陳杰,陳偉
小麥類黃酮的遺傳基礎(chǔ)與功能性小麥育種應(yīng)用
陳杰,陳偉
華中農(nóng)業(yè)大學(xué)植物科學(xué)技術(shù)學(xué)院/作物遺傳改良全國(guó)重點(diǎn)實(shí)驗(yàn)室,武漢 430070
隨著人們生活水平的提高,對(duì)食物的要求逐漸由“吃飽”向“吃好”以及“吃入營(yíng)養(yǎng)”“吃出健康”等方向轉(zhuǎn)變。小麥?zhǔn)俏覈?guó)以及世界最重要的糧食作物之一,育種家們認(rèn)為小麥育種也要從“產(chǎn)量育種”向“品質(zhì)育種”轉(zhuǎn)變,即產(chǎn)量基本不變的前提下使得小麥籽粒具有特定有益人體健康的“功能性”成分,這些成分一般是小分子代謝物。與之相對(duì)應(yīng),還進(jìn)一步提出了“功能性小麥品種”的概念。黃酮類代謝物是目前受到廣泛關(guān)注的一類物質(zhì),由于它能夠影響植株表型以及人類健康,該類物質(zhì)含量也是“功能性小麥”育種的范疇之一。為了更好地促進(jìn)“功能性小麥”育種,需要使用多種手段解析影響特定“功能性”代謝物含量的分子機(jī)理和遺傳基礎(chǔ)。代謝組學(xué)手段與遺傳學(xué)設(shè)計(jì)相結(jié)合能夠高效鑒定影響代謝物含量的基因,然而由于小麥參考基因組信息公布較晚,小麥中這類研究進(jìn)展相對(duì)滯后,導(dǎo)致對(duì)于代謝物的遺傳基礎(chǔ)揭示不足,從而限制其在“功能性小麥”育種中的應(yīng)用。本文以黃酮類物質(zhì)為例,概述了解析這類代謝物遺傳基礎(chǔ)的研究進(jìn)展,相關(guān)研究結(jié)果將為以提高黃酮類物質(zhì)含量為主要目標(biāo)的“功能性小麥”育種提供分子資源和理論基礎(chǔ),以及為研究其他“功能性”代謝物提供借鑒。與此同時(shí),還初步構(gòu)想了在相關(guān)基礎(chǔ)研究積累不足的前提下直接使用代謝組學(xué)手段輔助育種的方式,有望在獲得育種中間材料的同時(shí)“順便”解析關(guān)鍵遺傳因子或者候選基因,從而有效推動(dòng)“功能性小麥”育種。
黃酮;功能性小麥;遺傳基礎(chǔ);育種
“功能性小麥品種”是最近提出的新名詞,廣義上來(lái)說(shuō),主要包含“加工功能性品種”和“營(yíng)養(yǎng)功能性品種”兩類[1]。其中“加工功能性品種”主要指能改善食品結(jié)構(gòu)及品質(zhì);“營(yíng)養(yǎng)功能性品種”的基本概念為“含有對(duì)人體健康有益活性成分,可調(diào)節(jié)人體有益代謝,能給人體健康帶來(lái)某種益處或滿足特定人群的特殊需求,同時(shí),可以作為日常食物的口感正常、無(wú)毒副作用的小麥品種類型”[1]。以上兩類功能性小麥品種中,營(yíng)養(yǎng)功能性品種主要由于小麥籽粒中有益健康的活性成分能夠調(diào)節(jié)人體代謝或者滿足特定人群的需求,從而符合當(dāng)下人群對(duì)于“吃得飽”向“吃得好”以及“吃得健康”的觀念轉(zhuǎn)變。與此同時(shí),積極開展功能性小麥育種也符合“健康中國(guó)2030”規(guī)劃等國(guó)家戰(zhàn)略。
營(yíng)養(yǎng)功能性小麥品種的主要育種目標(biāo)包含高黃酮[2]、高抗性淀粉[3–5]、高微量元素[6–8]、低植酸[9–11]、低醇溶蛋白[12]等方面。其中,黃酮類物質(zhì)因其化學(xué)結(jié)構(gòu)簡(jiǎn)單、易于檢測(cè)鑒定、代謝通路清晰等原因,相關(guān)研究報(bào)道較多,針對(duì)這類物質(zhì)代謝通路解析也是作物代謝組學(xué)中主要研究方向之一。本文將結(jié)合黃酮類物質(zhì)的相關(guān)研究進(jìn)展以及代謝組學(xué)手段在小麥研究中的應(yīng)用,初步探討通過解析小麥黃酮代謝通路助力功能性小麥育種的理論基礎(chǔ)、分子資源和研究前景。
黃酮類代謝物(flavonoids)作為一類物質(zhì)的總稱(為避免混淆下文使用“類黃酮”指代),是植物產(chǎn)生的一種多酚類化合物,基本骨架為C6-C3-C6,其中2個(gè)苯環(huán)(A環(huán)和B環(huán))由一個(gè)三碳雜環(huán)吡喃環(huán)(C環(huán))互連(圖1-A)[13]。根據(jù)C環(huán)3個(gè)碳原子的成環(huán)情況和氧化程度,以及B環(huán)的連接位置等,可將類黃酮大致分為黃酮(flavone)、黃酮醇(flavonol)、黃烷酮(flavanone)、黃烷酮醇(flavanonol)黃烷醇(flavanol)、花色素(anthocyanin)和異黃酮(isoflavone)等七大類(圖1-A,其中異黃酮僅存在于豆類植物等少數(shù)植物種類中[14])。在每一種類黃酮中,其B環(huán)上羥基的數(shù)量差異也進(jìn)一步增加了該類代謝物骨架的多樣性:例如在黃酮醇骨架下,當(dāng)其B環(huán)上有1—3個(gè)羥基時(shí),分別為山柰酚(kaempferol)、槲皮素(quercetin)和楊梅素(myricetin),而在黃烷酮醇中,3種對(duì)應(yīng)的物質(zhì)則分別為香橙素(aromadendrin)、花旗松素(taxifolin)和白蘞素(ampelopsin,圖1-B)。
類黃酮的生物合成被認(rèn)為起始于苯丙烷途徑[15],首先通過來(lái)自于苯丙氨酸的對(duì)香豆酰輔酶A(-Coumaroyl-CoA)與丙二酰輔酶A(malonyl-CoA)經(jīng)由查兒酮合酶(chalcone synthase,CHS)的催化生成一種C環(huán)開環(huán)狀態(tài)的類黃酮前體物質(zhì):柚皮素查兒酮(naringenin chalcone)[16],該物質(zhì)可以被查兒酮異構(gòu)酶(chalcone isomerase,CHI)轉(zhuǎn)化形成柚皮素(naringenin)[17]。自此之后,以柚皮素為代表的黃烷酮可以經(jīng)由黃酮合酶(flavone synthase,F(xiàn)NS)生成黃酮骨架[18]并進(jìn)一步經(jīng)由類黃酮3-羥化酶(flavonoid 3-hydroxylase,F(xiàn)3H)生成對(duì)應(yīng)的黃酮醇(圖1-B)[19]。與此同時(shí),黃烷酮可以由F3H催化生成黃烷酮醇[20],進(jìn)一步通過二氫黃酮醇還原酶(dihydroflavonol reductase,DFR)和花青素合酶(anthocyanidin synthase,ANS)生成花色素[21],最后通過花青素還原酶(anthocyanidin reductase,ANR)獲得黃烷醇(圖1-B)[22]。