net/kcms/detail/13.1432. S.20221228.1328.002.html. Mu J F, Zhang L X, Yang G, et al. A Study on the research hotspots and emerging trends of international agroecology based on WOS [J]. Chinese Journal of Eco-Agriculture, 2022: 1-12. [2023-05-09]. http://kns.cnki.net/kcms/detail/13. 1432.S.20221228.1328.002.html.
[16] Qu J L, Huang P, Zhang L, et al. Hepatoprotective effect of plant polysaccharides from natural resources: a review of the mechanisms and structure-activity relationship [J]. International Journal of Biological Macromolecules, 2020, 161: 24-34.
[17] Xu Y L, Wang Y J, He J L, et al. Antibacterial properties of lactoferrin: a bibliometric analysis from 2000 to early 2022 [J]. Frontiers in Microbiology, 2022, 13: 947102. doi: 10.3389/fmicb.2022.947102.
[18] Chen G J, Zeng Z Q, Xie M H, et al. Fermentation characteristics and probiotic activity of a purified fraction of polysaccharides from Fuzhuan brick tea [J]. Food Science and Human Wellness, 2022, 11(3): 727-737.
[19] Li H S, Fang Q Y, Nie Q X, et al. Hypoglycemic and hypolipidemic mechanism of tea polysaccharides on type 2 diabetic rats via gut microbiota and metabolism alteration [J]. Journal of Agricultural and Food Chemistry, 2020, 68(37): 10015-10028.
[20] Liu X L, Hu G S, Wang A H, et al. Black tea reduces diet-induced obesity in mice via modulation of gut microbiota and gene expression in host tissues [J]. Nutrients, 2022, 14(8): 1635. doi: 10.3390/nu14081635.
[21] Wang Y L, Zhao Y, Andrae-Marobela K, et al. Tea polysaccharides as food antioxidants: an old woman’s tale? [J]. Food Chemistry, 2013, 138(2/3): 1923-1927.
[22] Lu X S, Zhao Y, Sun Y F, et al. Characterisation of polysaccharides from green tea of Huangshan Maofeng with antioxidant and hepatoprotective effects [J]. Food Chemistry, 2013, 141(4): 3415-3423.
[23] Xu P, Wu J, Zhang Y, et al. Physicochemical characterization of puerh tea polysaccharides and their antioxidant and-glycosidase inhibition [J]. Journal of Functional Foods, 2014, 6: 545-554.
[24] Chen G J, Xie M H, Wan P, et al. Digestion under saliva, simulated gastric and small intestinal conditions and fermentationby human intestinal microbiota of polysaccharides from Fuzhuan brick tea [J]. Food Chemistry, 2018, 244: 331-339.
[25] Chen D, Chen G J, Ding Y, et al. Polysaccharides from the flowers of tea (L.) modulate gut health and ameliorate cyclophosphamide-induced immunosuppression [J]. Journal of Functional Foods, 2019, 61: 103470. doi: 10.1016/j.jff.2019.103470.
[26] Wu D T, Liu W, Yuan Q, et al. Dynamic variations in physicochemical characteristics of oolong tea polysaccharides during simulated digestion and fecal fermentation[J]. Food Chemistry: X, 2022, 14: 100288. doi: 10.1016/j.fochx.2022.100288.
[27] Chen H, Huang Y Z, Zhou C C, et al. Effects of ultra-high pressure treatment on structure and bioactivity of polysaccharides from large leaf yellow tea [J]. Food Chemistry, 2022, 387: 132862. doi: 10.1016/j.foodchem. 2022. 132862.
[28] Jin F, Jia L Y, Tu Y Y. Structural analysis of an acidic polysaccharide isolated from white tea [J]. Food Science and Biotechnology, 2015, 24(5): 1623-1628.
[29] Nie S P, Xie M Y. A review on the isolation and structure of tea polysaccharides and their bioactivities [J]. Food Hydrocolloids, 2011, 25(2): 144-149.
[30] Wang Q, Yang X Y, Zhu C W, et al. Advances in the utilization of tea polysaccharides: preparation, physicochemical properties, and health benefits [J]. Polymers, 2022, 14(14): 2775. doi: 10.3390/polym14142775.
[31] Xu A A, Lai W Y, Chen P, et al. A comprehensive review on polysaccharide conjugates derived from tea leaves: composition, structure, function and application [J]. Trends in Food Science & Technology, 2021, 114: 83-99.
