黃玉萱,沈忱,鞠佳菲,楊磊,羅光華,方繼朝
二化螟味覺(jué)受體基因鑒定、克隆與表達(dá)模式分析
黃玉萱1,2,沈忱1,2,鞠佳菲2,楊磊1,2,羅光華1,2,方繼朝1,2
1南京農(nóng)業(yè)大學(xué)植物保護(hù)學(xué)院,南京 210095;2江蘇省農(nóng)業(yè)科學(xué)院植物保護(hù)研究所/江蘇省食品質(zhì)量安全重點(diǎn)實(shí)驗(yàn)室(省部共建國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地),南京 210014
【背景】二化螟()是我國(guó)水稻上的重要害蟲(chóng)之一,味覺(jué)受體(gustatory receptor,GR)基因在昆蟲(chóng)取食、產(chǎn)卵等過(guò)程中發(fā)揮重要作用?!灸康摹炕诮M學(xué)數(shù)據(jù)鑒定并克隆二化螟GR基因序列,明確其在不同發(fā)育階段和成蟲(chóng)不同組織中的表達(dá)特性,為后續(xù)深入研究二化螟GR基因的功能打下基礎(chǔ)。【方法】結(jié)合二化螟轉(zhuǎn)錄組數(shù)據(jù)和其他昆蟲(chóng)的GR基因序列,通過(guò)多重序列比對(duì),鑒定二化螟GR基因。利用RT-PCR方法克隆獲得二化螟GR基因的完整開(kāi)放閱讀框(open reading frame,ORF)序列,運(yùn)用生物信息學(xué)分析工具對(duì)二化螟GR基因編碼的氨基酸序列進(jìn)行分子生物學(xué)特征、結(jié)構(gòu)域等分析;基于最大似然法構(gòu)建二化螟GR基因蛋白序列與其他昆蟲(chóng)GR基因的系統(tǒng)進(jìn)化樹(shù);利用實(shí)時(shí)熒光定量PCR(RT-qPCR)方法分析GR基因在二化螟不同發(fā)育階段(1—6齡幼蟲(chóng)和雌、雄成蟲(chóng))和成蟲(chóng)不同組織(雌、雄成蟲(chóng)的觸角、頭、翅、腹、足)中的表達(dá)模式?!窘Y(jié)果】鑒定并克隆得到5個(gè)二化螟GR基因,分別命名為—,ORF長(zhǎng)度為1 122—1 428 bp,編碼氨基酸序列長(zhǎng)度為373—475 aa,其中、、具有7個(gè)跨膜結(jié)構(gòu)域,、具有8個(gè)跨膜結(jié)構(gòu)域。系統(tǒng)進(jìn)化分析顯示,、與黑腹果蠅及小菜蛾、親緣關(guān)系較近,屬于CO2受體家族;與黑腹果蠅及家蠶、親緣關(guān)系較近,屬于果糖/肌醇受體家族;、與黑腹果蠅及家蠶—親緣關(guān)系較近,屬于糖受體家族。發(fā)育期表達(dá)譜分析表明,二化螟5個(gè)GR基因在不同發(fā)育時(shí)期均有表達(dá),其中、均在雄成蟲(chóng)中高表達(dá),在1齡幼蟲(chóng)和雄成蟲(chóng)中表達(dá)量最高,在成蟲(chóng)中高表達(dá),在4齡幼蟲(chóng)中表達(dá)量最高;組織表達(dá)譜分析表明,5個(gè)GR基因在雌、雄成蟲(chóng)的各組織均有表達(dá),其中、在成蟲(chóng)頭部表達(dá)量高,—在成蟲(chóng)觸角部位高表達(dá)?!窘Y(jié)論】鑒定克隆的5個(gè)二化螟GR基因均具有昆蟲(chóng)味覺(jué)受體基因的典型特征,且在成蟲(chóng)觸角或頭部高表達(dá),推測(cè)這5個(gè)基因可能與二化螟識(shí)別和適應(yīng)寄主植物有關(guān)。
二化螟;味覺(jué)受體;基因鑒定;序列分析;表達(dá)譜
【研究意義】二化螟()可危害多種寄主植物,包括水稻、茭白、玉米等作物,是我國(guó)主要水稻害蟲(chóng)之一,以幼蟲(chóng)鉆蛀組織取食危害,嚴(yán)重威脅我國(guó)的糧食安全[1]。水稻各生長(zhǎng)時(shí)期均可見(jiàn)不同發(fā)育階段的二化螟,初孵幼蟲(chóng)主要是在葉鞘內(nèi)集中蛀食造成枯鞘,3齡以后鉆進(jìn)莖稈暴食,導(dǎo)致水稻出現(xiàn)枯心、白穗、蟲(chóng)傷株等癥狀[2]。目前對(duì)二化螟的防治主要依靠化學(xué)藥劑,化學(xué)防治雖效果直接、見(jiàn)效快,但對(duì)農(nóng)田生態(tài)環(huán)境構(gòu)成一定危害,且導(dǎo)致二化螟抗藥性持續(xù)增強(qiáng)[3-4]。二化螟危害寄主植物依賴(lài)于其化學(xué)感受系統(tǒng),目前對(duì)于二化螟嗅覺(jué)感受系統(tǒng)在選擇寄主和蟲(chóng)害誘導(dǎo)揮發(fā)物介導(dǎo)的“植物-植食性昆蟲(chóng)-天敵”三級(jí)營(yíng)養(yǎng)關(guān)系研究已取得重要進(jìn)展[5],但關(guān)于二化螟的味覺(jué)感受分子機(jī)制尚未有明確報(bào)道。對(duì)二化螟味覺(jué)系統(tǒng)在選擇寄主植物過(guò)程中的感受機(jī)制和作用模式的闡釋?zhuān)蔀槎镩g防治提供潛在的分子靶標(biāo)?!厩叭搜芯窟M(jìn)展】昆蟲(chóng)在選擇寄主植物的過(guò)程中一般通過(guò)化學(xué)感受系統(tǒng)發(fā)揮作用,昆蟲(chóng)的化學(xué)感受過(guò)程包括昆蟲(chóng)的嗅覺(jué)感受和味覺(jué)感受。寄主植物揮發(fā)物可以對(duì)二化螟產(chǎn)生引誘作用[6],蟲(chóng)害誘導(dǎo)水稻揮發(fā)物也能調(diào)控二化螟雌成蟲(chóng)的產(chǎn)卵行為[7],表明二化螟在對(duì)寄主植物選擇和定位過(guò)程中嗅覺(jué)系統(tǒng)發(fā)揮重要作用。對(duì)寄主植物進(jìn)行定位后,二化螟通過(guò)咀嚼寄主植物的組織從而吸收植物的可溶性成分和次級(jí)代謝物質(zhì),獲得其生長(zhǎng)發(fā)育所需要的營(yíng)養(yǎng)物質(zhì),或是感受寄主植物部位組織確定產(chǎn)卵位置從而繁衍后代,在這個(gè)過(guò)程中,二化螟的味覺(jué)感受系統(tǒng)發(fā)揮了重要作用。昆蟲(chóng)的味覺(jué)感受系統(tǒng)負(fù)責(zé)識(shí)別甜味物質(zhì)、苦味物質(zhì)和氨基酸等非揮發(fā)性化合物而區(qū)分營(yíng)養(yǎng)物質(zhì)和躲避有害物質(zhì),在昆蟲(chóng)的取食、交配和產(chǎn)卵等生命活動(dòng)中發(fā)揮著極為重要的作用[8]。