除了以上代謝路徑以外,黃酮醇還可以從黃烷酮醇經(jīng)由黃酮醇合酶(flavonol synthase,F(xiàn)LS)催化生成[23],黃烷醇則可以自黃烷酮醇經(jīng)過DFR和無(wú)色花青素還原酶(leucoanthocyanidin reductase,LAR)催化生成[24]。在這些連續(xù)線性催化關(guān)系的同時(shí),每一種骨架內(nèi)B環(huán)上羥基數(shù)量的增加一般是由2種羥化酶(flavonoid 3′-hydroxylase,F(xiàn)3′H;flavonoid 3′, 5′-hydroxylase,F(xiàn)3′ 5′H)催化實(shí)現(xiàn)(圖1-B)[25]。由此可見,不同類黃酮骨架之間呈現(xiàn)清晰且復(fù)雜的網(wǎng)狀生物合成路徑。
代謝物的多樣性很大程度上是因?yàn)樾揎椀亩鄻有詫?dǎo)致[26]。就類黃酮而言,最常見的修飾發(fā)生在羥基上。通過甲基轉(zhuǎn)移酶或者糖基轉(zhuǎn)移酶的催化,不同位置的羥基可能發(fā)生多種甲基化以及糖基化修飾組合,糖基所具有的羥基基團(tuán)上還可以繼續(xù)發(fā)生糖基化或者?;刃揎棧瑥亩M(jìn)一步豐富了類黃酮的物質(zhì)多樣性以及生物活性范疇。如在玉米[27]、水稻[28]、大麥[29]和小麥[30]等作物中,病菌侵染與甲基化修飾類黃酮的含量變化相關(guān);其中,7號(hào)位甲基化修飾的黃酮(芫花素:7--甲基芹菜素)[31]和黃烷酮(櫻花素:7--甲基柚皮素)[32]均表現(xiàn)出良好的抗植物真菌病害的活性。糖基化修飾的黃酮能夠幫助植株抵抗紫外線輻射逆境,其中5號(hào)位糖基化修飾的黃酮相較于7號(hào)位修飾的黃酮具有更好的紫外線抗性表型[13]。以山柰酚為代表的黃酮醇,其3號(hào)位發(fā)生糖基化修飾后,對(duì)于粉虱類昆蟲具有毒性,而粉虱在取食植物汁液后進(jìn)一步在糖基上進(jìn)行丙二?;揎棧瑥亩撐镔|(zhì)對(duì)于自身的毒性[33]。
A:類黃酮的主要亞類;B:類黃酮B環(huán)不同羥基數(shù)量對(duì)應(yīng)物質(zhì)的信息
除了能夠幫助植物適應(yīng)復(fù)雜環(huán)境中的生物脅迫和非生物脅迫外,類黃酮的不同修飾產(chǎn)物還有利于人體健康。Montbretin A(MbA)是一種強(qiáng)效的特異性人胰腺α-淀粉酶抑制劑,從而對(duì)于治療2型糖尿病具有良好的應(yīng)用前景[34]。該物質(zhì)在楊梅素黃酮醇骨架的4′和3號(hào)位羥基上具有包括葡萄糖、木糖和鼠李糖在內(nèi)的多個(gè)糖基化修飾以及咖啡酸等?;揎梉35],催化這些修飾的候選基因已被成功克隆[35-36],從而使得MbA的異源生物合成成為可能。麥黃酮是五羥黃酮的3′和5′號(hào)位羥基分別有一個(gè)甲基化修飾的黃酮物質(zhì),該物質(zhì)最早分離自二粒小麥葉片[37],故而得名“麥黃酮”。麥黃酮具有潛在的食補(bǔ)和藥用價(jià)值[38],包括降脂[39]、消炎[40]、抗病毒[41]、抑制腫瘤生長(zhǎng)[42]和抗癌[43]等活性。與此同時(shí),麥黃酮還被認(rèn)為是小麥、水稻、玉米等單子葉植物以及苜蓿等少數(shù)雙子葉植物中木質(zhì)素合成的起始位點(diǎn)[44–46]。除此以外,其他類黃酮物質(zhì)也可能具有利于人體健康活性[47]以及參與木質(zhì)素的合成[48-49]。多種類黃酮物質(zhì)的存在有可能影響小麥的加工品質(zhì)以及小麥制品的口感[50]。
在與類黃酮物質(zhì)相關(guān)的功能性小麥育種范疇中,彩色小麥(即“彩麥”)是為人所熟知的領(lǐng)域之一。彩麥按照籽粒顏色區(qū)分主要有紅色、藍(lán)色和紫色等顏色類型,這些不同顏色主要是由于類黃酮途徑中的花色素物質(zhì)積累導(dǎo)致的[51-52]。相應(yīng)地,彩麥籽粒的下游制品也能夠具有相應(yīng)的顏色[53],從而極大地豐富了天然來(lái)源小麥制品的多樣性。在控制彩麥顏色的候選基因和分子機(jī)理方面,控制紅色的R基因被證實(shí)是一個(gè)MYB轉(zhuǎn)錄因子編碼基因[54],且該基因在調(diào)控花色素合成通路的同時(shí)還能促進(jìn)種子中脫落酸的合成來(lái)抑制種子發(fā)芽[55],從而解釋了紅皮小麥一般更抗穗發(fā)芽[56]的現(xiàn)象。然而,關(guān)于調(diào)控藍(lán)色或者紫色的關(guān)鍵基因還在鑒定過程中[52]。因此,系統(tǒng)性解析小麥中的類黃酮代謝路徑,不僅符合當(dāng)下消費(fèi)者對(duì)營(yíng)養(yǎng)品質(zhì)日益增長(zhǎng)的需求[57],還能為與木質(zhì)素相關(guān)的基礎(chǔ)研究提供新的視角[49, 58],從而為功能性小麥育種提供分子資源和理論基礎(chǔ)。
由于類黃酮骨架生物合成的代謝路徑相對(duì)清晰(圖1-B),即使在小麥中鮮有針對(duì)具體基因如何參與代謝通路的報(bào)道,研究者們依然可以使用基于序列比對(duì)的反向遺傳學(xué)手段對(duì)同源基因進(jìn)行相關(guān)研究。如通過與水稻中已經(jīng)驗(yàn)證的類黃酮通路基因進(jìn)行序列比對(duì),可以得到小麥中的同源基因(表1)。然而,這些基因如何參與類黃酮通路還需要進(jìn)一步的試驗(yàn)證實(shí)。如在水稻中麥黃酮合成路徑并不是預(yù)期的先由芹菜素2次羥基化生成五羥黃酮后再發(fā)生2次甲基化,而是羥基化與甲基化交替進(jìn)行生成麥黃酮[59]。在這個(gè)過程中,序列相似的同源基因可能同時(shí)具有新的酶活功能,從而影響代謝通路的走向[60]。基于此,一方面可以比較容易地探究小麥中類黃酮通路同源基因響應(yīng)脅迫或者參與生長(zhǎng)過程中的表達(dá)規(guī)律[61-64];另一方面也需要具體研究這些基因如何參與類黃酮通路[65]。
