郭建鋒 錢 偉 王 楠 費(fèi)樹(shù)岷
基于新積分不等式的時(shí)滯負(fù)荷頻率控制系統(tǒng)穩(wěn)定性分析
郭建鋒1錢 偉1王 楠1費(fèi)樹(shù)岷2
(1. 河南理工大學(xué)電氣工程與自動(dòng)化學(xué)院 焦作 454000 2. 東南大學(xué)自動(dòng)化學(xué)院 南京 210096)
該文研究了具有時(shí)變時(shí)滯和負(fù)荷擾動(dòng)的負(fù)荷頻率控制系統(tǒng)的穩(wěn)定性問(wèn)題。首先,構(gòu)造新的增廣向量和具有多重積分項(xiàng)的Lyapunov-Krasovskii泛函,建立不同變量間的耦合關(guān)系;其次,為了與所構(gòu)造的泛函緊密配合,提出基于時(shí)滯相關(guān)矩陣和自由矩陣的積分不等式及基于時(shí)滯相關(guān)矩陣的反凸組合不等式,對(duì)泛函導(dǎo)數(shù)進(jìn)行更精確的估計(jì),從而得到具有較小保守性的負(fù)荷頻率控制系統(tǒng)的穩(wěn)定性判據(jù);最后,通過(guò)對(duì)典型二階時(shí)滯系統(tǒng)和單區(qū)域時(shí)滯負(fù)荷頻率控制系統(tǒng)進(jìn)行仿真分析,驗(yàn)證了所得的穩(wěn)定性判據(jù)具有較小保守性,并分析了負(fù)荷擾動(dòng)和控制器參數(shù)對(duì)系統(tǒng)時(shí)滯上界的影響。
電力系統(tǒng)穩(wěn)定性 負(fù)荷頻率控制 時(shí)變時(shí)滯 Lyapunov-Krasovskii泛函 時(shí)滯相關(guān)矩陣
頻率是衡量電能質(zhì)量的關(guān)鍵指標(biāo)之一,頻率穩(wěn)定性對(duì)電力系統(tǒng)穩(wěn)定運(yùn)行至關(guān)重要[1]。頻率的波動(dòng)可能會(huì)使發(fā)電機(jī)和輔機(jī)偏離運(yùn)行狀態(tài),從而給電力系統(tǒng)穩(wěn)定運(yùn)行及用戶正常用電造成不利影響,所以電網(wǎng)頻率需維持在某個(gè)固定值或在其附近小范圍內(nèi)上下浮動(dòng),而負(fù)荷頻率控制(Load Frequency Control, LFC)是實(shí)現(xiàn)這一目標(biāo)的有效方法之一,在維持電網(wǎng)頻率和不同區(qū)域間的聯(lián)絡(luò)線功率交換方面發(fā)揮著重要作用[2-5]。目前,LFC在廣域互聯(lián)電力系統(tǒng)中得到了廣泛應(yīng)用。
LFC系統(tǒng)中數(shù)據(jù)測(cè)量、信號(hào)傳輸?shù)却蠖嘈杞柚_(kāi)放式通信網(wǎng)絡(luò),這種開(kāi)放式通信網(wǎng)絡(luò)可有效地降低成本且可實(shí)現(xiàn)大范圍、大數(shù)據(jù)量的信息交換[6-7]。在借助通信網(wǎng)絡(luò)構(gòu)成信號(hào)傳輸、控制回路時(shí),由于網(wǎng)絡(luò)帶寬的限制,在傳輸中不可避免地存在通信時(shí)滯、數(shù)據(jù)丟失、網(wǎng)絡(luò)阻塞與攻擊等問(wèn)題。其中時(shí)滯問(wèn)題普遍且突出,該問(wèn)題的存在可能會(huì)導(dǎo)致電力系統(tǒng)動(dòng)態(tài)性能惡化甚至不穩(wěn)定[8-9]。因此,考慮時(shí)滯影響下LFC系統(tǒng)的穩(wěn)定性問(wèn)題具有重要的理論和現(xiàn)實(shí)意義,已成為諸多學(xué)者關(guān)注的焦點(diǎn)。
