Anke Sentko Goh Peen Ern 邢青斌
摘 要:目的:異麥芽酮糖是一種低血糖指數(shù)碳水化合物,GI值為32,它是一種獨(dú)特的二糖,可以緩慢但完全地被消化吸收。方法:介紹了異麥芽酮糖的結(jié)構(gòu)、來(lái)源及生產(chǎn),綜述了異麥芽酮糖在體內(nèi)的代謝、低血糖指數(shù)特性及其健康功效。結(jié)果:異麥芽酮糖可以像蔗糖和淀粉一樣被很好地消化和耐受,但水解速度更低,這有利于代謝健康。異麥芽酮糖的低血糖特性在30多個(gè)不同人群(包括兒童和成年人)的不同健康階段(從健康人群到糖尿病患者)的臨床試驗(yàn)中得到了一致的證明。含異麥芽酮糖的低血糖指數(shù)飲食不僅可以降低血糖反應(yīng),減少血糖波動(dòng),而且還有益于其他代謝過(guò)程,包括較高的脂肪氧化率、較低的腹部脂肪堆積,并支持體重管理。結(jié)論:異麥芽酮糖的低血糖指數(shù)特性對(duì)代謝健康有著積極的影響。
關(guān)鍵詞:異麥芽酮糖;持續(xù)能量;緩釋碳水化合物;糖尿??;血糖管理;體重管理
異麥芽酮糖(帕拉金糖,PalatinoseTM)是一種低血糖指數(shù)(GI)碳水化合物,GI值為32[1],它是一種獨(dú)特的二糖碳水化合物,可被緩慢而完全地消化吸收,以緩慢、持續(xù)的方式釋放其所含碳水化合物能量[2]。這種能量釋放方式可以保持人體血糖水平處于低水平,較少波動(dòng),因而對(duì)維持人體代謝健康很重要。
1 異麥芽酮糖的結(jié)構(gòu)、來(lái)源及生產(chǎn)
異麥芽酮糖在甘蔗汁和蜂蜜中有少量天然存在。在工業(yè)生產(chǎn)規(guī)模上,它是由甜菜根所含的蔗糖經(jīng)天然酶轉(zhuǎn)化而成,增強(qiáng)了蔗糖的葡萄糖-果糖之間的化學(xué)鍵。異麥芽酮糖可以完全被人體小腸所分泌的消化酶水解,但水解速度要比蔗糖慢很多。人體酶動(dòng)力學(xué)研究表明,異麥芽酮糖的水解速度比蔗糖要慢4~5倍[3]。這種穩(wěn)定的α-1,6-糖苷鍵是異麥芽酮糖獨(dú)特生理效益的關(guān)鍵。異麥芽酮糖的健康效益包括:不促進(jìn)齲齒形成,因?yàn)樗傻挚谷梭w口腔微生物的酵解反應(yīng);在酸性條件下穩(wěn)定存在;在小腸中緩慢消化、持續(xù)地釋放能量;具有低血糖指數(shù)和低胰島素反應(yīng)特性;促進(jìn)脂肪氧化;有助于支持更好的代謝健康[2]。
2 異麥芽酮糖在體內(nèi)的代謝
異麥芽酮糖由蔗糖酶-異麥芽糖酶復(fù)合物的異麥芽糖酶亞基緩慢而完全水解。蔗糖是在該酶復(fù)合物的蔗糖酶位點(diǎn)水解,而異麥芽酮糖是在其異麥芽糖酶位點(diǎn)水解,通常它會(huì)主要參與淀粉分解過(guò)程中α-1,6-糖苷鍵的水解。這樣,異麥芽酮糖就可以像蔗糖和淀粉一樣被很好地消化吸收和具有耐受性,盡管它的水解速度要慢得多,但有利于代謝健康。
2.1 異麥芽酮糖的腸促胰島素反應(yīng)
異麥芽酮糖在小腸內(nèi)可被酶完全消化分解,這在一項(xiàng)針對(duì)攝入50g異麥芽酮糖的成年人進(jìn)行的回腸造口術(shù)研究中得到證實(shí)[4]。異麥芽酮糖具有良好的耐受性,即使高攝入量也不會(huì)引起血糖不適。研究表明,從每天攝入量高達(dá)140g[5],到一次性攝入75g[6],異麥芽酮糖的耐受性都很好。在極低齡的年齡組中,當(dāng)攝入含異麥芽酮糖的較大嬰兒配方奶粉時(shí),4~8個(gè)月大的嬰兒對(duì)異麥芽酮糖具有良好的耐受性和可接受性[7]。鑒于亞洲人群乳糖不耐受癥的高發(fā)率,異麥芽酮糖是一種健康的碳水化合物替代品,可被完全消化吸收,血糖指數(shù)低。這種特性使得異麥芽酮糖獨(dú)一無(wú)二,因?yàn)槠渌N類的低血糖指數(shù)碳水化合物實(shí)際上是不可利用的或部分可利用的。