除了使用序列比對(duì)這一反向遺傳學(xué)方式外,還可以結(jié)合多種組學(xué)手段來(lái)鑒定參與小麥類黃酮通路的候選功能基因。如對(duì)紫色小麥材料ZNM168籽粒不同發(fā)育時(shí)期進(jìn)行轉(zhuǎn)錄組和代謝組聯(lián)合分析,成功檢測(cè)到4種以矢車菊素為主要骨架的糖基化修飾代謝物與籽粒顏色形成有關(guān),并且推測(cè)包括BZ1、CHS和ANS等基因在顏色相關(guān)代謝物生物合成路徑中發(fā)揮關(guān)鍵作用[66]。另外,通過使用遺傳群體設(shè)計(jì)(如使用自然群體材料的GWAS分析或者人工構(gòu)建分離群體的QTL定位)對(duì)代謝組學(xué)手段檢測(cè)到的多種類黃酮物質(zhì)含量進(jìn)行遺傳定位也有助于快速鑒定候選基因。然而,根據(jù)所定位到的遺傳位點(diǎn)推測(cè)候選基因需要借助參考基因組信息,因此,在小麥具備參考基因組之前的代謝組正向遺傳學(xué)研究都未能提供可能的候選基因[67-68]。隨著六倍體小麥高質(zhì)量參考基因組的釋放[69],使得隨后的小麥代謝物—GWAS(mGWAS)[70]或者代謝物—QTL(mQTL)[71]研究中批量鑒定候選基因成為可能,并以此解析代謝通路。如,通過鑒定并驗(yàn)證麥黃酮及其修飾代謝物在自然群體材料中mGWAS位點(diǎn)的候選基因,Chen等[70]首次解析了小麥中的一條黃酮代謝通路。類似地,Shi等[71]也使用人工構(gòu)建的分離群體進(jìn)行mQTL定位,對(duì)影響多種代謝物含量的候選基因進(jìn)行鑒定并驗(yàn)證了其編碼產(chǎn)物能夠催化類黃酮物質(zhì)酶活反應(yīng)。以上研究表明,可以將代謝物相對(duì)含量作為“表型”數(shù)據(jù),結(jié)合不同遺傳群體的多態(tài)性標(biāo)記信息,發(fā)揮代謝組學(xué)檢測(cè)手段高通量的優(yōu)勢(shì),從而快速鑒定小麥中影響類黃酮等代謝物含量的候選基因(圖2),為以提高代謝物含量為目標(biāo)的功能性小麥育種提供分子資源。
表1 水稻中已報(bào)道部分類黃酮代謝路徑基因在小麥中的同源基因
表中小麥同源基因按照與已報(bào)道基因的序列相似度排列
The wheat homologs were ranked according to their sequence similarities against respective rice targets
傳統(tǒng)的育種流程一般使用農(nóng)藝性狀有差異的材料作為親本進(jìn)行雜交,通過該過程中的染色體重組來(lái)實(shí)現(xiàn)新的基因型組合,并在后代材料中對(duì)目標(biāo)農(nóng)藝性狀進(jìn)行選擇。然而,由于小麥的連鎖不平衡程度較強(qiáng)[79],導(dǎo)致雜交過程中染色體重組率較低,從而需要花費(fèi)大量的時(shí)間和構(gòu)建較大規(guī)模的群體以獲得所需基因型材料[80]。與此同時(shí),可觀測(cè)農(nóng)藝性狀數(shù)量較少以及變化幅度不大,并且從基因型到表型之間的調(diào)控關(guān)系較為復(fù)雜,進(jìn)一步增加了育種的周期和難度。代謝物含量或者修飾狀態(tài)的變化能夠影響植株表型,因此,代謝組一直以來(lái)被認(rèn)為是基因型和表型之間的橋梁[81]。其中,最廣為人知的例子莫過于植物激素能夠在植株生長(zhǎng)發(fā)育以及逆境響應(yīng)過程中發(fā)揮關(guān)鍵作用[82],這些激素類代謝物的不同修飾形式往往對(duì)應(yīng)激素分子的活性與否[83]。與此同時(shí),不同類型的代謝物之間往往具有復(fù)雜的相關(guān)性,如糖基化修飾的類黃酮物質(zhì)能夠抑制內(nèi)源生長(zhǎng)素在植物體內(nèi)的極性運(yùn)輸從而影響生長(zhǎng)素含量及分布[84],以及在小麥中一直以來(lái)觀察到的紅粒小麥更加抗穗發(fā)芽現(xiàn)象[56]是由于調(diào)控花色素的一個(gè)MYB轉(zhuǎn)錄因子也能影響小麥籽粒中的ABA含量,從而改變種子發(fā)芽性狀[55]。以上例子表明農(nóng)藝性狀有可能受到復(fù)雜因素的影響,而通過對(duì)大量代謝物含量的數(shù)據(jù)進(jìn)行建模預(yù)測(cè)等研究有可能解析代謝物含量與農(nóng)藝性狀之間的內(nèi)在聯(lián)系[85-86],例如通過小麥葉片和小穗代謝組數(shù)據(jù)均能較好地預(yù)測(cè)小麥產(chǎn)量[87]。因此,通過對(duì)小麥不同組織及發(fā)育時(shí)期進(jìn)行代謝組學(xué)研究,有助于更好地揭示功能性小麥育種過程中的相關(guān)分子機(jī)理以及育種目標(biāo)的構(gòu)成因素(如解析育種目標(biāo)物質(zhì)的代謝通路)。
除了使用以代謝組學(xué)為主的手段解析代謝通路從而挖掘分子資源用于小麥育種以外,還可以充分發(fā)揮其具有高靈敏度和高通量的特點(diǎn),對(duì)以具體代謝物(如麥黃酮)含量為目標(biāo)的功能性小麥育種過程中相關(guān)物質(zhì)含量進(jìn)行高通量檢測(cè),有可能達(dá)到即使不解析代謝通路也能獲得育種材料的目的,并且在獲得目標(biāo)材料的同時(shí)“順便”鑒定關(guān)鍵調(diào)控基因[88]。如圖3所示,通過對(duì)小麥種質(zhì)資源進(jìn)行代謝譜檢測(cè),能夠快速獲得目標(biāo)代謝物在不同(籽粒)材料中的相對(duì)含量。從中選取具有優(yōu)良性狀的當(dāng)?shù)刂魍破贩N(目標(biāo)代謝物含量相對(duì)較低)為受體,與具有高目標(biāo)代謝物含量的品系為供體進(jìn)行雜交。雜交后代不斷與受體回交以維持優(yōu)良農(nóng)藝性狀,在此過程中也可以使用育種芯片或者分子標(biāo)記來(lái)檢驗(yàn)回交后代基因型與受體的一致性[89]。為了更好地監(jiān)測(cè)雜交后代代謝通路變化情況,可以在獲得每一代種子時(shí)將其一分為二,通過代謝組學(xué)手段檢測(cè)不包含胚的半粒種子中目標(biāo)代謝物含量,具有高含量對(duì)應(yīng)的半粒含胚種子則繼續(xù)種植并進(jìn)入下一輪回交流程。該育種過程可以在快速育種溫室中進(jìn)行,每一代材料生長(zhǎng)周期最短(如春小麥)可在3個(gè)月內(nèi)完成[90],從而縮短育種周期。最后,由于所獲得品系遺傳背景與受體基本一致,保持了對(duì)應(yīng)的優(yōu)良農(nóng)藝性狀,而控制改良后性狀的候選基因則由供體提供,因此,通過進(jìn)一步分析基因組中供體區(qū)段所包含的基因編碼序列,結(jié)合代謝物化學(xué)特性及其所在通路等信息,可以鑒定候選基因以及開發(fā)分子標(biāo)記。