目前,研究時(shí)滯系統(tǒng)穩(wěn)定性問(wèn)題的主要方法有頻域法和時(shí)域法。頻域法主要基于特征根的分布來(lái)判斷系統(tǒng)的穩(wěn)定性,但往往需要通過(guò)求解超越方程得到特征根,計(jì)算過(guò)程復(fù)雜且存在難以求解的問(wèn)題,因此該方法具有一定的局限性。相比于頻域法,時(shí)域法能夠較好地處理系統(tǒng)運(yùn)行時(shí)狀態(tài)信息發(fā)生跳變的情況,且計(jì)算過(guò)程更加簡(jiǎn)便,目前已成為分析時(shí)滯LFC系統(tǒng)穩(wěn)定性的主要方法。時(shí)域法中應(yīng)用最為廣泛的是Lyapunov-Krasovskii(L-K)泛函方法[10]。由于此方法給出的是系統(tǒng)穩(wěn)定的充分條件,必然存在一定的保守性。為了降低結(jié)果的保守性,諸多學(xué)者在L-K泛函構(gòu)造和泛函導(dǎo)數(shù)估計(jì)兩個(gè)方面進(jìn)行了深入研究,一些新的L-K泛函構(gòu)造方法和新的積分不等式被不斷地提出。如泛函構(gòu)造時(shí)有時(shí)滯分割方法[11]、增廣型L-K泛函[12]、多重積分項(xiàng)L-K泛函[13]、Delay-product型L-K泛函[14]等方法;在泛函導(dǎo)數(shù)估計(jì)時(shí)有Jensen不等式[15]、基于Wirtinger積分不等式[9]、基于Free-matrix積分不等式[16]、Relaxed積分不等式[17]、基于Auxiliary-function積分不等式[18]、Bessel-Legendre積分不等式[19]及不同形式的反凸組合不等式[20]等。文獻(xiàn)[5]通過(guò)建立一個(gè)增廣型L-K泛函,并利用Bessel-Legendre積分不等式對(duì)導(dǎo)數(shù)進(jìn)行處理,給出了LFC系統(tǒng)的最大時(shí)滯上界。文獻(xiàn)[6]針對(duì)雙時(shí)滯微電網(wǎng),構(gòu)造了一個(gè)具有更多增廣項(xiàng)的L-K泛函,然后應(yīng)用基于輔助函數(shù)的積分不等式,得到了微電網(wǎng)LFC系統(tǒng)的穩(wěn)定性判據(jù)。文獻(xiàn)[9]討論了受數(shù)據(jù)采樣時(shí)滯影響的LFC系統(tǒng)穩(wěn)定性,為充分利用基于Wirtinger積分不等式,構(gòu)造了與積分不等式緊密配合的增廣型L-K泛函,從而得到了保守性較小的穩(wěn)定性判據(jù)。文獻(xiàn)[18]通過(guò)構(gòu)造含有三重積分項(xiàng)的增廣型L-K泛函,并應(yīng)用基于Intermediate-auxiliary-function二重積分不等式對(duì)泛函導(dǎo)數(shù)進(jìn)行估計(jì),得到了更精確的估計(jì)邊界,從而獲得了時(shí)滯LFC系統(tǒng)保守性更小的穩(wěn)定性判據(jù)。文獻(xiàn)[21]通過(guò)增廣向量,得到增廣型L-K泛函,然后結(jié)合基于無(wú)窮級(jí)數(shù)的積分不等式,得到了時(shí)滯LFC系統(tǒng)穩(wěn)定性判據(jù)。文獻(xiàn)[22]通過(guò)提出一種基于低階時(shí)滯相關(guān)的L-K泛函,并應(yīng)用基于Wirtinger積分不等式對(duì)其導(dǎo)數(shù)進(jìn)行估計(jì),獲得了LFC系統(tǒng)較大的時(shí)滯上界。需要注意的是,上述文獻(xiàn)采用的方法雖然對(duì)獲得較小保守性的穩(wěn)定性判據(jù)有較大貢獻(xiàn),但在L-K泛函構(gòu)造方法、泛函導(dǎo)數(shù)估計(jì)及兩者有效配合上仍存在較大的提升空間。