昆蟲(chóng)味覺(jué)感受需要各級(jí)器官、神經(jīng)元參與,直至誘導(dǎo)昆蟲(chóng)產(chǎn)生行為。昆蟲(chóng)味覺(jué)感受器中,位于味覺(jué)神經(jīng)元樹(shù)突上的味覺(jué)受體(gustatory receptor,GR)接收到化學(xué)刺激后將其轉(zhuǎn)化為電信號(hào),以脈沖的形式傳遞到中樞神經(jīng)系統(tǒng),從而調(diào)控昆蟲(chóng)的行為[9]。昆蟲(chóng)的味覺(jué)感受器主要分布于口器和觸角,在前足、翅緣和雌蟲(chóng)產(chǎn)卵器等部位也有分布。鱗翅目昆蟲(chóng)幼蟲(chóng)的味覺(jué)器主要位于頭部的口器中[10-11],以栓錐形感器為主。栓錐形感器包括4個(gè)味覺(jué)神經(jīng)元和1個(gè)機(jī)械神經(jīng)元,均參與感知味覺(jué)和其他相關(guān)反應(yīng)[12]。昆蟲(chóng)味覺(jué)受體屬于G蛋白偶聯(lián)受體家族,結(jié)構(gòu)上具有7個(gè)跨膜結(jié)構(gòu)域[13],根據(jù)其配體選擇性和序列聚類(lèi)分析,GR基因被分為4類(lèi):糖受體、CO2受體、苦味受體和其他受體[14-15]。味覺(jué)受體首先在黑腹果蠅()中被鑒定[16],隨著基因組和轉(zhuǎn)錄組測(cè)序技術(shù)以及生物信息學(xué)的快速發(fā)展,家蠶()[17]、黑脈金斑蝶()[18]、紅帶袖蝶()[19]、小菜蛾()[20]、斜紋夜蛾()[21]、黏蟲(chóng)()[22]、甜菜夜蛾()[23]等鱗翅目昆蟲(chóng)的味覺(jué)受體也得到鑒定。【本研究切入點(diǎn)】目前,對(duì)于二化螟的寄主植物適應(yīng)機(jī)制研究主要集中于依賴(lài)于嗅覺(jué)感受系統(tǒng)的揮發(fā)物介導(dǎo)的互作上,而對(duì)于其味覺(jué)感受機(jī)制關(guān)注較少,闡釋二化螟味覺(jué)系統(tǒng)在寄主植物適應(yīng)機(jī)制中的作用可為其田間防治提供理論基礎(chǔ)和分子靶標(biāo)。【擬解決的關(guān)鍵問(wèn)題】基于轉(zhuǎn)錄組和基因組數(shù)據(jù),鑒定并克隆二化螟GR基因完整ORF序列,進(jìn)而明確二化螟GR基因序列結(jié)構(gòu)特征和時(shí)空表達(dá)譜,為后續(xù)二化螟味覺(jué)受體的功能研究提供依據(jù)。
試驗(yàn)于2021—2022年在江蘇省農(nóng)業(yè)科學(xué)院植物保護(hù)研究所完成。
二化螟為室內(nèi)利用人工飼料[24]連續(xù)傳代飼養(yǎng)多年的品系。養(yǎng)殖溫度為(28±1)℃,相對(duì)濕度≥80%,光周期為16 h﹕8 h(L﹕D)。依次收集不同發(fā)育階段的試蟲(chóng)樣品,包括二化螟1齡幼蟲(chóng)80頭、2齡幼蟲(chóng)60頭、3齡幼蟲(chóng)40頭、4齡幼蟲(chóng)20頭、5齡幼蟲(chóng)5頭、6齡幼蟲(chóng)5頭、雄成蟲(chóng)5頭、雌成蟲(chóng)5頭,同時(shí)收集成蟲(chóng)不同組織樣品,包括雌、雄成蟲(chóng)(各200頭)的觸角、頭部、翅、前足、中后足、腹部。以上每份樣品各收集3份,作為3次生物學(xué)重復(fù)。收集好的樣品迅速置于含有500 μL Trizol的1.5 mL EP管中,用液氮冷凍后置于-80 ℃冰箱中保存。
以實(shí)驗(yàn)室前期二化螟轉(zhuǎn)錄組數(shù)據(jù)(GEO accession number:GSE179532)結(jié)合NCBI在線數(shù)據(jù)庫(kù)基因組(GenBank assembly accession:GCA_004000445.1)建立二化螟本地?cái)?shù)據(jù)庫(kù)。以家蠶、紅帶袖蝶、小菜蛾和黑脈金斑蝶的GR序列為參考序列,運(yùn)用TBtools軟件在本地?cái)?shù)據(jù)庫(kù)中以tblastn和blastp方法搜索相似度最高的序列。將上述得到的序列整合,使用NCBI在線數(shù)據(jù)庫(kù)(Non-Redundant Protein Database)人工注釋校正,刪除錯(cuò)誤匹配或匹配度較低的序列。
使用Ambion Trizol Reagent(玉博生物科技有限公司,上海)提取二化螟各發(fā)育時(shí)期和成蟲(chóng)不同組織樣品的總RNA,利用Trans2K DNA Marker(全式金生物技術(shù)有限公司,北京)和瓊脂糖凝膠電泳檢測(cè)RNA濃度和質(zhì)量。分別使用PrimeScriptTMII 1st Strand cDNA Synthesis Kit和PrimeScriptTMRT reagent Kit with gDNA Eraser(Perfect Real Time)(寶日醫(yī)生物技術(shù)有限公司,北京)試劑盒按照說(shuō)明書(shū)步驟合成cDNA,前者合成的1st strand cDNA用于基因克隆,后者用于實(shí)時(shí)熒光定量PCR分析。
對(duì)鑒定得到的5個(gè)二化螟GR基因(—)進(jìn)行克隆和定量檢測(cè)分析,利用Primer Premier 5.0軟件設(shè)計(jì)基因克隆引物和定量引物(表1)。在實(shí)時(shí)熒光定量PCR試驗(yàn)中,選擇作為內(nèi)參基因[25],上述引物均由生工生物工程(上海)股份有限公司合成。
按照表1設(shè)計(jì)的引物,利用RT-PCR技術(shù)擴(kuò)增—的ORF全長(zhǎng)序列,使用Premix TaqTM(TaKaRa TaqTMVersion 2.0 plus dye)(寶日醫(yī)生物技術(shù)有限公司,北京)試劑按照說(shuō)明書(shū)配置PCR反應(yīng)體系(50 μL):Premix Taq(TaKaRa Taq Version 2.0 plus dye)25 μL,cDNA模板2 μL,正反向引物(20 μmol·L-1)各1 μL,滅菌水21 μL。PCR反應(yīng)條件:94 ℃ 3 min;94 ℃ 30 s,55—60 ℃ 30 s,72 ℃ 90 s,30個(gè)循環(huán);72 ℃ 5 min。利用瓊脂糖凝膠電泳和Trans2K DNA Marker(全式金生物技術(shù)有限公司,北京)驗(yàn)證產(chǎn)物長(zhǎng)度并使用OMEGA Gel Extraction Kit(索萊寶生物科技有限公司,上海)回收目的片段,用T3 Cloning Kit(全式金生物技術(shù)有限公司,北京)將回收產(chǎn)物連接至-T3克隆載體并轉(zhuǎn)化到1-T1感受態(tài)細(xì)胞(全式金生物技術(shù)有限公司,北京)中,于含有100 mg·mL-1Amp的LB固體培養(yǎng)基中培養(yǎng)12—16 h,隨機(jī)挑選出6個(gè)經(jīng)藍(lán)白斑篩選后的陽(yáng)性克隆在含有100 mg·mL-1Amp的LB液體培養(yǎng)基中37 ℃過(guò)夜培養(yǎng),經(jīng)菌液PCR驗(yàn)證后,將陽(yáng)性菌液送生工生物工程(上海)股份有限公司進(jìn)行雙向測(cè)序。