本文以類黃酮為例,概述了解析代謝物遺傳基礎(chǔ)對(duì)于功能性小麥育種的意義,以及代謝組學(xué)手段在育種過程中的應(yīng)用方式。在與類黃酮通路代謝物含量相關(guān)的小麥育種中,“彩麥”因其表型可以僅憑肉眼容易分辨,目前已經(jīng)育成了包括綠色(如“靈綠麥”和“秦綠”等系列)、藍(lán)色(如農(nóng)大5321藍(lán)和山農(nóng)藍(lán)麥1號(hào))、紫色(如紫麥4179和紫麥19)和黑色(如“靈黑麥”和“秦黑”等系列)在內(nèi)的多個(gè)“彩麥”品種。其余類黃酮物質(zhì)由于不具有明顯的顯色性,其在育種過程中的含量變化一般需要通過高效液相色譜或者質(zhì)譜等儀器進(jìn)行測(cè)定。因此,盡管目前與類黃酮通路相關(guān)的功能性小麥育種已經(jīng)有相當(dāng)?shù)难芯糠e累與嘗試[52, 91-94],除了“彩麥”外已經(jīng)審定的高類黃酮小麥僅有山農(nóng)101(魯審麥20206035,總黃酮含量1.013 mg·g-1)。造成這種差異性現(xiàn)象除了檢測(cè)成本較高以外,相關(guān)標(biāo)準(zhǔn)缺位也是重要原因之一。最近,由中國(guó)國(guó)際科技促進(jìn)會(huì)發(fā)布了《高麥黃酮小麥籽粒中游離態(tài)麥黃酮及總麥黃酮含量指標(biāo)和測(cè)定方法》行業(yè)標(biāo)準(zhǔn)(T/CI 004-2022),其中,約定了高麥黃酮小麥品種定義、麥黃酮含量指標(biāo),即非彩色小麥籽粒中自然產(chǎn)生和積累的游離態(tài)麥黃酮含量大于等于0.5 mg·kg-1或者總麥黃酮含量大于等于1 mg·kg-1以及檢測(cè)方法。因此,通過加深對(duì)關(guān)鍵代謝物遺傳基礎(chǔ)的認(rèn)識(shí)以及隨著影響代謝物含量分子資源的豐富,能夠更好地實(shí)現(xiàn)不同目標(biāo)功能性的小麥育種,以便滿足消費(fèi)者的差異化需求以及符合“健康中國(guó)2030”規(guī)劃等國(guó)家戰(zhàn)略。在推動(dòng)“功能性小麥”育種過程中將獲得一系列小麥種質(zhì)資源,從而掌握品種芯片并夯實(shí)功能農(nóng)業(yè)基礎(chǔ)。
圖2 快速鑒定影響代謝物含量的候選基因并構(gòu)建代謝物與表型之間的網(wǎng)絡(luò)
以高麥黃酮育種目標(biāo)為例,綜合利用代謝組學(xué)檢測(cè)手段、多代雜交回交流程以及快速育種溫室體系,可以在關(guān)鍵基因未知的情況下快速獲得育種中間材料,并且?guī)椭Y選控制麥黃酮含量的候選基因
[1] 田紀(jì)春, 胥倩. 功能性小麥品種的概念、類別和發(fā)展前景. 糧油食品科技, 2021, 29(2): 1-8.
TIAN J C, XU Q. Concept, category and development prospect of functional wheat varieties. Science and Technology of Cereals, Oils and Foods, 2021, 29(2): 1-8. (in Chinese)
[2] 胥倩, 苗永輝, 劉振, 王群青, 畢建杰, 吳澎, 田紀(jì)春. 特殊顏色谷物研究進(jìn)展和小麥相關(guān)新品種創(chuàng)制. 糧油食品科技, 2021, 29(2): 41-49.
XU Q, MIAO Y H, LIU Z, WANG Q Q, BI J J, WU P, TIAN J C. Research progress on special colored grains and creation of new pigment functional wheat varieties. Science and Technology of Cereals, Oils and Foods, 2021, 29(2): 41-49. (in Chinese)
[3] CHEN X Y, FANG W Q, JI M Q, XU S, JIANG Y X, SONG S, CHEN G F, TIAN J C, DENG Z Y. Genome-wide association study of total starch and its components in common wheat. Euphytica, 2019, 215(12): 201.
[4] TIAN B, DENG Z Y, XIE Q G, TIAN J C. Genetic dissection of the developmental behaviour of total starch content and its components in wheat grain. Crop and Pasture Science, 2015, 66(5): 445.
[5] 付蕾, 田紀(jì)春. 抗性淀粉制備、生理功能和應(yīng)用研究進(jìn)展. 中國(guó)糧油學(xué)報(bào), 2008, 23(2): 206-210.
FU L, TIAN J C. Research progress on preparation, physiological function and application of resistant starch. Journal of the Chinese Cereals and Oils Association, 2008, 23(2): 206-210. (in Chinese)
[6] 王維, 郭紅, 于慧, 吳崇寧, 李小康, 陳廣鳳, 田紀(jì)春, 鄧志英. 富含有益礦質(zhì)元素小麥種質(zhì)資源的篩選及育種利用. 糧油食品科技, 2021, 29(2): 15-24.
WANG W, GUO H, YU H, WU C N, LI X K, CHEN G F, TIAN J C, DENG Z Y. Screening and breeding utilization of wheat germplasm resources rich in beneficial mineral elements. Science and Technology of Cereals, Oils and Foods, 2021, 29(2): 15-24. (in Chinese)
[7] 何一哲, 寧軍芬. 高鐵鋅小麥特異新種質(zhì)“秦黑1號(hào)”的營(yíng)養(yǎng)成分分析. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2003, 31(3): 87-90.