基于上述討論,本文進(jìn)一步研究具有時(shí)滯影響和負(fù)荷擾動(dòng)的LFC系統(tǒng)穩(wěn)定性問(wèn)題,目的是得到保守性更小的穩(wěn)定性判據(jù),并深入分析控制器參數(shù)對(duì)系統(tǒng)時(shí)滯上界的影響。首先,充分考慮系統(tǒng)時(shí)滯及其導(dǎo)數(shù)信息,構(gòu)造一個(gè)包含新的增廣向量和多重積分項(xiàng)的L-K泛函,以建立不同變量間的耦合關(guān)系,有助于降低穩(wěn)定性判據(jù)的保守性。其次,為了更精確地估計(jì)泛函導(dǎo)數(shù),提出基于時(shí)滯相關(guān)矩陣(Delay-Dependent-Matrix-Based, DDMB)和基于自由矩陣(Free-Matrix-Based, FMB)的積分不等式,該不等式與所構(gòu)造的L-K泛函進(jìn)行有效配合,能更精確地估計(jì)泛函導(dǎo)數(shù)。與現(xiàn)有的基于常數(shù)矩陣的積分不等式估計(jì)方法相比,這種新的積分不等式通過(guò)引入時(shí)滯相關(guān)矩陣,能充分利用更多的時(shí)滯信息。再次,提出擴(kuò)展的基于時(shí)滯相關(guān)矩陣(Extended Delay-Dependent-Matrix-Based, EDDMB)的反凸組合不等式,突破現(xiàn)有反凸組合不等式的局限性,擴(kuò)大其適用范圍。此外,還使用基于輔助函數(shù)的積分不等式,從而得到較小保守性的穩(wěn)定性判據(jù)。最后,通過(guò)對(duì)典型的二階時(shí)滯系統(tǒng)和單區(qū)域時(shí)滯LFC系統(tǒng)仿真,驗(yàn)證了本文方法的有效性。
LFC系統(tǒng)模型主要包括發(fā)電機(jī)-負(fù)荷、原動(dòng)機(jī)、調(diào)速系統(tǒng)、輔助LFC控制器等模型。發(fā)電機(jī)-負(fù)荷模型主要描述發(fā)電機(jī)輸入端的機(jī)械功率變化、電網(wǎng)負(fù)荷變化及相應(yīng)頻率偏離量之間的相互關(guān)系。原動(dòng)機(jī)主要用于產(chǎn)生機(jī)械功率進(jìn)而帶動(dòng)發(fā)電機(jī)組發(fā)電,一次調(diào)頻也依靠原動(dòng)機(jī)來(lái)完成。原動(dòng)機(jī)可以分為許多類別,如水輪機(jī)、汽輪機(jī)、燃?xì)廨啓C(jī)等,為了便于分析且不失一般性,本文原動(dòng)機(jī)模型選用常用的非再熱式汽輪機(jī)。調(diào)速系統(tǒng)主要用于系統(tǒng)一次調(diào)頻;輔助LFC控制器主要通過(guò)輔助控制器進(jìn)行系統(tǒng)二次調(diào)頻。在電力系統(tǒng)的分析和控制中,往往根據(jù)不同的控制問(wèn)題和目標(biāo)建立不同的模型。相對(duì)于電網(wǎng)電壓和功角等快速動(dòng)態(tài)過(guò)程,頻率響應(yīng)屬于較慢的動(dòng)態(tài)過(guò)程,在針對(duì)負(fù)荷端擾動(dòng)的分析和設(shè)計(jì)時(shí),往往采用簡(jiǎn)化的低階線性系統(tǒng)來(lái)表征系統(tǒng)在運(yùn)行點(diǎn)附近的動(dòng)態(tài)特征。因此,在對(duì)系統(tǒng)建模時(shí),只需用簡(jiǎn)化模型表示出各部分與頻率相關(guān)的主要特性即可。
考慮時(shí)滯影響和負(fù)荷擾動(dòng)的負(fù)荷頻率控制系統(tǒng)模型結(jié)構(gòu)如圖1所示。
圖1 考慮時(shí)滯和負(fù)荷擾動(dòng)的LFC結(jié)構(gòu)框圖
其狀態(tài)空間模型可表示為
其中
區(qū)域控制誤差(ACE)通常采用區(qū)域頻率偏差與聯(lián)絡(luò)線功率控制模式。第個(gè)區(qū)域控制誤差定義為
綜合式(1)~式(4),可得具有時(shí)變時(shí)滯的LFC閉環(huán)系統(tǒng)動(dòng)態(tài)模型為
其中
式中,di亦為系統(tǒng)矩陣。
式中,1和為常數(shù),1為時(shí)滯下界,<1。