[32] Qin H N, Huang L, Teng J W, et al. Purification, characterization, and bioactivity of Liupao tea polysaccharides before and after fermentation [J]. Food Chemistry, 2021, 353: 129419. doi: 10.1016/j.foodchem.2021.129419.
[33] Xiang G, Sun H P, Chen Y Y, et al. Antioxidant and hypoglycemic activity of tea polysaccharides with different degrees of fermentation [J]. International Journal of Biological Macromolecules, 2023, 228: 224-233.
[34] Sun X Y, Wang J M, Ouyang J, et al. Antioxidant activities and repair effects on oxidatively damaged HK-2 cells of tea polysaccharides with different molecular weights [J]. Oxidative Medicine and Cellular Longevity, 2018, 2018: 5297539. doi: 10.1155/2018/5297539.
[35] Zhang X, Chen H X, Zhang N, et al. Extrusion treatment for improved physicochemical and antioxidant properties of high-molecular weight polysaccharides isolated from coarse tea [J]. Food Research International, 2013, 53(2): 726-731.
[36] Wang Y F, Mao F F, Wei X L. Characterization and antioxidant activities of polysaccharides from leaves, flowers and seeds of green tea [J]. Carbohydrate Polymers, 2012, 88(1): 146-153.
[37] Zhu J X, Yu C, Han Z, et al. Comparative analysis of existence form for selenium and structural characteristics in artificial selenium-enriched and synthetic selenized green tea polysaccharides [J]. International Journal of Biological Macromolecules, 2020, 154: 1408-1418.
[38] Junker F, Michalski K, Guthausen G, et al. Characterization of covalent, feruloylated polysaccharide gels by pulsed field gradient-stimulated echo (PFG-STE)-NMR [J]. Carbohydrate Polymers, 2021, 267: 118232. doi: 10.1016/j.carbpol.2021.118232.
[39] Wang J Y, Liu W, Chen Z Q, et al. Physicochemical characterization of the oolong tea polysaccharides with high molecular weight and their synergistic effects in combination with polyphenols on hepatocellular carcinoma [J]. Biomedicine & Pharmacotherapy, 2017, 90: 160-170.
[40] Chen X Q, Wu X F, Zhang K, et al. Purification, characterization, and emulsification stability of high- and low-molecular-weight fractions of polysaccharide conjugates extracted from green tea [J]. Food Hydrocolloids, 2022, 129: 107667. doi: 10.1016/j.foodhyd.2022.107667.
[41] Li Q, Zhao T T, Shi J L, et al. Physicochemical characterization, emulsifying and antioxidant properties of the polysaccharide conjugates from Chin brick tea () [J]. Food Chemistry, 2022, 395: 133625. doi: 10.1016/j.foodchem.2022.133625.
[42] Li W, Wang K Q, Sun Y, et al. Influences of structures of galactooligosaccharides and fructooligosaccharides on the fermentationby human intestinal microbiota [J]. Journal of Functional Foods, 2015, 13: 158-168.
[43] Chen H X, Qu Z S, Fu L L, et al. Physicochemical properties and antioxidant capacity of 3 polysaccharides from green tea, oolong tea, and black tea [J]. Journal of Food Science, 2009, 74(6): 469-474.
[44] Hu T, Wu P, Zhan J F, et al. Structure variety and its potential effects on biological activity of tea polysaccharides [J]. Food Science and Human Wellness, 2022, 11(3): 587-597.
[45] Chen H X, Wang Z S, Qu Z S, et al. Physicochemical characterization and antioxidant activity of a polysaccharide isolated from oolong tea [J]. European Food Research and Technology, 2009, 229(4): 629-635.
[46] Yang X H, Huang M J, Qin C Q, et al. Structural characterization and evaluation of the antioxidant activities of polysaccharides extracted from Qingzhuan brick tea [J]. International Journal of Biological Macromolecules, 2017, 101: 768-775.
[47] Chen G J, Wang M J, Xie M H, et al. Evaluation of chemical property, cytotoxicity and antioxidant activityandof polysaccharides from Fuzhuan brick teas [J]. International Journal of Biological Macromolecules, 2018, 116: 120-127.