與所有完全可利用碳水化合物一樣,包括那些可快速利用的碳水化合物,異麥芽酮糖可以提供相同的能量,都是4 kcal/g,但提供能量的過(guò)程要慢得多,且持續(xù)很長(zhǎng)時(shí)間[2]。碳水化合物能量在較長(zhǎng)時(shí)間內(nèi)的平衡流動(dòng)也反映在人體內(nèi)分泌或腸道激素的反應(yīng)里[8-11]。快速利用的碳水化合物,如蔗糖,會(huì)在產(chǎn)GIP的K細(xì)胞聚焦的小腸上部釋放更多葡萄糖誘導(dǎo)的胰島素樣肽(GIP)[8]。相反,可緩慢消化的異麥芽酮糖在小腸下部觸發(fā)更多的胰高血糖素樣肽-1(GLP-1)釋放,而產(chǎn)生GLP-1的L細(xì)胞位于小腸下部[8]。針對(duì)健康受試者、糖尿病前期受試者和糖尿病受試者的人體臨床研究表明,異麥芽酮糖抑制胰島素樣肽GIP分泌,并觸發(fā)胰高血糖素樣肽GLP-1釋放[8-11]。這說(shuō)明異麥芽酮糖是沿著整個(gè)小腸被緩慢地消化和吸收的。
2.2 高GLP-1和低GIP腸促胰島素反應(yīng)的作用
攝入異麥芽酮糖后較低的餐后血糖反應(yīng)有利于代謝健康,因?yàn)檫@會(huì)增加胰高血糖素樣肽GLP-1的釋放,并降低胰島素樣肽GIP水平[8,12]。這一效益已在健康成年人和糖尿病患者的臨床研究中得到證實(shí)[8- 11]。一項(xiàng)對(duì)日本健康男性進(jìn)行的雙盲、安慰劑對(duì)照研究發(fā)現(xiàn),與蔗糖相比,餐后攝入異麥芽酮糖可產(chǎn)生更高的GLP-1腸促胰島素反應(yīng)、更低的GIP反應(yīng)以及更低的血糖和胰島素反應(yīng)[11]。同樣,由德國(guó)人體營(yíng)養(yǎng)研究所臨床營(yíng)養(yǎng)系主任Andreas Pfeiffer教授進(jìn)行的一項(xiàng)人體臨床研究證實(shí),與蔗糖相比,異麥芽酮糖能降低糖尿病患者的血糖和胰島素反應(yīng),并降低GIP,同時(shí)增加GLP-1分泌[9]。由于異麥芽酮糖的有益作用,Pfeiffer教授指出,這對(duì)2型糖尿病患者尤其有利,因?yàn)樗麄兊难撬酵Э?。因此,在調(diào)節(jié)血糖代謝方面,異麥芽酮糖比普通食糖(蔗糖)要好得多。Pfeiffer教授還提出了一個(gè)新概念,即GIP腸促胰島素應(yīng)作為碳水化合物質(zhì)量的臨床生物標(biāo)記物,因?yàn)樗鼘?duì)代謝健康有不利影響[8]。高血糖指數(shù)的碳水化合物,如蔗糖,會(huì)導(dǎo)致高GIP水平,從而損害代謝健康。較高的GIP反應(yīng)會(huì)增加神經(jīng)肽水平,改變能量代謝,導(dǎo)致肌肉中脂肪氧化水平降低,也會(huì)導(dǎo)致脂肪肝的發(fā)生。此外,GIP增加脂肪組織的炎癥,并誘導(dǎo)趨化因子聚集炎癥細(xì)胞。高GIP水平還會(huì)導(dǎo)致肥胖和較低胰島素反應(yīng),進(jìn)而導(dǎo)致高血糖水平和糖尿病的發(fā)生[8]。相比之下,GLP-1是一種有益的腸促胰島素,人體和動(dòng)物研究證明了這一點(diǎn)[12]。這種腸促胰島素通過(guò)增加飽腹感和減少食欲,在控制體重和調(diào)節(jié)能量平衡方面發(fā)揮作用。它還通過(guò)改善血管內(nèi)皮功能和降低血壓有益于心血管健康。在胰腺的b細(xì)胞中,GLP-1不僅能促進(jìn)胰島素的合成和分泌,還能幫助維持b細(xì)胞的功能。Salvatore等[12]在2019年的回顧文章中更詳細(xì)地描述了GLP-1和GIP的作用,以異麥芽酮糖為理想模型,探討低血糖指數(shù)碳水化合物的攝入對(duì)腸促胰島素反應(yīng)的影響。