表1 引物序列
測(cè)序結(jié)果利用DNAMAN軟件進(jìn)行序列比對(duì)。使用ExPASy(https://web.expasy.org/compute_pi/)和TMHMM 2.0在線軟件預(yù)測(cè)二化螟GR基因的蛋白分子量、理論等電點(diǎn)和跨膜結(jié)構(gòu)域(transmembrane domain,TMD)等蛋白信息。應(yīng)用BLAST(https://blast. ncbi.nlm.nih.gov/Blast.cgi)和DNAMAN軟件對(duì)二化螟GR基因進(jìn)行序列比對(duì)。
根據(jù)家蠶、小菜蛾、果蠅已發(fā)表的味覺(jué)受體基因序列和克隆得到的二化螟味覺(jué)受體基因進(jìn)行系統(tǒng)發(fā)育分析,MAFFT 7.221用于味覺(jué)受體基因蛋白序列的比對(duì),Gblocks 0.91b提取味覺(jué)受體基因多序列比對(duì)結(jié)果的保守位點(diǎn),ProtTest 3.4選擇最優(yōu)氨基酸替代模型(AIC分值),RAxML 8.1.24構(gòu)建系統(tǒng)發(fā)育樹(shù),執(zhí)行快速Bootstrap分析并搜索最佳得分的ML樹(shù),自舉1 000次。建樹(shù)模型為PROTCATJTTX。Fig Tree v 1.4.0和iTOL(https://itol.embl.de/)在線軟件用于樹(shù)的編輯和可視化。
使用TB Green? Premix Ex TaqTMII(Tli RNaseH Plus)試劑盒(寶日醫(yī)生物技術(shù)有限公司,北京)進(jìn)行實(shí)時(shí)熒光定量PCR反應(yīng),檢測(cè)二化螟GR基因在不同發(fā)育時(shí)期和成蟲(chóng)不同組織中的表達(dá)情況,按照說(shuō)明書(shū)步驟配置反應(yīng)體系(20 μL):TB Green Premix Ex Taq II 10 μL,正反向引物(10 μmol·L-1)各0.8 μL,DNA模板2 μL,滅菌水6.4 μL。反應(yīng)條件:95 ℃ 30 s;95 ℃ 5 s,60 ℃ 20 s,40個(gè)循環(huán);60—95 ℃記錄熔解曲線。每個(gè)試驗(yàn)樣品設(shè)計(jì)3個(gè)技術(shù)重復(fù),采用2-??CT方法分析基因相對(duì)表達(dá)量。
采用DPS數(shù)據(jù)處理軟件對(duì)實(shí)時(shí)熒光定量PCR結(jié)果進(jìn)行單因素方差分析(One-way ANOVA),選用Duncan新復(fù)極差法作多重比較,對(duì)二化螟GR基因表達(dá)量作差異顯著性分析。
初步鑒定得到30個(gè)二化螟味覺(jué)受體候選基因,其中有5個(gè)味覺(jué)受體基因包含完整的7—8個(gè)跨膜結(jié)構(gòu)域,經(jīng)預(yù)測(cè)均具有完整的開(kāi)放閱讀框(ORF),符合昆蟲(chóng)味覺(jué)受體特征,命名為—,用于后續(xù)研究。利用RT-PCR技術(shù)克隆得到這5個(gè)GR基因的完整ORF序列(圖1),ORF分別為1 428、1 302、1 317、1 122、1 269 bp,分別編碼475、433、438、373、422個(gè)氨基酸(表2),預(yù)測(cè)蛋白分子量分別為54.05、49.64、48.91、41.29和48.92 kDa,等電點(diǎn)分別為8.75、7.51、9.28、7.09和9.31(表3)。利用TMHMM 2.0預(yù)測(cè)結(jié)構(gòu)域發(fā)現(xiàn),、和具有7個(gè)跨膜結(jié)構(gòu)域,和具有8個(gè)跨膜結(jié)構(gòu)域(表2、圖2—圖6),且蛋白的N端均位于細(xì)胞膜內(nèi),C端位于細(xì)胞膜外。
在NCBI數(shù)據(jù)庫(kù)中,利用blastp對(duì)—的氨基酸序列搜索同源GR序列,發(fā)現(xiàn)5個(gè)GR基因與多種鱗翅目昆蟲(chóng)的GR序列具有高度相似性。與亞洲玉米螟()GR24-like(XP_028179334.1)、黃野螟()(UVB79173.1)的序列相似度分別高達(dá)80.62%、80.67%;與粉紋夜蛾()GR22-like(XP_026735279.1)、疆夜蛾()(QHB15304.1)的序列相似度分別高達(dá)86.95%、86.01%;與棉紅鈴蟲(chóng)()GR43a-like(XP_049878938.1)序列相似度為31.45%;與桃蛀螟()(ARO76475.1)序列相似性為69.53%,與黃野螟(UVB79175.1)序列相似度高達(dá)73.70%;與亞洲玉米螟GR64f-like(XP_028178841.1)序列相似度為66.91%(表2、圖2—圖6)。
圖1 二化螟GR基因的PCR產(chǎn)物電泳分析
表2 二化螟GR跨膜結(jié)構(gòu)域預(yù)測(cè)和BLAST最佳比對(duì)結(jié)果
表3 二化螟GR蛋白理化性質(zhì)分析
吸收率以mol-1cm-1為單位,在水中測(cè)量(280 nm),假設(shè)所有的Cys殘基形成胱氨酸
Absorptivity in units of mol-1cm-1at 280 nm measured in water, assuming all pairs of Cys residues form cystines
OfurGR24-like:亞洲玉米螟O. furnacalis (XP_028179334.1);HvitGR3:黃野螟H. vitessoides (UVB79173.1);McinGR24:慶網(wǎng)蛺蝶Melitaea cinxia (XP_045454518.1);ZcesGR24:菊黃花粉蝶Zerene cesonia (XP_038207281.1);PintGR24:印度谷螟Plodia interpunctella (XP_053615595.1);HkahGR24:海波斯莫科馬屬蛾Hyposmocoma kahamanoa (XP_026332325.1)