[48] Wang H S, Chen J R, Ren P F, et al. Ultrasound irradiation alters the spatial structure and improves the antioxidant activity of the yellow tea polysaccharide [J]. Ultrasonics Sonochemistry, 2021, 70: 105355. doi: 10.1016/j.ultsonch.2020.105355.
[49] Zheng Q R, Li W F, Zhang H, et al. Optimizing synchronous extraction and antioxidant activity evaluation of polyphenols and polysaccharides from Ya'an Tibetan tea () [J]. Food Science & Nutrition, 2019, 8(1): 489-499.
[50] Xu P, Chen H, Wang Y Q, et al. Oral administration of puerh tea polysaccharides lowers blood glucose levels and enhances antioxidant status in alloxan-induced diabetic mice [J]. Journal of Food Science, 2012, 77(11): 246-252.
[51] Guo R, Zhang J A, Liu X, et al. Pectic polysaccharides from Biluochun tea: a comparative study in macromolecular characteristics, fine structures and radical scavenging activities[J]. International Journal of Biological Macromolecules, 2022, 195: 598-608.
[52] Tang Y Y, Sheng J F, He X M, et al. Novel antioxidant and hypoglycemic water-soluble polysaccharides from jasmine tea [J]. Foods, 2021, 10(10): 2375. doi: 10.3390/foods10102375.
[53] Fan M H, Zhu J X, Qian Y L, et al. Effect of purity of tea polysaccharides on its antioxidant and hypoglycemic activities [J]. Journal of Food Biochemistry, 2020, 44(8): e13277. doi: 10.1111/jfbc.13277.
[54] Liu L Q, Li H S, Nie S P, et al. Tea polysaccharide prevents colitis-associated carcinogenesis in mice by inhibiting the proliferation and invasion of tumor cells [J]. International Journal of Molecular Sciences, 2018, 19(2): 506. doi: 10.3390/ijms19020506.
[55] Wang Y C, Chen J, Zhang D Z, et al. Tumoricidal effects of a selenium (Se)-polysaccharide from Ziyang green tea on human osteosarcoma U-2 OS cells [J]. Carbohydrate Polymers, 2013, 98(1): 1186-1190.
[56] Wang H J, Shi S S, Bao B, et al. Structure characterization of an arabinogalactan from green tea and its anti-diabetic effect [J]. Carbohydrate Polymers, 2015, 124: 98-108.
[57] Li S Q, Chen H X, Wang J, et al. Involvement of the PI3K/Akt signal pathway in the hypoglycemic effects of tea polysaccharides on diabetic mice [J]. International Journal of Biological Macromolecules, 2015, 81: 967-974.
[58] Chung J O, Yoo S H, Lee Y E, et al. Hypoglycemic potential of whole green tea: water-soluble green tea polysaccharides combined with green tea extract delays digestibility and intestinal glucose transport of rice starch [J]. Food & Function, 2019, 10(2): 746-753.
[59] Zhao Y N, Chen H, Li W T, et al. Selenium-containing tea polysaccharides ameliorate DSS-induced ulcerative colitis via enhancing the intestinal barrier and regulating the gut microbiota [J]. International Journal of Biological Macromolecules, 2022, 209: 356-366.
[60] Kim J, Choi H, Choi D H, et al. Application of green tea catechins, polysaccharides, and flavonol prevent fine dust induced bronchial damage by modulating inflammation and airway cilia [J]. Scientific Reports, 2021, 11(1): 2232. doi: 10.1038/s41598-021-81989-9.
[61] Liu L Q, Nie S P, Shen M Y, et al. Tea polysaccharides inhibit colitis-associated colorectal cancer via interleukin-6/STAT3 pathway [J]. Journal of Agricultural and Food Chemistry, 2018, 66(17): 4384-4393.
[62] Cheng L Z, Chen L, Yang Q Q, et al. Antitumor activity of Se-containing tea polysaccharides against sarcoma 180 and comparison with regular tea polysaccharides and Se-yeast [J]. International Journal of Biological Macromolecules, 2018, 120: 853-858.
[63] 王兆梅, 李琳, 郭祀遠, 等. 活性多糖構效關系研究評述[J]. 現代化工, 2002(8): 18-21, 23. Wang Z M, Li L, Guo S Y, et al. Review on structure-activity relationship of active polysaccharides [J]. Modern Chemical Industry, 2002(8): 18-21, 23.