3 異麥芽酮糖的低血糖指數(shù)特性
3.1 人體同位素研究
使用同位素技術(shù)是研究葡萄糖代謝的基本工具,它有助于區(qū)分由肝臟產(chǎn)生的葡萄糖和來(lái)自消耗外部來(lái)源碳水化合物的葡萄糖。在一項(xiàng)針對(duì)成年糖尿病人的隨機(jī)、雙盲交叉研究中,使用穩(wěn)定同位素技術(shù)評(píng)估了異麥芽酮糖與蔗糖的餐后葡萄糖代謝[10],這項(xiàng)研究證實(shí)了異麥芽酮糖水解過(guò)程中葡萄糖在腸道內(nèi)的緩慢而持久地消化吸收。與蔗糖相比,這表現(xiàn)在血糖水平的較低升高幅度和胰島素反應(yīng)的較低釋放量。此外,GIP腸促胰島素的分泌較低,而有益的腸促胰島素GLP-1水平較高。這種與異麥芽酮糖相關(guān)的腸促胰島素的分泌模式有助于改善葡萄糖產(chǎn)生,即降低血糖反應(yīng)。
3.2 臨床研究
異麥芽酮糖在小腸中緩慢而完全地被消化吸收。與高血糖指數(shù)碳水化合物不同,這會(huì)產(chǎn)生一個(gè)低血糖反應(yīng),但沒(méi)有明顯下降[2]。健康成年人的血糖反應(yīng)較低,相應(yīng)地,與胰島素的釋放較低有關(guān)(圖1)。來(lái)自30多項(xiàng)人體臨床試驗(yàn)的全部證據(jù)一致表明,與其他參考碳水化合物(包括蔗糖和麥芽糊精)相比,異麥芽酮糖的餐后血糖和胰島素反應(yīng)更低(圖2)。這些試驗(yàn)是在250多名受試者中進(jìn)行,包括體重正常、超重或肥胖的健康成年人、葡萄糖耐受正?;蚴軗p的成年人、1型和2型成年糖尿病人,以及兒童。
3.3 含異麥芽酮糖的低GI飲食可維持全天的較低血糖水平
國(guó)際科學(xué)專家建議使用低血糖指數(shù)飲食來(lái)控制糖尿病,并降低糖尿病和心臟病的風(fēng)險(xiǎn)[13]。異麥芽酮糖的低血糖指數(shù)特性有助于人體攝入低血糖指數(shù)飲食獲得更健康的血糖水平。一項(xiàng)采用24h連續(xù)血糖監(jiān)測(cè)系統(tǒng)對(duì)健康中國(guó)成年人進(jìn)行的臨床研究,評(píng)估了異麥芽酮糖與蔗糖的血糖效應(yīng)關(guān)系[14]。結(jié)果顯示,與含蔗糖的高血糖指數(shù)飲食相比,每天多次攝入含有異麥芽酮糖的低血糖指數(shù)飲食后,維持餐后血糖處于較低水平長(zhǎng)達(dá)24h。異麥芽酮糖組在第二天攝入不含異麥芽酮糖的標(biāo)準(zhǔn)膳食后,也有較低的血糖反應(yīng),即第二餐效應(yīng)。此外,異麥芽酮糖組的血糖反應(yīng)波動(dòng)明顯減少,脂肪氧化水平明顯升高。
3.4 異麥芽酮糖對(duì)亞洲人血糖水平的影響
研究表明,促進(jìn)血糖水平升高的高血糖指數(shù)飲食與代謝健康狀況較差有關(guān),包括糖尿病、心臟病、超重和肥胖的風(fēng)險(xiǎn)較高[15-17]。此外,與白種人相比,亞洲人患糖尿病的遺傳傾向更高,體重指數(shù)(BMI)更低[18-20]。這是因?yàn)闊o(wú)論體重指數(shù)BMI值是多少,亞洲人的脂肪,特別是腹部脂肪都比白種人多,這使得通過(guò)攝入低血糖指數(shù)碳水化合物來(lái)降低血糖水平和患糖尿病的風(fēng)險(xiǎn)變得更加重要。一項(xiàng)對(duì)健康的中國(guó)人、馬來(lái)人、印度人和白種人進(jìn)行的臨床研究發(fā)現(xiàn),在所有受試者中,單次攝入異麥芽酮糖可顯著降低其替代攝入蔗糖時(shí)的血糖反應(yīng)[21]。在這些人群中,亞洲人的血糖反應(yīng)比白種人低,由此從異麥芽酮糖攝入獲益更多。
4 異麥芽酮糖對(duì)人體的長(zhǎng)期影響