二化螟GR基因與黑腹果蠅、家蠶和小菜蛾GR基因氨基酸序列構(gòu)建系統(tǒng)進(jìn)化樹(shù),結(jié)果顯示、分別與小菜蛾、聚為一支,且、、、、也包含在此進(jìn)化分支內(nèi),屬于CO2受體家族;與和、以及一些小菜蛾的味覺(jué)受體基因聚為一支,該分支屬于果糖/肌醇受體家族;與屬于糖受體家族,與其他昆蟲(chóng)的糖受體基因聚為一支(圖7)。
實(shí)時(shí)熒光定量PCR結(jié)果顯示,在二化螟不同發(fā)育時(shí)期,在雄成蟲(chóng)中相對(duì)表達(dá)量最高,其次是2齡幼蟲(chóng)階段,其他發(fā)育階段均處于較低表達(dá)水平;在1齡幼蟲(chóng)和雄成蟲(chóng)中相對(duì)表達(dá)量最高,2齡幼蟲(chóng)階段其次,并且均顯著高于其他發(fā)育階段;在雌、雄成蟲(chóng)中表達(dá)量最高,其次是1齡幼蟲(chóng)階段,其他發(fā)育階段表達(dá)量均較低;在雄成蟲(chóng)中高表達(dá),顯著高于其他發(fā)育階段;在4齡幼蟲(chóng)中相對(duì)表達(dá)量最高,在3齡幼蟲(chóng)中表達(dá)量最低(圖8)。
OfurGR64f-like:亞洲玉米螟O. furnacalis (XP_028178841.1);SlitGR5a:斜紋夜蛾S. litura (XP_022818462.1);SfruGR5a:草地貪夜蛾S. frugiperda (XP_035430548.1);GmelGR 64f-like:大蠟螟Galleria mellonella (XP_052753721.1);CcroGR64f-like:紅點(diǎn)豆粉蝶Colias croceus (XP_045503615.1);HzeaGR5a:棉鈴蟲(chóng)H. zea (XP_047036862.1)
Csup:二化螟C. suppressalis;Dmel:黑腹果蠅D. melanogaster;Bmor:家蠶B. mori;Pxyl:小菜蛾P(guān). xylostella。氨基酸序列和基因登錄號(hào)來(lái)源于黑腹果蠅[16]、家蠶[17]、小菜蛾[26]GR基因的研究結(jié)果The amino acid sequence and gene accession number were derived from the research results of GR genes in D. melanogaster[16], B. mori[17]and P. xylostella[26]
在二化螟雌、雄成蟲(chóng)不同組織中,、、均在觸角或頭部高表達(dá),其中在雌、雄成蟲(chóng)頭部表達(dá)量顯著高于觸角部分,而、在雌、雄成蟲(chóng)觸角中的表達(dá)量顯著高于其他組織;在雌、雄成蟲(chóng)的觸角中表達(dá)量最高,在前足和中后足的表達(dá)量也顯著高于其他組織;在頭部和前足中表達(dá)量較高且在雌成蟲(chóng)中表達(dá)量顯著高于雄成蟲(chóng),其他組織中的表達(dá)量均較低(圖9)。
1st:1齡幼蟲(chóng)1st instar larvae;2nd:2齡幼蟲(chóng)2nd instar larvae;3rd:3齡幼蟲(chóng)3rd instar larvae;4th:4齡幼蟲(chóng)4th instar larvae;5th:5齡幼蟲(chóng)5th instar larvae;6th:6齡幼蟲(chóng)6th instar larvae;M:雄成蟲(chóng)Male adult;F:雌成蟲(chóng)Female adult
不同樣品進(jìn)行3次生物學(xué)重復(fù),圖中數(shù)據(jù)為平均值±標(biāo)準(zhǔn)誤,柱上不同字母表示表達(dá)量差異顯著(<0.05,one-way ANOVA)。圖9同Different samples were subjected to three biological replicates, relative expression levels are indicated as mean±SEM, the different letters above each bar indicate significant differences (<0.05, one-way ANOVA). The same as below
圖8 GR基因在二化螟不同發(fā)育時(shí)期的mRNA相對(duì)表達(dá)量
Fig. 8 Relative expression levels of GR mRNA at different developmental stages in
目前味覺(jué)受體得到鑒定的昆蟲(chóng)中,在黑腹果蠅[13,16]、赤擬谷盜()[27]、家蠶[17]、斜紋夜蛾[21]中分別鑒定到68、341、69、30個(gè)味覺(jué)受體;在小菜蛾[26]轉(zhuǎn)錄組數(shù)據(jù)中鑒定得到67個(gè)味覺(jué)受體基因;在黑脈金斑蝶[18]、紅帶袖蝶[19]中分別鑒定到47、73個(gè)味覺(jué)受體基因;在黏蟲(chóng)[22]轉(zhuǎn)錄組中鑒定到16個(gè)味覺(jué)受體。根據(jù)前人的報(bào)道,一般認(rèn)為昆蟲(chóng)的GR基因越多,其選擇的寄主范圍會(huì)越廣。在西方蜜蜂()中只鑒定到10個(gè)GR基因,可能是因?yàn)殚L(zhǎng)期取食花粉和花蜜導(dǎo)致蜜蜂味覺(jué)受體基因發(fā)生進(jìn)化,花蜜中的主要成分為水和糖分,不包含危害昆蟲(chóng)的有毒物質(zhì),因此西方蜜蜂并不需要很多味覺(jué)受體來(lái)參與寄主的識(shí)別過(guò)程[28]。本研究鑒定并克隆得到5個(gè)二化螟味覺(jué)受體基因,相比于其他鱗翅目昆蟲(chóng)數(shù)量偏少,推測(cè)可能還存在其他的味覺(jué)受體基因。此外,相比于昆蟲(chóng)的其他受體基因,味覺(jué)受體基因的表達(dá)水平整體偏低,難以檢測(cè),這可能是沒(méi)有鑒定得到更多味覺(jué)受體基因的原因。本研究利用RT-PCR成功克隆得到二化螟5個(gè)GR基因的完整ORF序列,這些味覺(jué)受體基因均包含7—8個(gè)跨膜結(jié)構(gòu)域。