HE Y Z, NING J F. Analysis of nutrition composition in the special purple grain wheat “Qinhei No. 1” containing rich Fe and Zn. Journal of Northwest A & F University (Natural Science Edition), 2003, 31(3): 87-90. (in Chinese)
[8] HIGUCHI M, OSHIDA J, ORINO K, WATANABE K. Wheat bran protects Fischer-344 rats from diquat-induced oxidative stress by activating antioxidant system: selenium as an antioxidant. Bioscience, Biotechnology, and Biochemistry, 2011, 75(3): 496-499.
[9] 陳廣鳳, 李冬梅, 鄧志英, 馮建英, 鄭世英, 鄭芳, 吳秀芬, 田紀(jì)春. 小麥籽粒植酸含量聚類及相關(guān)基因位點(diǎn)研究. 糧油食品科技, 2021, 29(2): 25-33.
CHEN G F, LI D M, DENG Z Y, FENG J Y, ZHENG S Y, ZHENG F, WU X F, TIAN J C. Cluster analysis and association mapping of phytic acid content among wheat cultivars. Science and Technology of Cereals, Oils and Foods, 2021, 29(2): 25-33. (in Chinese)
[10] WU P, ZHAO T, TIAN J C. Phytic acid contents of wheat flours from different mill streams. Agricultural Sciences in China, 2010, 9(11): 1684-1688.
[11] WU P, TIAN J C, CHUCK WALKER C E, WANG F C. Determination of phytic acid in cereals-a brief review. International Journal of Food Science & Technology, 2009, 44(9): 1671-1676.
[12] WANG D W, LI D, WANG J J, ZHAO Y, WANG Z J, YUE G D, LIU X, QIN H J, ZHANG K P, DONG L L, WANG D W. Genome-wide analysis of complex wheat gliadins, the dominant carriers of celiac disease epitopes. Scientific Reports, 2017, 7: 44609.
[13] PENG M, SHAHZAD R, GUL A, SUBTHAIN H, SHEN S Q, LEI L, ZHENG Z G, ZHOU J J, LU D D, WANG S C, NISHAWY E, LIU X Q, TOHGE T, FERNIE A R, LUO J. Differentially evolved glucosyltransferases determine natural variation of rice flavone accumulation and UV-tolerance. Nature Communications, 2017, 8(1): 1975.
[14] VEITCH N C. Isoflavonoids of the leguminosae. Natural Product Reports, 2013, 30(7): 988-1027.
[15] DONG N Q, LIN H X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. Journal of Integrative Plant Biology, 2021, 63(1): 180-209.
[16] YU H N, WANG L, SUN B, GAO S, CHENG A X, LOU H X. Functional characterization of a chalcone synthase from the liverwort. Plant Cell Reports, 2015, 34(2): 233-245.
[17] CHENG H, LI L L, CHENG S Y, CAO F L, WANG Y, YUAN H H. Molecular cloning and function assay of a chalcone isomerase gene () from. Plant Cell Reports, 2011, 30(1): 49-62.
[18] AKASHI T, FUKUCHI-MIZUTANI M, AOKI T, UEYAMA Y, YONEKURA-SAKAKIBARA K, TANAKA Y, KUSUMI T, AYABE S I. Molecular cloning and biochemical characterization of a novel cytochrome P450, flavone synthase Ⅱ, that catalyzes direct conversion of flavanones to flavones. Plant and Cell Physiology, 1999, 40(11): 1182-1186.
[19] JAN R, ASAF S, PAUDEL S, LUBNA, LEE S, KIM K M. Discovery and validation of a novel step catalyzed by OsF3H in the flavonoid biosynthesis pathway. Biology, 2021, 10(1): 32.
[20] XIONG S, TIAN N, LONG J H, CHEN Y H, QIN Y, FENG J Y, XIAO W J, LIU S Q. Molecular cloning and characterization of a flavanone 3-Hydroxylase gene fromL.. Plant Physiology and Biochemistry, 2016, 105: 29-36.
[21] ROSATI C, SIMONEAU P, TREUTTER D, POUPARD P, CADOT Y, CADIC A, DURON M. Engineering of flower color in forsythia by expression of two independently-transformed dihydroflavonol 4-reductase and anthocyanidin synthase genes of flavonoid pathway. Molecular Breeding, 2003, 12(3): 197-208.
[22] ZHU Y, PENG Q Z, LI K G, XIE D Y. Molecular cloning and functional characterization of the anthocyanidin reductase gene from. Planta, 2014, 240(2): 381-398.
[23] SUN Y J, HE J M, KONG J Q. Characterization of two flavonol synthases with iron-independent flavanone 3-hydroxylase activity fromJacq. BMC Plant Biology, 2019, 19(1): 195.
[24] TANNER G J, FRANCKI K T, ABRAHAMS S, WATSON J M, LARKIN P J, ASHTON A R. Proanthocyanidin biosynthesis in plants. Purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA. The Journal of Biological Chemistry, 2003, 278(34): 31647-31656.
[25] SEITZ C, EDER C, DEIML B, KELLNER S, MARTENS S, FORKMANN G. Cloning, functional identification and sequence analysis of flavonoid 3’-hydroxylase and flavonoid 3’,5’-hydroxylase cDNAs reveals independent evolution of flavonoid 3’,5’-hydroxylase in the Asteraceae family. Plant Molecular Biology, 2006, 61(3): 365-381.
[26] FANG C Y, FERNIE A R, LUO J. Exploring the diversity of plant metabolism. Trends in Plant Science, 2019, 24(1): 83-98.
[27] BALMER D, DE PAPAJEWSKI D V, PLANCHAMP C, GLAUSER G, MAUCH-MANI B. Induced resistance in maize is based on organ-specific defence responses. The Plant Journal, 2013, 74(2): 213-225.
[28] CHEN J, WANG J L, CHEN W, SUN W Q, PENG M, YUAN Z Y, SHEN S Q, XIE K, JIN C, SUN Y Y, LIU X Q, FERNIE A R, YU S B, LUO J. Metabolome analysis of multi-connected biparental chromosome segment substitution line populations. Plant Physiology, 2018, 178(2): 612-625.
[29] UBE N, KATSUYAMA Y, KARIYA K, TEBAYASHI S I, SUE M, TOHNOOKA T, UENO K, TAKETA S, ISHIHARA A. Identification of methoxylchalcones produced in response to CuCl2treatment and pathogen infection in barley. Phytochemistry, 2021, 184: 112650.
[30] POLTURAK G, DIPPE M, STEPHENSON M J, CHANDRA MISRA R, OWEN C, RAMIREZ-GONZALEZ R H, HAIDOULIS J F, SCHOONBEEK H J, CHARTRAIN L, BORRILL P, NELSON D R, BROWN J K M, NICHOLSON P, UAUY C, OSBOURN A. Pathogen-induced biosynthetic pathways encode defense-related molecules in bread wheat. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(16): e2123299119.