高血糖指數(shù)飲食會(huì)導(dǎo)致體重增加,因?yàn)樗偈谷梭w分泌更多的胰島素,抑制了人體對(duì)脂肪的利用,促進(jìn)了脂肪的儲(chǔ)存[22]。此外,越來(lái)越多的證據(jù)表明,肥胖人群體內(nèi)的脂肪氧化水平較低[23]。異麥芽酮糖是一種獨(dú)特的碳水化合物,可促進(jìn)脂肪氧化[2],這在健康人群、超重和肥胖的成年人、糖尿病患者以及訓(xùn)練有素的運(yùn)動(dòng)員身上都有體現(xiàn)[6,14,24-29]。異麥芽酮糖促進(jìn)脂肪氧化的機(jī)制是降低胰島素的釋放[2,14]。攝入異麥芽酮糖可降低血糖和胰島素反應(yīng)。持續(xù)12~16周進(jìn)行的人體研究表明,當(dāng)使用異麥芽酮糖替代蔗糖時(shí),腹部脂肪的積累較低,體重減輕較多[30- 32]。這對(duì)代謝健康更有利,因?yàn)楦共恐竞吭礁?,患糖尿病的風(fēng)險(xiǎn)就越大[16,33]。
動(dòng)物模型研究顯示,肝臟中積聚的甘油三酯較少[34]。與蔗糖組相比,高脂飼料中添加異麥芽酮糖的小鼠肝臟中甘油三酯含量較低,肝損傷較輕。這在一項(xiàng)針對(duì)成年糖尿病患者進(jìn)行的12周內(nèi)攝入異麥芽酮糖或蔗糖的研究中得到了證實(shí)[35]。一項(xiàng)隨機(jī)、雙盲對(duì)照研究發(fā)現(xiàn),與蔗糖組相比,含有異麥芽酮糖組的低能量飲食更有效地促進(jìn)超重和肥胖成年人的體重減輕[29]。研究者將體重下降歸因于異麥芽酮糖飲食有降低血糖和胰島素的作用。這表明,通過(guò)用異麥芽酮糖代替蔗糖對(duì)人體的飲食進(jìn)行微小的改變,可以幫助支持體重管理。
5 結(jié)論
異麥芽酮糖作為一種低血糖指數(shù)的碳水化合物,會(huì)增加體內(nèi)胰高血糖素樣肽的釋放,降低胰島素樣肽水平。攝入含異麥芽酮糖的低血糖指數(shù)膳食可以保持血糖處于較低水平,波動(dòng)也少,更好維持和實(shí)現(xiàn)代謝健康。異麥芽酮糖在不同健康狀況人群中顯示了低血糖反應(yīng)和低胰島素反應(yīng),低血糖反應(yīng)的亞洲人群的獲益更多,在體重管理和人體組成等方面都具有長(zhǎng)期影響和改善作用。
參考文獻(xiàn)
[1]Sydney University's Glycemic Index Research Service GI of Isomaltulose,Palatinose TM (Sudzucker AG,Mannheim,Germany).http://glycemicindex.com/gi-search/?food_name=palatinose
[2]Maresch CC,Petry SF,Theis S,et al. Low glycemic index prototype isomaltulose - update of clinical trials[J]. Nutrients,2017,9(4):381.
[3]Lina BAR,Jonker D,Kozianowski G. Isomaltulose (PalatinoseTM): a review of biological and toxicological studies[J]. Food Chem Toxicol,2002,40(10):1375-1381.
[4]Holub I,Gostner A,Theis S,et al. Novel findings on the metabolic effects of the low glycaemic carbohydrate isomaltulose (PalatinoseTM)[J]. Br J Nutr,2010,103(12):1730-1737.