An:觸角Antenna;He:頭Head;FL:前足Foreleg;Wi:翅Wing;Ab:腹部Abdomen;ML:中后足Middle leg and hindleg
系統(tǒng)發(fā)育分析發(fā)現(xiàn),、分別與、聚為一支。已有研究表明在感受CO2的神經(jīng)元上與共表達(dá),并且只有在這兩個(gè)基因共同表達(dá)的情況下,才能夠識(shí)別CO2并作出反應(yīng)[29];、、也被認(rèn)定為家蠶CO2受體基因[17],因此推測(cè)二化螟、也行使識(shí)別CO2的功能。與黑腹果蠅和家蠶、受體基因聚為一支。GR43a家族是一類(lèi)保守程度相對(duì)較高的果糖受體,在黑腹果蠅中發(fā)揮識(shí)別果糖的功能[30],在家蠶[30-31]、小菜蛾[32]、斜紋夜蛾[33]和棉鈴蟲(chóng)[34]等鱗翅目昆蟲(chóng)中有所報(bào)道;黑腹果蠅大腦中的GR43a-like受體作為血淋巴果糖的營(yíng)養(yǎng)感受器,可以促進(jìn)饑餓果蠅取食、抑制飽腹果蠅取食[35];家蠶果糖受體表達(dá)細(xì)胞與假定的神經(jīng)肽Fl表達(dá)細(xì)胞在腦中共定位,參與促進(jìn)取食行為[36];對(duì)肌醇和表肌醇有特異性反應(yīng)[37],因此推測(cè)二化螟也有類(lèi)似功能。、與、聚為一支。研究表明能識(shí)別myo-肌醇及epi-肌醇,且配體濃度越高,其敏感性越強(qiáng)[38];除了味覺(jué)受體的功能外還具有化學(xué)傳感器的作用,例如用于調(diào)節(jié)幼蟲(chóng)的腸道運(yùn)動(dòng)、生理?xiàng)l件和取食行為[31],推測(cè)和也具有相應(yīng)的功能。對(duì)于二化螟這些GR基因的具體功能有待于進(jìn)一步研究。
昆蟲(chóng)的味覺(jué)受體在選擇和趨避寄主植物過(guò)程中發(fā)揮著重要作用,研究昆蟲(chóng)味覺(jué)受體在不同發(fā)育時(shí)期和不同組織中的表達(dá)情況有助于推測(cè)味覺(jué)受體發(fā)揮的功能。前人研究表明,鱗翅目昆蟲(chóng)的GR基因不僅在幼蟲(chóng)各個(gè)時(shí)期有表達(dá),而且在成蟲(chóng)不同組織中也均有分布,包括口器、觸角、翅邊緣和足等,參與誘導(dǎo)昆蟲(chóng)的行為[39-42]。
對(duì)成蟲(chóng)GR基因的組織表達(dá)譜進(jìn)行分析發(fā)現(xiàn),、、在觸角部位高表達(dá),這可能與成蟲(chóng)感知寄主植物表面物質(zhì)有關(guān),例如棉鈴蟲(chóng)成蟲(chóng)觸角末端具有對(duì)D-果糖敏感的味覺(jué)受體[34];蔗糖和果糖能夠刺激棉鈴蟲(chóng)觸角從而引起喙管伸長(zhǎng)反應(yīng)和吸食行為[40]。、在頭部表達(dá)量顯著高于其他部位,這是因?yàn)槔ハx(chóng)的喙也分布了一定數(shù)量的栓錐感器用于感知外界物質(zhì),有研究表明棉鈴蟲(chóng)的喙上大約有90個(gè)栓錐形感器發(fā)揮味覺(jué)感受功能,可感知蔗糖、果糖和葡萄糖且敏感性強(qiáng)[40];中華蜜蜂()口器中的味覺(jué)生物傳感器能夠穩(wěn)定且可靠地在最佳濃度區(qū)間內(nèi)辨別不同品質(zhì)的蜂蜜[43]。在足上也有較高表達(dá)量,可能與產(chǎn)卵和感知化合物有關(guān),有研究者發(fā)現(xiàn)在鳳尾蝶()產(chǎn)卵過(guò)程中,雌蝶前肢中的味覺(jué)受體可以識(shí)別辛弗林從而有選擇性地將卵產(chǎn)于單一科或少數(shù)科植物中[8];黑腹果蠅的足和翅邊緣也可以識(shí)別碳水化合物、氨基酸和苦味物質(zhì)[44]。
GR基因在幼蟲(chóng)階段也有表達(dá),可能與取食、發(fā)育等有關(guān)。、、在幼蟲(chóng)1齡期表達(dá)量較高,這可能是因?yàn)槔ハx(chóng)幼蟲(chóng)中存在識(shí)別寄主植物特異次生代謝物質(zhì)的味覺(jué)敏感神經(jīng)元,例如柑橘大實(shí)蠅()的大多數(shù)GR基因在1齡和2齡幼蟲(chóng)中高表達(dá),尤其在2齡幼蟲(chóng)口器中高表達(dá),通過(guò)感知橙皮苷和柚皮苷對(duì)柑橘大實(shí)蠅幼蟲(chóng)的生長(zhǎng)具有促進(jìn)作用[45];大菜粉蝶()和菜粉蝶()幼蟲(chóng)口器上的中栓錐感器和側(cè)栓錐感器中均具有1個(gè)芥子油苷特異受體神經(jīng)元,煙草天蛾幼蟲(chóng)具有對(duì)茄科寄主植物次生物質(zhì)紫花茄皂苷敏感的味覺(jué)神經(jīng)元,這些味覺(jué)受體神經(jīng)元的敏感性決定昆蟲(chóng)是否接受寄主或取食[46]。在4、5齡幼蟲(chóng)中也有較高表達(dá),可能與幼蟲(chóng)取食選擇有關(guān),研究表明草地貪夜蛾口器中的中栓錐感器和側(cè)栓錐感器內(nèi)的味覺(jué)受體神經(jīng)元對(duì)取食激食素和抑制劑敏感,為其取食選擇行為奠定了味覺(jué)基礎(chǔ)[47];5齡棉鈴蟲(chóng)幼蟲(chóng)側(cè)栓錐感受器中具有對(duì)印楝素和棉酚敏感的味覺(jué)神經(jīng)元,將這兩種物質(zhì)視為取食抑制素[48];在棉鈴蟲(chóng)幼蟲(chóng)前腸中高表達(dá),能夠特異性識(shí)別D-半乳糖、D-果糖和D-麥芽糖[49],且能在飽腹條件下抑制取食從而調(diào)控取食行為[42]。
二化螟GR基因的具體功能需要后期利用電生理技術(shù)來(lái)確定這些基因所識(shí)別的配體,并結(jié)合RNAi技術(shù)和CRISPR基因編輯技術(shù)加以驗(yàn)證。
利用生物信息學(xué)方法鑒定得到5個(gè)二化螟味覺(jué)受體基因。、、和在成蟲(chóng)期高表達(dá);和在成蟲(chóng)頭部表達(dá)量較高;、和在成蟲(chóng)觸角表達(dá)量高。所克隆的5個(gè)GR基因可能與二化螟識(shí)別和適應(yīng)寄主植物有關(guān)。
[1] MAO K K, LI W H, LIAO X, LIU C Y, QIN Y, REN Z J, QIN X Y, WAN H, SHENG F, LI J H. Dynamics of insecticide resistance in different geographical populations of(Lepidoptera: Crambidae) in China 2016-2018. Journal of Economic Entomology, 2019, 112(4): 1866-1874.