[31] F?RSTER C, HANDRICK V, DING Y Z, NAKAMURA Y, PAETZ C, SCHNEIDER B, CASTRO-FALCóN G, HUGHES C C, LUCK K, POOSAPATI S, KUNERT G, HUFFAKER A, GERSHENZON J, SCHMELZ E A, K?LLNER T G. Biosynthesis and antifungal activity of fungus-induced-methylated flavonoids in maize. Plant Physiology, 2022, 188(1): 167-190.
[32] HASEGAWA M, MITSUHARA I, SEO S, OKADA K, YAMANE H, IWAI T, OHASHI Y. Analysis on blast fungus-responsive characters of a flavonoid phytoalexin sakuranetin; accumulation in infected rice leaves, antifungal activity and detoxification by fungus. Molecules, 2014, 19(8): 11404-11418.
[33] XIA J X, GUO Z J, YANG Z Z, HAN H L, WANG S L, XU H F, YANG X, YANG F S, WU Q J, XIE W, ZHOU X G, DERMAUW W, TURLINGS T C J, ZHANG Y J. Whitefly hijacks a plant detoxification gene that neutralizes plant toxins. Cell, 2021, 184(7): 1693-1705.
[34] TARLING C A, WOODS K, ZHANG R, BRASTIANOS H C, BRAYER G D, ANDERSEN R J, WITHERS S G. The search for novel human pancreatic alpha-amylase inhibitors: high-throughput screening of terrestrial and marine natural product extracts. Chembiochem, 2008, 9(3): 433-438.
[35] IRMISCH S, JO S, ROACH C R, JANCSIK S, MAN SAINT YUEN M, MADILAO L L, O’NEIL-JOHNSON M, WILLIAMS R, WITHERS S G, BOHLMANN J. Discovery of UDP-glycosyltransferases and BAHD-acyltransferases involved in the biosynthesis of the antidiabetic plant metabolite montbretin A. The Plant Cell, 2018, 30(8): 1864-1886.
[36] IRMISCH S, JANCSIK S, MAN SAINT YUEN M, MADILAO L L, BOHLMANN J. Complete biosynthesis of the anti-diabetic plant metabolite montbretin A. Plant Physiology, 2020, 184(1): 97–109.
[37] ANDERSON J A, PERKIN A G. CCCLXV.—The yellow colouring matter of khapli wheat,. Journal of the Chemical Society (Resumed), 1931(0): 2624-2625.
[38] RAO S, SANTHAKUMAR A B, CHINKWO K A, VANNIASINKAM T, LUO J X, BLANCHARD C L. Chemopreventive potential of cereal polyphenols. Nutrition and Cancer, 2018, 70(6): 913-927.
[39] LE D, GO G W, IMM J Y. Tricin, a methylated cereal flavone, suppresses fat accumulation by downregulating AKT and mTOR in 3T3-L1 preadipocytes. Journal of Functional Foods, 2016, 26(6502): 548-556.
[40] HAN J M, KWON H J, JUNG H J. Tricin, 4’,5,7-trihydroxy- 3’,5’-dimethoxyflavone, exhibits potent antiangiogenic activity. International Journal of Oncology, 2016, 49(4): 1497-1504.
[41] AKAI Y, SADANARI H, TAKEMOTO M, UCHIDE N, DAIKOKU T, MUKAIDA N, MURAYAMA T. Inhibition of human cytomegalovirus replication by tricin is associated with depressed CCL2 expression. Antiviral Research, 2017, 148: 15-19.
[42] YUE G G L, GAO S, LEE J K M, CHAN Y Y, WONG E C W, ZHENG T, LI X X, SHAW P C, SIMMONDS M S J, LAU C B S. A natural flavone tricin from grains can alleviate tumor growth and lung metastasis in colorectal tumor mice. Molecules, 2020, 25(16): 3730.
[43] LI J X, LI R Z, SUN A, ZHOU H, NEHER E, YANG J S, HUANG J M, ZHANG Y Z, JIANG Z B, LIANG T L, MA L R, WANG J, WANG X R, FAN X Q, HUANG J, XIE Y, LIU L, TANG L, LEUNG E L H, YAN P Y. Metabolomics and integrated network pharmacology analysis reveal Tricin as the active anti-cancer component of Weijing decoction by suppression of PRKCA and sphingolipid signaling. Pharmacological Research, 2021, 171: 105574.
[44] LAN W, YUE F X, RENCORET J, DEL RíO J C, BOERJAN W, LU F C, RALPH J. Elucidating tricin-lignin structures: assigning correlations in HSQC spectra of monocot lignins. Polymers, 2018, 10(8): 916.
[45] LI M, PU Y Q, MENG X Z, CHEN F, DIXON R A, RAGAUSKAS A J. Strikingly high amount of tricin-lignin observed from vanilla () aerial roots. Green Chemistry, 2022, 24(1): 259-270.
[46] LAN W, RENCORET J, LU F C, KARLEN S D, SMITH B G, HARRIS P J, DEL RíO J C, RALPH J. Tricin-lignins: occurrence and quantitation of tricin in relation to phylogeny. The Plant Journal, 2016, 88(6): 1046-1057.
[47] YAN X H, QI M, LI P F, ZHAN Y H, SHAO H J. Apigenin in cancer therapy: anti-cancer effects and mechanisms of action. Cell & Bioscience, 2017, 7: 50.
[48] LAM P Y, LUI A C W, YAMAMURA M, WANG L X, TAKEDA Y, SUZUKI S, LIU H J, ZHU F Y, CHEN, M X, ZHANG J H, UMEZAWA T, TOBIMATSU Y, LO C. Recruitment of specific flavonoid B-ring hydroxylases for two independent biosynthesis pathways of flavone-derived metabolites in grasses. The New Phytologist, 2019, 223(1): 204-219.
[49] RENCORET J, ROSADO M J, KIM H, TIMOKHIN V I, GUTIéRREZ A, BAUSCH F, ROSENAU T, POTTHAST A, RALPH J, DEL RíO J C. Flavonoids naringenin chalcone, naringenin, dihydrotricin, and tricin are lignin monomers in papyrus. Plant Physiology, 2022, 188(1): 208-219.
[50] SHARMA M, SANDHIR R, SINGH A, KUMAR P, MISHRA A, JACHAK S, SINGH S P, SINGH J, ROY J. Comparative analysis of phenolic compound characterization and their biosynthesis genes between two diverse bread wheat () varieties differing for chapatti (unleavened flat bread) quality. Frontiers in Plant Science, 2016, 7: 1870.
[51] 趙善倉(cāng), 劉賓, 趙領(lǐng)軍, 郭棟梁, 毛江勝, 郭長(zhǎng)英, 任鳳山, 王憲澤, 田紀(jì)春. 藍(lán)、紫粒小麥籽粒花色苷組成分析. 中國(guó)農(nóng)業(yè)科學(xué), 2010, 43(19): 4072-4080.