[64] 楊玉潔, 劉靜宜, 譚艷, 等. 多糖降血糖活性構效關系及作用機制研究進展[J]. 食品科學, 2021, 42(23): 355-363. Yang Y J, Liu J Y, Tan Y, et al. Progress inunderstanding the structure-activity relationship and hypaglycemic mechanism of polysaccharides [J]. Food Science, 2021, 42(23): 355-363.
[65] Wang D Y, Zhao Y, Sun Y F, et al. Protective effects of Ziyang tea polysaccharides on CCl4-induced oxidative liver damage in mice [J]. Food Chemistry, 2014, 143: 371-378.
[66] 倪德江, 陳玉瓊, 宋春和, 等. 烏龍茶多糖對糖尿病大鼠肝腎抗氧化功能及組織形態(tài)的影響[J]. 茶葉科學, 2003, 23(1): 11-15. Ni D J, Chen Y Q, Song C H, et al. Effect of oolong tea polysaccharide on hepatic-nephritic antioxidation and histomorphology in the diabetic rats [J]. Journal of Tea Science, 2003, 23(1): 11-15.
[67] 江和源. 茶葉降血糖活性及對糖尿病的功效與機理[J]. 中國茶葉, 2019, 41(2): 1-6. Jiang H Y. Hypoglycemic activity of tea and its effect and mechanism on diabetes [J]. China Tea, 2019, 41(2): 1-6.
[68] Monobe M N M, Ema K, Kato F M K, et al. Immunostimulating activity of a crude polysaccharide derived from green tea ()extract [J]. Journal of Agricultural and Food Chemistry, 2008, 56(4): 1423-1427.
[69] Yuan C F, Li Z H, Peng F, et al. Combination of selenium-enriched green tea polysaccharides and Huo-ji polysaccharides synergistically enhances antioxidant and immune activity in mice [J]. Journal of the Science of Food and Agriculture, 2015, 95(15): 3211-3217.
[70] Chen X Q, Zhang Z F, Gao Z M, et al. Physicochemical properties and cell-based bioactivity of Pu’erh tea polysaccharide conjugates [J]. International Journal of Biological Macromolecules, 2017, 104: 1294-1301.
[71] Ho Do M, Seo Y S, Park H Y. Polysaccharides: bowel health and gut microbiota [J]. Critical Reviews in Food Science and Nutrition, 2021, 61(7): 1212-1224.
[72] Chen G J, Wang M J, Zeng Z Q, et al. Fuzhuan brick tea polysaccharides serve as a promising candidate for remodeling the gut microbiota from colitis subjects: fermentation characteristic and anti-inflammatory activity [J]. Food Chemistry, 2022, 391: 133203. doi: 10.1016/j.foodchem.2022.133203.
[73] Li N, Zhou S Y, Yang X B, et al. Applications of natural polysaccharide-based pH-sensitive films in food packaging: current research and future trends [J]. Innovative Food Science & Emerging Technologies, 2022, 82(1): 103200. doi: 10.1016/j.ifset.2022.103200.
[74] Shahidi F, Hossain A. Preservation of aquatic food using edible films and coatings containing essential oils: a review [J]. Critical Reviews in Food Science and Nutrition, 2022, 62(1): 66-105.
[75] Azeredo H M C, Waldron K W. Crosslinking in polysaccharide and protein films and coatings for food contact: a review [J]. Trends in Food Science & Technology, 2016, 52: 109-122.
[76] Shao P, Feng J R, Sun P L, et al. Recent advances in improving stability of food emulsion by plant polysaccharides [J]. Food Research International, 2020, 137: 109376. doi: 10.1016/j.foodres.2020.109376.
[77] Tang Q L, Huang G L. Improving method, properties and application of polysaccharide as emulsifier [J]. Food Chemistry, 2022, 376: 131937. doi: 10.1016/j.foodchem.2021.131937.
[78] Li S Q, Wang X M, Li W W, et al. Preparation and characterization of a novel conformed bipolymer paclitaxel-nanoparticle using tea polysaccharides and zein [J]. Carbohydrate Polymers, 2016, 146: 52-57.
[79] Fan M H, Zhang X, Zhao Y, et al. Mn(II)-mediated self-assembly of tea polysaccharide nanoparticles and their functional role in mice with type 2 diabetes [J]. ACS Applied Materials & Interfaces, 2022, 14(27): 30607-30617.