[5]Keller J,Kahlhfer J,Peter A,et al. Effects of low versus high glycemic index sugar-sweetened beverages on postprandial vasodilatation and inactivity-induced impairment of glucose metabolism in healthy men[J]. Nutrients,2016,8(12):802.
[6]Knig D,Zdzieblik D,Holz A,et al. Substrate utilization and cycling performance following PalatinoseTM ingestion: A randomized,double-blind,controlled trial[J]. Nutrients,2016,8(7):390.
[7]Fleddermann M,Rauh-Pfeiffer A,Demmelmair H,et al. Effects of a follow-on formula containing isomaltulose (PalatinoseTM) on metabolic response,acceptance,tolerance and safety in infants: A randomized-controlled trial[J]. PLoS One,2016,11(3):e0151614.
[8]Pfeiffer AFH,Keyhani-Nejad F. High glycemic index metabolic damage - a pivotal role of GIP and GLP-1[J]. Trends Endocrinol Metab,2018,29(5):289-299.
[9]Keyhani-Nejad F,Kemper M,Schueler R,et al. Effects of palatinose and sucrose intake on glucose metabolism and incretin secretion in subjects with type 2 diabetes[J]. Dia Care,2016,39(3):e38-e39.
[10]Ang M,Linn T. Comparison of the effects of slowly and rapidly absorbed carbohydrates on postprandial glucose metabolism in type 2 diabetes mellitus patients: a randomized trial[J]. Am J Clin Nutr,2014,100(4):1059-1068.
[11]Maeda A,Miyagawa J,Miuchi M,et al. Effects of the naturally-occurring disaccharides,palatinose and sucrose,on incretin secretion in healthy non-obese subjects[J]. J Diabetes Investig,2013,4(3):281-286.
[12]Salvatore T,Nevola R,Pafundi PC,et al. Incretin hormones: The link between glycemic index and cardiometabolic diseases[J]. Nutrients,2019,11(8).
[13]Augustin LS,Kendall CW,Jenkins DJ,et al. Glycemic index,glycemic load and glycemic response: An international scientific consensus summit from the international carbohydrate quality consortium (ICQC) [J]. NutrMetab Cardiovasc Dis,2015,25(9):795-815.
[14]Henry CJ,Kaur B,Quek RYC,et al. A low glycaemic index diet incorporating isomaltulose is associated with lower glycaemic response and variability,and promotes fat oxidation in Asians[J].Nutrients,2017,9(5):473.
[15]Feng R,Du S,Chen Y,et al.High carbohydrate intake from starchy foods is positively associated with metabolic disorders: A Cohort Study from a Chinese population[J]. Sci Rep,2015,5:16919.
[16]Tey BH,Lee LF,Lee SM. High glycaemic index (GI) of Asian diet--what are the clinical implications? [J].Ann Acad Med Singap,2014,43(11):524-525.
[17]Yu D,Shu X-O,Li H,et al. Dietary carbohydrates,refined grains,glycemic load,and risk of coronary heart disease in Chinese adults[J]. Am J Epidemiol,2013,178(10):1542-1549.
[18]Rhee EJ. Diabetes in Asians[J]. Endocrinol Metab (Seoul),2015,30(3):263-269.
[19]Ma RCW,Chan JCN. Type 2 diabetes in East Asians: Similarities and differences with populations in Europe and the United States[J]. Ann N Y Acad Sci,2013,1281:64-91.
[20]Ramachandran A,Snehalatha C,Shetty AS,et al. Trends in prevalence of diabetes in Asian countries[J]. World J Diabetes,2012,3(6):110-117.
[21]Tan WSK,Tan S-Y,Henry CJ. Ethnic variability in glycemic response to sucrose and isomaltulose[J].Nutrients,2017,9(4).
[22]Kahlhfer J,Lagerpusch M,Enderle J,et al. Carbohydrate intake and glycemic index affect substrate oxidation during a controlled weight cycle in healthy men[J]. Eur J Clin Nutr,2014,68(9):1060-1066.
[23]Astrup A. The relevance of increased fat oxidation for body-weight management: Metabolic inflexibility in the predisposition to weight gain[J]. Obes Rev,2011,12(10):859-865.
[24]Knig D,Theis S,Kozianowski G,et al. Postprandial substrate use in overweight subjects with the metabolic syndrome after isomaltulose (PalatinoseTM) ingestion[J]. Nutrition,2012,28(6):651-656.