ZHAO S C, LIU B, ZHAO L J, GUO D L, MAO J S, GUO C Y, REN F S, WANG X Z, TIAN J C. Research of anthocyanin composition in blue and purple wheat grains. Scientia Agricultura Sinica, 2010, 43(19): 4072-4080. (in Chinese)
[52] GARG M, CHAWLA M, CHUNDURI V, KUMAR R, SHARMA S, SHARMA N K, KAUR N, KUMAR A, MUNDEY J K, SAINI M K, SINGH S P. Transfer of grain colors to elite wheat cultivars and their characterization. Journal of Cereal Science, 2016, 71: 138-144.
[53] JIANG X L, WANG Z X, ZHAO J S, GUAN Q Y, KE Z H, LI X J, ZHANG Z Y, TIAN J C, LI H M, CHEN J S. QTL analysis for 27 quality traits measured through the color of end-use products in common wheat (L.). Euphytica, 2022, 218(9): 121.
[54] HIMI E, NODA K. Red grain colour gene ? of wheat is a Myb-type transcription factor. Euphytica, 2005, 143(3): 239-242.
[55] LANG J, FU Y X, ZHOU Y, CHENG M P, DENG M, LI M L, ZHU T T, YANG J, GUO X J, GUI L X, LI L C, CHEN Z X, YI Y J, ZHANG L Q, HAO M, HUANG L, TAN C, CHEN G Y, JIANG Q T, QI P F, PU Z E, MA J, LIU Z H, LIU Y J, LUO M C, WEI Y M, ZHENG Y L, WU Y R, LIU D C, WANG J R. Myb10-D confers PHS-3D resistance to pre-harvest sprouting by regulating NCED in ABA biosynthesis pathway of wheat. The New Phytologist, 2021, 230(5): 1940-1952.
[56] GROOS C, GAY G, PERRETANT M R, GERVAIS L, BERNARD M, DEDRYVER F, CHARMET G. Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a white×red grain bread-wheat cross. Theoretical and Applied Genetics, 2002, 104(1): 39-47.
[57] GARG M, KAUR S, SHARMA A, KUMARI A, TIWARI V, SHARMA S, KAPOOR P, SHEORAN B, GOYAL A, KRISHANIA M. Rising demand for healthy foods-anthocyanin biofortified colored wheat is a new research trend. Frontiers in Nutrition, 2022, 9: 878221.
[58] MENDES G G M, MOTA T R, BOSSONI G E B, MARCHIOSI R, DE OLIVEIRA D M, CONSTANTIN R P, DOS SANTOS W D, FERRARESE-FILHO O. Inhibiting tricin biosynthesis improves maize lignocellulose saccharification. Plant Physiology and Biochemistry, 2022, 178: 12-19.
[59] LAM P Y, LIU H J, LO C. Completion of tricin biosynthesis pathway in rice: Cytochrome P450 75B4 is a unique chrysoeriol 5’- hydroxylase. Plant Physiology, 2015, 168(4): 1527-1536.
[60] PARK S, KIM D H, PARK B R, LEE J Y, LIM S H. Molecular and functional characterization offlavonol synthase (OsFLS), a bifunctional dioxygenase. Journal of Agricultural and Food Chemistry, 2019, 67(26): 7399-7409.
[61] MA D Y, SUN D X, WANG C Y, LI Y G, GUO T C. Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiology and Biochemistry, 2014, 80: 60-66.
[62] LI X L, Lü X, WANG X H, PENG Q, ZHANG M S, REN M J. Biotic and abiotic stress-responsive genes are stimulated to resist drought stress in purple wheat. Journal of Integrative Agriculture, 2020, 19(1): 33-50.
[63] SHOEVA O Y, KHLESTKINA E K.gene expression in various organs of wheat. Molecular Biology, 2013, 47(6): 901-903.
[64] WANG X, ZHANG X C, HOU H X, MA X, SUN S L, WANG H W, KONG L R. Metabolomics and gene expression analysis reveal the accumulation patterns of phenylpropanoids and flavonoids in different colored-grain wheats (L.). Food Research International, 2020, 138: 109711.
[65] Cain A B, Yu S, Tian L. Mutational analysis of a wheat- methyltransferase involved in flavonoid metabolism. Plants, 2022, 11(2): 164.
[66] WANG F, JI G S, XU Z B, FENG B, ZHOU Q, FAN X L, WANG T. Metabolomics and transcriptomics provide insights into anthocyanin biosynthesis in the developing grains of purple wheat (L.). Journal of Agricultural and Food Chemistry, 2021, 69(38): 11171-11184.
[67] HILL C B, TAYLOR J D, EDWARDS J, MATHER D, BACIC A, LANGRIDGE P, ROESSNER U. Whole-genome mapping of agronomic and metabolic traits to identify novel quantitative trait Loci in bread wheat grown in a water-limited environment. Plant Physiology, 2013, 162(3): 1266-1281.
[68] HiLL C B, TAYLOR J D, EDWARDS J, MATHER D, LANGRIDGE P, BACIC A, ROESSNER U. Detection of QTL for metabolic and agronomic traits in wheat with adjustments for variation at genetic loci that affect plant phenology. Plant Science, 2015, 233: 143-154.
[69] INTERNATIONAL WHEAT GENOME SEQUENCING CONSORTIUM (IWGSC). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361(6403): eaar7191.
[70] CHEN J, HU X, SHI T T, YIN H R, SUN D F, HAO Y F, XIA X C, LUO J, FERNIE A R, HE Z H, CHEN W. Metabolite-based genome-wide association study enables dissection of the flavonoid decoration pathway of wheat kernels. Plant Biotechnology Journal, 2020, 18(8): 1722-1735.
[71] SHI T T, ZHU A T, JIA J Q, HU X, CHEN J, LIU W, REN X F, SUN D F, FERNIE A R, CUI F, CHEN W. Metabolomics analysis and metabolite-agronomic trait associations using kernels of wheat () recombinant inbred lines. The Plant Journal, 2020, 103(1): 279-292.
[72] DU Y G, CHU H, CHU I K, LO C. CYP93G2 is a flavanone 2-hydroxylase required for-glycosylflavone biosynthesis in rice. Plant Physiology, 2010, 154(1): 324-333.
[73] LAM P Y, ZHU F Y, CHAN W L, LIU H J, LO C. Cytochrome P450 93G1 is a flavone synthase Ⅱ that channels flavanones to the biosynthesis of tricin-linked conjugates in rice. Plant Physiology, 2014, 165(3): 1315-1327.
[74] KIM B G, LEE Y, HUR H G, LIM Y, AHN J H. Flavonoid 3’--methyltransferase from rice: cDNA cloning, characterization and functional expression. Phytochemistry, 2006, 67(4): 387-394.
[75] LI H H, QIU J, CHEN F D, LV X F, FU C X, ZHAO D X, HUA X J, ZHAO Q. Molecular characterization and expression analysis of dihydroflavonol 4-reductase () gene in. Molecular Biology Reports, 2012, 39(3): 2991-2999.
[76] SHIH C H, CHU H, TANG L K, SAKAMOTO W, MAEKAWA M, CHU I K, WANG M F, LO C. Functional characterization of key structural genes in rice flavonoid biosynthesis. Planta, 2008, 228(6): 1043-1054.