[2] 胡君, 陳文明, 張真真, 鄭雪松, 靳建超, 蘇建亞, 高聰芬, 沈晉良. 長(zhǎng)江流域稻區(qū)二化螟抗藥性監(jiān)測(cè). 中國(guó)水稻科學(xué), 2010, 24(5): 509-515.
HU J, CHEN W M, ZHANG Z Z, ZHENG X S, JIN J C, SU J Y, GAO C F, SHEN J L. Insecticide resistance monitoring ofin the drainage area of the Yangtze River, China. Chinese Journal of Rice Science, 2010, 24(5): 509-515. (in Chinese)
[3] LU Y, ZHENG X, LU Z. Application of vetiver grass: Poaceae (L.) as a trap plant for rice stem borer: Crambidae (Walker) in the paddy fields. Journal of Integrative Agriculture, 2019, 18(4): 797-804.
[4] ZHAO X, XU X, WANG X G, YIN Y, LI M Y, WU Y Q, LIU Y H, CHENG Q H, GONG C W, SHEN L T. Mechanisms for multiple resistances in field populations of rice stem borer,(Lepidoptera: Crambidae) from Sichuan Province, China. Pesticide Biochemistry and Physiology, 2021, 171: 104720.
[5] 姚誠(chéng)誠(chéng), 杜立嘯, 李云河. 蟲(chóng)害誘導(dǎo)植物信息化合物介導(dǎo)的植物間交流及機(jī)制. 植物保護(hù), 2021, 47(6): 1-10.
YAO C C, DU L X, LI Y H. Plant-to-plant communications medicated by herbivore-induced plant volatiles and the mechanisms. Plant Protection, 2021, 47(6): 1-10. (in Chinese)
[6] 王廣利, 付小剛, 韓曉霞, 張宇瑤, 魏洪義. 二化螟雌蛾對(duì)香根草揮發(fā)物的EAG和行為反應(yīng). 應(yīng)用昆蟲(chóng)學(xué)報(bào), 2016, 53(1): 148-156.
WANG G L, FU X G, HAN X X, ZHANG Y Y, WEI H Y. EAG and behavioral responses offemales to plant volatiles from. Chinese Journal of Applied Entomology, 2016, 53(1): 148-156. (in Chinese)
[7] HU X Y, SU S L, LIU Q S, JIAO Y Y, PENG Y F, LI Y H, TURLINGS T C J. Caterpillar-induced rice volatiles provide enemy-free space for the offspring of the brown planthopper. eLife, 2020, 9: e55421.
[8] OZAKI K, RYUDA M, YAMADA A, UTOGUCHI A, ISHIMOTO H, CALAS D, MARION-POLL F, TANIMURA T, YOSHIKAWA H. A gustatory receptor involved in host plant recognition for oviposition of a swallowtail butterfly. Nature Communications, 2011, 2: 542.
[9] SCHOONHOVEN L M, VAN LOON J J A. An inventory of taste in caterpillars: Each species its own key. Acta Zoologica Academiae Scientiarum Hungaricae, 2002, 48(Suppl. 1): 215-263.
[10] ZHANG Z J, ZHANG S S, NIU B L, JI D F, LIU X J, LI M W, BAI H, PALLI S R, WANG C Z, TAN A J. A determining factor for insect feeding preference in the silkworm,. Plos Biology, 2019, 17(2): e3000162.
[11] YANG J, GUO H, JIANG N J, TANG R, LI G C, HUANG L Q, VAN LOON J J A, WANG C Z. Identification of a gustatory receptor tuned to sinigrin in the cabbage butterfly. Plos Genetics, 2021, 17(7): e1009527.
[12] SINGH R N. Neurobiology of the gustatory systems ofand some terrestrial insects. Microscopy Research and Technique, 1997, 39(6): 547-563.
[13] CLYNE P J, WARR C G, CARLSON J R. Candidate taste receptors in. Science, 2000, 287(5459): 1830-1834.
[14] AGNIHOTRI A R, ROY A A, JOSHI R S. Gustatory receptors in Lepidoptera: chemosensation and beyond. Insect Molecular Biology, 2016, 25(5): 519-529.