[25]West DJ,Morton RD,Stephens JW,et al. Isomaltulose improves postexercise glycemia by reducing CHO oxidation in T1DM[J]. Med Sci Sports Exerc,2011b,43(2):204-210.
[26]West DJ,Stephens JW,Bain SC,et al. A combined insulin reduction and carbohydrate feeding strategy 30 min before running best preserves blood glucose concentration after exercise through improved fuel oxidation in type 1 diabetes mellitus[J]. J Sports Sci,2011,29(3):279-289.
[27]Achten J,Jentjens RL,Brouns F,et al. Exogenous oxidation of isomaltulose is lower than that of sucrose during exercise in men[J]. J Nutr,2007,137(5):1143-1148.
[28]Knig D,Luther W,Polland V,et al. Carbohydrates in sports nutrition impact of the glycemic index[J]. Agro Food Anno,2007,18(5):9-10.
[29]Lightowler H,Schweitzer L,Theis S,et al. Changes in weight and substrate oxidation in overweight adults following isomaltulose intake during a 12-week weight loss intervention: A randomized,double-blind,controlled trial[J]. Nutrients,2019,11(10).
[30]Okuno M,Kim MK,Mizu M,et al. Palatinose-blended sugar compared with sucrose: different effects on insulin sensitivity after 12 weeks supplementation in sedentary adults[J]. Int J Food Sci Nutr,2010,61(6):643-651.
[31]Oizumi T,Daimon M,Jimbu Y,et al. A palatinose-based balanced formula improves glucose tolerance,serum free fatty acid levels and body fat composition[J]. Tohoku J Exp Med,2007,212(2):91-99.
[32]Yamori Y,Mori M,Mori H,et al. Japanese perspective on reduction in lifestyle disease risk in immigrant japanese brazilians: a double-blind,placebo-controlled intervention study on palatinose[J]. Clin Exp Pharmacol Physiol,2007,34:S5-S7.
[33]Bragg F,Tang K,Guo Y,et al. Associations of general and central adiposity with incident diabetes in chinese men and women[J]. Dia Care,2018,41(3):494-502.
[34]Keyhani-Nejad F,Irmler M,Isken F,et al. Nutritional strategy to prevent fatty liver and insulin resistance independent of obesity by reducing glucose-dependent insulinotropic polypeptide responses in mice[J]. Diabetologia,2015,58(2):374-383.
[35]Brunner S,Holub I,Theis S,et al. Metabolic effects of replacing sucrose by isomaltulose in subjects with type 2 diabetes: A randomized double-blind trial[J]. Diabetes Care,2012,35(6):1249-1251.
Low Glycaemicindex Property and Health Function of Isomaltulose
Anke Sentko1 ,Goh Peen Ern2,XING Qing-bin3
(1BENEO-Institute,Obrigheim 67283,Germany; 2BENEO-Institute,Singapore 117684;
3National Institute for Nutrition and Health,Chinese Center for Disease Control and Prevention,Beijing 100050,China)
Abstract:ObjectiveIsomaltulose,also known by its brand name PalatinoseTM,is a low glycaemic carbohydrate with a GI of 32. It is a unique disaccharide that is slowly,yet fully digestible.? MethodIsomaltuloses structure,source and manufacture are introduced,and its metabolism,low glycaemicindex property and health function are summarized.ResultIsomaltulose just as well-digested and tolerated as sucrose and starch,albeit at a much lower rate of hydrolysis,which makes it beneficial for metabolic health. The low glycaemic property of isomaltulose has been consistently demonstrated in over 30 human trials conducted in various population groups,including children and adults,and at different health stages,from healthy to diabetic. Incorporating isomaltulose as part of a low GI diet not only results in lower blood glucose response with fewer fluctuations,it also benefits other metabolic aspects,including higher rates of fat oxidation,lower accumulation of abdominal fat and supporting weight management.ConclusionThe low glycaemic property of Isomaltulose has the positive impact on metabolism health.
Keywords: isomaltulose; sustained energy; slow-release carbohydrate;diabetes mellitus; blood glucose management; weight management
作者簡(jiǎn)介:Anke Sentko(1960— ),女,學(xué)士,研究方向:法規(guī)事務(wù)與營(yíng)養(yǎng)傳播。
通信作者:邢青斌(1988— ),男,博士,助理研究員,研究方向:食物營(yíng)養(yǎng)。