[77] LEE Y J, KIM B G, CHONG Y, LIM Y, AHN J H. Cation dependent-methyltransferases from rice. Planta, 2008, 227(3): 641-647.
[78] KIM J H, CHEON Y M, KIM B G, AHN J H. Analysis of flavonoids and characterization of thegene involved in flavone biosynthesis in rice. Journal of Plant Biology, 2008, 51(2): 97-101.
[79] HAO C Y, JIAO C Z, HOU J, LI T, LIU H X, WANG Y Q, ZHENG J, LIU H, BI Z H, XU F F, ZHAO J, MA L, WANG Y M, MAJEED U, LIU X, APPELS R, MACCAFERRI M, TUBEROSA R, LU H F, ZHANG X Y. Resequencing of 145 landmark cultivars reveals asymmetric sub-genome selection and strong founder genotype effects on wheat breeding in China. Molecular Plant, 2020, 13(12): 1733-1751.
[80] HOLLAND J B. Genetic architecture of complex traits in plants. Current Opinion in Plant Biology, 2007, 10(2): 156-161.
[81] FIEHN O. Metabolomics: The link between genotypes and phenotypes.Plant Molecular Biology, 2002, 48(1/2): 155-171.
[82] YU Z P, DUAN X B, LUO L, DAI S J, DING Z J, XIA G M. How plant hormones mediate salt stress responses. Trends in Plant Science, 2020, 25(11): 1117-1130.
[83] KORASICK D A, ENDERS T A, STRADER L C. Auxin biosynthesis and storage forms. Journal of Experimental Botany, 2013, 64(9): 2541-2555.
[84] YIN R H, HAN K, HELLER W, ALBERT A, DOBREV P I, ZA?íMALOVá E, SCH?FFNER A R. Kaempferol 3--rhamnoside- 7--rhamnoside is an endogenous flavonol inhibitor of polar auxin transport inshoots. The New Phytologist, 2014, 201(2): 466-475.
[85] ADATO A, MANDEL T, MINTZ-ORON S, VENGER I, LEVY D, YATIV M, DOMíNGUEZ E, WANG Z H, DE VOS R C H DE, JETTER R, SCHREIBER L, HEREDIA A, ROGACHEV I, AHARONI A. Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12-regulated transcriptional network. PLoS Genetics, 2009, 5(12): e1000777.
[86] ZHU G T, WANG S C, HUANG Z J, ZHANG S B, LIAO Q G, ZHANG C Z, LIN T, QIN M, PENG M, YANG C K, CAO X, HAN X, WANG X X, VAN DER KNAAP E, ZHANG Z H, CUI X, KLEE H, FERNIE A R, LUO J, HUANG S W. Rewiring of the fruit metabolome in tomato breeding. Cell, 2018, 172(1/2): 249-261.
[87] VERGARA-DIAZ O, VATTER T, VICENTE R, OBATA T, NIETO- TALADRIZ M T, APARICIO N, CARLISLE KEFAUVER S, FERNIE A R, ARAUS J L. Metabolome profiling supports the key role of the spike in wheat yield performance. Cells, 2020, 9(4): 1025.
[88] Chen J, Xue M Y, Liu H B, Fernie A R, Chen W. Exploring the genic resources underlying metabolites through mGWAS and mQTL in wheat: From large-scale gene identification and pathway elucidation to crop improvement. Plant Communications, 2021, 2(4): 100216.
[89] WING R A, PURUGGANAN M D, ZHANG Q F. The rice genome revolution: from an ancient grain to Green Super Rice. Nature Reviews Genetics, 2018, 19(8): 505-517.
[90] GHOSH S, WATSON A, GONZALEZ-NAVARRO O E, RAMIREZ- GONZALEZ R H, YANES L, MENDOZA-SUáREZ M, SIMMONDS J, WELLS R, RAYNER T, GREEN P, HAFEEZ A, HAYTA S, MELTON R E, STEED A, SARKAR A, CARTER J, PERKINS L, LORD J, TESTER M, OSBOURN A, MOSCOU M J, NICHOLSON P, HARWOOD W, MARTIN C, DOMONEY C, UAUY C, HAZARD B, WULFF B B H, HICKEY L T. Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nature Protocols, 2018, 13(12): 2944-2963.
[91] TERESHCHENKO O Y, PSHENICHNIKOVA T A, SALINA E A, KHLESTKINA E K. Development and molecular characterization of a novel wheat genotype having purple grain colour. Cereal Research Communications, 2012, 40(2): 210-214.
[92] LACHMAN J, MARTINEK P, KOTíKOVá Z, ORSáK M, ?ULC M. Genetics and chemistry of pigments in wheat grain – A review. Journal of Cereal Science, 2017, 74: 145-154.
[93] DHUA S, KUMAR K, KUMAR Y, SINGH L, SHARANAGAT V S. Composition, characteristics and health promising prospects of black wheat: A review. Trends in Food Science and Technology, 2021, 112: 780-794.
[94] EFREMOVA T T, MOROZOV S V, CHERNYAK E I, CHUMANOVA E V. Combining the genes of blue aleurone and purple pericarp in the genotype of spring bread wheat Saratovskaya 29 to increase anthocyanins in grain. Journal of Cereal Science, 2023, 109: 103616.
The genetic basis of flavonoid contents in wheat and its application in functional wheat variety breeding
CHEN Jie, CHEN Wei
College of Plant Science and Technology, Huazhong Agricultural University/National Key Laboratory of Crop Genetics and Improvement, Wuhan 430070
Accompanying the elevated expenses on consumption, people’s urge upon food has been gradually changed from “eat to be fed” to “eat to be satisfied” and further to “eat to gain nutrition” and “eat to be healthy”. Accordingly, breeders considered the wheat breeding goals should be set as breeding wheat with better quality along with higher yield, wherein the phrase “functional wheat variety” was recently raised. Flavonoids comprise one of the most widely reported categories of metabolites, the contents of which have been included within the “functional wheat variety” breeding program for its connection with plant phenotypes and its contribution to human health. The combination of metabolomics approach and genetics design has been proved to be efficient in identifying the candidates that responsible for metabolite contents, that said its application in wheat was lagged behind due to the lately released wheat reference genome. Further, the deficient knowledge upon the genetic basis of metabolites has in turn constrained the application of breeding “functional wheat variety”. In the current manuscript, the research progresses on genetic basis of flavonoids are briefly summarized, and its application for wheat breeding is highlighted. Meanwhile, the metabolomics-assisted breeding frame is concepted. Ultimately, the “functional wheat variety” breeding program will be achieved through the combination of the fundamental researches and breeding applications.
flavonoid; functional wheat; genetic basis; breeding
10.3864/j.issn.0578-1752.2023.13.001
2023-03-29;
2023-05-10
國(guó)家自然科學(xué)基金(32001541)、中國(guó)博士后科學(xué)基金(2021T140246)
通信作者陳杰,E-mail:lqlcj@126.com
(責(zé)任編輯 李莉)
中國(guó)農(nóng)業(yè)科學(xué)2023年13期