[15] SANCHEZ-GRACIA A, VIEIRA F G, ROZAS J. Molecular evolution of the major chemosensory gene families in insects. Heredity, 2009, 103(3): 208-216.
[16] ROBERTSON H M, WARR C G, CARLSON J R. Molecular evolution of the insect chemoreceptor gene superfamily in. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(Suppl. 2): 14537-14542.
[17] GUO H, CHENG T, CHEN Z, JIANG L, GUO Y, LIU J, LI S, TANIAI K, ASAOKA K, KADONO-OKUDA K,. Expression map of a complete set of gustatory receptor genes in chemosensory organs of. Insect Biochemistry and Molecular Biology, 2017, 82: 74-82.
[18] ZHAN S, MERLIN C, BOORE J L, REPPERT S M. The monarch butterfly genome yields insights into long-distance migration. Cell, 2011, 147(5): 1171-1185.
[19] BRISCOE A D, MACIAS-MU?OZ A, KOZAK K M, WALTERS J R, YUAN F, JAMIE G A, MARTIN S H, DASMAHAPATRA K K, FERGUSON L C, MALLET J, JACQUIN-JOLY E, JIGGINS C D. Female behaviour drives expression and evolution of gustatory receptors in butterflies. PLOS Genetics, 2013, 9(7): e1003620.
[20] YOU M, YUE Z, HE W, YANG X, YANG G, XIE M, ZHAN D, BAXTER S W, VASSEUR L, GURR G M,. A heterozygous moth genome provides insights into herbivory and detoxification. Nature Genetics, 2013, 45(2): 220-225.
[21] LI L L, XU J W, YAO W C, YANG H H, DEWER Y, ZHANG F, ZHU X Y, ZHANG Y N. Chemosensory genes in the head oflarvae. Bulletin of Entomological Research, 2021, 111(4): 454-463.
[22] DU L X, ZHAO X C, LIANG X Z, GAO X W, LIU Y, WANG G R. Identification of candidate chemosensory genes inby transcriptomic analysis. Bmc Genomics, 2018, 19: 518.
[23] ZHANG Y N, QIAN J L, XU J W, ZHU X Y, LI M Y, XU X X, LIU C X, XUE T, SUN L. Identification of chemosensory genes based on the transcriptomic analysis of six different chemosensory organs in. Frontiers in Physiology, 2018, 9: 432.
[24] 羅智心, 姚靜, 張茹, 羅光華, 方繼朝. 二化螟36 d標(biāo)準(zhǔn)化飼養(yǎng)技術(shù)與管理體系. 江蘇農(nóng)業(yè)科學(xué), 2021, 49(24): 100-109.
LUO Z X, YAO J, ZHANG R, LUO G H, FANG J C. A 36-days standardized mass rearing technique and management system for rice stem borer,(Lepidoptera: Crambidae). Jiangsu Agricultural Sciences, 2021, 49(24): 100-109. (in Chinese)
[25] HE F J, LU M X, DU Y Z. Selection and evaluation of reference genes for qRT-PCR analysis of different developmental stages in. Journal of Asia-Pacific Entomology, 2021, 24(4): 1228-1234.
[26] YANG K, GONG X L, LI G C, HUANG L Q, NING C, WANG C Z. A gustatory receptor tuned to the steroid plant hormone brassinolide in(Lepidoptera: Plutellidae). eLife, 2020, 9: e64114.
[27] ABDEL-LATIEF M. A family of chemoreceptors in(Tenebrionidae: Coleoptera). Plos One, 2007, 2(12): e1319.
[28] ROBERTSON H M, WANNER K W. The chemoreceptor superfamily in the honey bee,: Expansion of the odorant, but not gustatory, receptor family. Genome Research, 2006, 16(11): 1395-1403.
[29] JONES W D, CAYIRLIOGLU P, KADOW I G, VOSSHALL L B. Two chemosensory receptors together mediate carbon dioxide detection in. Nature, 2007, 445(7123): 86-90.
[30] SATO K, TANAKA K, TOUHARA K. Sugar-regulated cation channel formed by an insect gustatory receptor. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(28): 11680-11685.
[31] MANG D, SHU M, ENDO H, YOSHIZAWA Y, NAGATA S, KIKUTA S, SATO R. Expression of a sugar clade gustatory receptor,, in the oral sensory organs, midgut, and central nervous system of larvae of the silkworm. Insect Biochemistry and Molecular Biology, 2016, 70: 85-98.
[32] LIU X L, SUN S J, HOU W, ZHANG J, YAN Q, DONG S L. Functional characterization of two spliced variants of fructose gustatory receptor in the diamondback moth,. Pesticide Biochemistry and Physiology, 2020, 164: 7-13.
[33] LIU X L, YAN Q, YANG Y L, HOU W, MIAO C L, PENG Y C, DONG S L. A gustatory receptor Gr8 tunes specifically to D-fructose in the common cutworm. Insects, 2019, 10(9): 272.
[34] JIANG X J, NING C, GUO H, JIA Y Y, HUANG L Q, QU M J, WANG C Z. A gustatory receptor tuned to D-fructose in antennal sensilla chaetica of. Insect Biochemistry and Molecular Biology, 2015, 60: 39-46.
[35] MIYAMOTO T, SLONE J, SONG X, AMREIN H. A fructose receptor functions as a nutrient sensor in thebrain. Cell, 2012, 151(5): 1113-1125.
[36] MANG D, SHU M, TANAKA S, NAGATA S, TAKADA T, ENDO H, KIKUTA S, TABUNOKI H, IWABUCHI K, SATO R. Expression of the fructose receptorand its involvement in the promotion of feeding, suggested by its co-expression with neuropeptide F1 in. Insect Biochemistry and Molecular Biology, 2016, 75: 58-69.
[37] KIKUTA S, ENDO H, TOMITA N, TAKADA T, MORITA C, ASAOKA K, SATO R. Characterization of a ligand-gated cation channel based on an inositol receptor in the silkworm,. Insect Biochemistry and Molecular Biology, 2016, 74: 12-20.
[38] ZHANG H J, ANDERSON A R, TROWELL S C, LUO A R, XIANG Z H, XIA Q Y. Topological and functional characterization of an insect gustatory receptor. PLoS ONE, 2011, 6(8): e24111.
[39] POPESCU A, COUTON L, ALMAAS T J, ROSPARS J P, WRIGHT G A, MARION-POLL F, ANTON S. Function and central projections of gustatory receptor neurons on the antenna of the noctuid moth. Journal of Comparative Physiology A, 2013, 199(5): 403-416.