[80] Albuquerque P B S, De Oliveira W F, Dos Santos Silva P M, et al. Skincare application of medicinal plant polysaccharides: a review [J]. Carbohydrate Polymers, 2022, 277: 118824. doi: 10.1016/j.carbpol.2021.118824.
[81] 李焱, 林泳峰, 劉文美, 等. 食藥同源植物多糖調控腸道穩(wěn)態(tài)的研究進展[J]. 食品安全質量檢測學報, 2023, 14(2): 25-33. Li Y, Lin Y F, Liu W M, et al. Research progress on regulating intestinal steady-state of polysaccharides from food-medicine homologous plants [J]. Journal of Food Safety and Quality, 2023, 14(2): 25-33.
[82] Chen X Q, Han Y, Meng H, et al. Characteristics of the emulsion stabilized by polysaccharide conjugates alkali-extracted from green tea residue and its protective effect on catechins [J]. Industrial Crops and Products, 2019, 140: 111611. doi: 10.1016/j.indcrop.2019.111611.
[83] Chen X Q, Zhang Y T, Han Y, et al. Emulsifying properties of polysaccharide conjugates prepared from chin-brick tea [J]. Journal of Agricultural and Food Chemistry, 2019, 67(36): 10165-10173.
[84] Wang C, Fu Y X, Cao Y, et al. Enhancement of lycopene bioaccessibility in tomatoes using excipient emulsions: effect of dark tea polysaccharides [J]. Food Research International, 2023, 163: 112123. doi: 10.1016/j.foodres.2022.112123.
[85] Lin X R, Mu J J, Chen Z Z, et al. Stabilization and functionalization of selenium nanoparticles mediated by green tea and Pu-erh tea polysaccharides [J]. Industrial Crops and Products, 2023, 194: 116312. doi: 10.1016/j.indcrop.2023.116312.
[86] Wu S Y, Li N, Yang C, et al. Synthesis of cationic branched tea polysaccharide derivatives for targeted delivery of siRNA to hepatocytes [J]. International Journal of Biological Macromolecules, 2018, 118: 808-815.
Present Status and Development Trends of Research on Tea Polysaccharides
LI Yan1, LIN Yongfeng1, LIU Wenmei2,3,4, ZOU Zehua2,3,4, LIU Guangming1, LIU Qingmei1*
1. College of Ocean Food and Biological Engineering, Jimei University, Marine Functional Food Engineering Technology Research Center of Fujian Province, Xiamen 361021, China; 2. Xiamen Sci-plus Biotech Co., Ltd., Xiamen 361026, China; 3. San Ming MING BAWEI Industry Research Institute, Sanming 353000, China; 4. Changting County Green Economy Ecological Health Industry Research Institute, Longyan 366300, China
Tea polysaccharides are important active ingredients in tea. Studying the properties of tea polysaccharides and promoting the development of tea polysaccharides products will benefit both the tea industry and the health industry. In the present paper, literatures related to tea polysaccharides from the Web of Science database over the past decade were visually analyzed. The results show that the overall number of papers related to tea polysaccharides showed an increasing trend from 2013 to 2022. The co-occurrence, emergence and frequency analysis of keywords show that the antioxidant activities of tea polysaccharides are a continuous research hotspot, which may also be one of the main trends in future research. At present, global research on tea polysaccharides mainly focuses on the physicochemical properties including monosaccharide composition, solubility, emulsification and biological activities such as antioxidation, anticancer and antidiabetic. Although tea polysaccharides exhibit a variety of biological activities, the underlying mechanisms are still not well understood. Recent studies have shown that tea polysaccharides can exert probiotic potential by affecting gut microbiota. In addition, the transformation and development of tea polysaccharide-related products are particularly insufficient. In the future, researchers can focus on developing biofilm products, drug delivery vehicles and functional foods using tea polysaccharides. Overall, the present paper summarized the main contents and hot spots in the field of tea polysaccharides, aiming to serve as a reference for researchers in this field as well as for the development of the tea polysaccharide industry.
tea polysaccharides, visual analysis, antioxidation, gut microbiota
S571.1;Q946.3
A
1000-369X(2023)04-447-13
2023-05-09
2023-06-24
國家自然科學基金(32001695、32072336)、福建省科技計劃項目(2021L3013)
李焱,女,碩士研究生,主要從事茶多糖免疫調節(jié)活性方面研究,676292470@qq.com。*通信作者:liuqingmei1229@163.com