[40] 賈巖巖. 雌性棉鈴蟲(chóng)觸角刺形感器和喙管栓錐感器的味覺(jué)感受特性[D]. 合肥: 安徽大學(xué), 2016.
JIA Y Y. Gustatory characteristics of sensilla chaetica in antennae and sensilla styloconica in proboscis of female(Hübner) (Lepidoptera: Noctuidae)[D]. Hefei: Anhui University, 2016. (in Chinese)
[41] Montell C. A taste of thegustatory receptors. Current Opinion in Neurobiology, 2009, 19(4): 345-353.
[42] AI D, DONG C, YANG B, YU C, WANG G. A fructose receptor gene influences development and feed intake in. Insect Science, 2022, 29(4): 993-1005.
[43] 張軍飛, 楊雪梅, 孫惠, 張楠, 安傳遠(yuǎn), 吳帆, 李紅亮. 基于循環(huán)伏安法的蜜蜂組織傳感器對(duì)蜂蜜品質(zhì)的鑒別. 中國(guó)食品學(xué)報(bào), 2022, 22(6): 307-314.
ZHANG J F, YANG X M, SUN H, ZHANG N, AN C Y, WU F, LI H L. Identification of honey quality with bee tissue sensor based on cyclic voltammetry. Journal of Chinese Institute of Food Science and Technology, 2022, 22(6): 307-314. (in Chinese)
[44] AMREIN H, THORNE N. Gustatory perception and behavior in. Current Biology, 2005, 15(17): R673-R684.
[45] ZHANG G, CAO S, GUO T, WANG H, QI X, REN X, NIU C. Identification and expression profiles of gustatory receptor genes inlarvae (Diptera: Tephritidae): Role ofin larval growth. Insect Science, 2022, 29(5): 1240-1250.
[46] Del Campo M L, Miles C I, Schroeder F C, Mueller C, Booker R, Renwick J A. Host recognition by the tobacco hornworm is mediated by a host plant compound. Nature, 2001, 411(6834): 186-189.
[47] 侯文華, 孫龍龍, 馬英, 孫惠婉, 張佳佳, 白潤(rùn)娥, 趙新成, 湯清波. 草地貪夜蛾幼蟲(chóng)對(duì)四種刺激物質(zhì)的味覺(jué)感受和取食選擇. 昆蟲(chóng)學(xué)報(bào), 2020, 63(5): 545-557.
HOU W H, SUN L L, MA Y, SUN H W, ZHANG J J, BAI R E, ZHAO X C, TANG Q B. Gustatory perception and feeding preference of(Lepidoptera: Noctuidae) larvae to four stimuli. Acta Entomologica Sinica, 2020, 63(5): 545-557. (in Chinese)
[48] 周東升, 龍九妹. 棉鈴蟲(chóng)5齡幼蟲(chóng)對(duì)棉酚和印楝素的味覺(jué)適應(yīng)性行為研究. 南方農(nóng)業(yè)學(xué)報(bào), 2013, 44(4): 590-593.
ZHOU D S, LONG J M. Taste adaptability to azadirachtin and gossypol in fifth instar larvae of. Journal of Southern Agriculture, 2013, 44(4): 590-593. (in Chinese)
[49] XU W, ZHANG H J, ANDERSON A. A sugar gustatory receptor identified from the foregut of cotton bollworm. Journal of Chemical Ecology, 2012, 38(12): 1513-1520.
Identification, cloning and expression profiles of gustatory receptor genes in
HUANG YuXuan1,2, SHEN Chen1,2, JU JiaFei2, YANG Lei1,2, LUO GuangHua1,2, FANG JiChao1,2
1College of Plant Protection, Nanjing Agricultural University, Nanjing 210095;2Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Nanjing 210014
【Background】The rice striped stem borer,, is one of the important rice pests in China. The gustatory receptors (GRs) play important roles in insect feeding, oviposition, and so on.【Objective】Based on transcriptomic and genomic data, the gustatory receptor gene sequences ofwere identified and cloned in this study. Then, their expression characteristics at different developmental stages and in different tissues of adults were clarified. These results will lay a foundation for further study on the function of gustatory receptor genes in.【Method】Combined with the transcriptome data ofand the GR sequences of other insects, the GR genes inwere identified by multiple sequence alignment. The complete open reading frame (ORF) sequences of the GR genes inwere cloned by RT-PCR, and the molecular biological characteristics and domains of the amino acid sequences encoded by the GR genes inwere analyzed by bioinformatics analysis tools. The phylogenetic tree of GR gene protein sequences ofand other insect GR genes was constructed based on the maximum likelihood method. The expression patterns of GR genes at different developmental stages (1-6 instar larvae, female and male adults) and in different adult tissues (antennae, head, wing, abdomen and leg) ofwere determined by real-time quantitative PCR (RT-qPCR).【Result】Five gustatory receptor genes were identified and named as-. The complete ORFs of these GR genes were between 1 122 and 1 428 bp in length, encoding 373-475 amino acids. Among them,,,had seven transmembrane domains,,had eight transmembrane domains. Phylogenetic analysis showed thatandwere closely related toin,and, belonging to the CO2receptor family.was closely related toin,and, belonging to the fructose/inositol receptor family.andwere closely related toand-in, belonging to the sugar receptor family. The expression profile analysis showed that the five GR genes were all expressed at different developmental stages in. Among them,andwere highly expressed in male adults,had the highest expression level in the 1st instar larvae and male adults,was highly expressed in adults,andhad the highest expression level in the 4th instar larvae. Tissue expression profile analysis showed that these five GR genes were expressed in all tissues of male and female adults.andwere highly expressed in the head of adults, and-were highly expressed in the antennae of adults.【Conclusion】The five GR genes ofidentified in this study have the typical characteristics of insect gustatory receptors and are highly expressed in the antennae or heads of adults. It is speculated that these five genes may be related to the recognitionand adaptation ofto host plants.
; gustatory receptor (GR); gene identification; sequence analysis; expression profile
10.3864/j.issn.0578-1752.2023.13.006
2023-03-28;
2023-05-04
國(guó)家水稻產(chǎn)業(yè)技術(shù)體系(CARS-01)、國(guó)家自然科學(xué)基金(31672024)、江蘇省農(nóng)業(yè)科技自主創(chuàng)新資金(CX(20)1004)
黃玉萱,E-mail:xuan19980712@outlook.com。通信作者羅光華,E-mail:luogh_cn@163.com。通信作者方繼朝,E-mail:fangjc126@126.com
(責(zé)任編輯 岳梅)
中國(guó)農(nóng)業(yè)科學(xué)2023年13期