為了估計(jì)負(fù)荷擾動(dòng)對(duì)電力系統(tǒng)的影響,未知的負(fù)荷擾動(dòng)可以假設(shè)為當(dāng)前狀態(tài)和時(shí)滯狀態(tài)變量的非線性擾動(dòng)[5,18],即
且滿足條件
式中,、為適維的常數(shù)矩陣;、為已知的非負(fù)標(biāo)量。
本文的主要結(jié)論需用到以下命題和引理。
則有
其中
證明:定義
由此,可以得到
證畢。
則有
其中
需要注意的是,相比于現(xiàn)有的時(shí)滯相關(guān)矩陣(DDMB)反凸組合不等式(文獻(xiàn)[20]引理2),命題2放松了對(duì)時(shí)滯下界1=0的限制,1可以取大于等于0的不同值。當(dāng)1=0時(shí),命題2簡(jiǎn)化為DDMB反凸組合不等式。因此命題2更具一般性。
其中
其中
其中
本節(jié)通過(guò)構(gòu)造一個(gè)合適的L-K泛函,并采用新的分析方法,得到具有較小保守性的穩(wěn)定性判據(jù)。為簡(jiǎn)化表述,定義如下向量。
其中
證明過(guò)程詳見(jiàn)附錄。
其中
為了說(shuō)明本文提出的DDMB和FMB積分不等式、EDDMB反凸組合不等式在估計(jì)泛函導(dǎo)數(shù)時(shí)的優(yōu)勢(shì),在推論2中采用傳統(tǒng)的FMB積分不等式和反凸組合不等式對(duì)L-K泛函的導(dǎo)數(shù)進(jìn)行估計(jì)。
其中
其余符號(hào)的定義見(jiàn)推論1。
本節(jié)通過(guò)對(duì)典型的二階時(shí)滯系統(tǒng)和單區(qū)域時(shí)滯LFC系統(tǒng)進(jìn)行仿真分析,說(shuō)明本文結(jié)論的優(yōu)越性;同時(shí),還分析了單區(qū)域時(shí)滯LFC系統(tǒng)在不同條件下控制器參數(shù)對(duì)時(shí)滯上界的影響。
推論1和推論2在時(shí)滯下界1、時(shí)滯變化率取不同值時(shí)所得到的時(shí)滯上界2見(jiàn)表1??梢钥闯?,當(dāng)=0.5、1=2s時(shí),推論1得到的時(shí)滯上界2比推論2提高了36.04%;當(dāng)=0.5、1=0時(shí),推論1得到的時(shí)滯上界2比推論2提高了19.12%。因此,應(yīng)用本文提出的積分不等式能有效提高時(shí)滯上界,擴(kuò)大穩(wěn)定裕度。
表1 推論1與推論2結(jié)果對(duì)比
Tab.1 Comparative results of Corollary 1 and Corollary 2
表2、表3列出了本文推論1與現(xiàn)有部分文獻(xiàn)得到的時(shí)滯上界對(duì)比數(shù)據(jù)。
表21取不同值、=0.5時(shí),時(shí)滯上界2結(jié)果對(duì)比
Tab.2 Comparative results of h2 for given h1 with μ=0.5(單位:s)
表3取不同值、1=0時(shí),時(shí)滯上界2結(jié)果對(duì)比
Tab.3 Comparative results of h2 for given μ with h1=0
從表2可以看出,當(dāng)=0.5、1取不同值時(shí),推論1得到的時(shí)滯上界2明顯大于文獻(xiàn)[11, 17-18, 23-25]的結(jié)果。從表3可以看出,當(dāng)1=0、取不同值時(shí),推論1得到的時(shí)滯上界2明顯大于文獻(xiàn)[12, 16, 19, 26-28]的結(jié)果。由此可見(jiàn),本文方法得到的時(shí)滯上界更大,降低了現(xiàn)有結(jié)論的保守性。
表5和圖2反映了PI控制器參數(shù)(P、I)與系統(tǒng)時(shí)滯上界的關(guān)系。當(dāng)P固定時(shí),時(shí)滯上界2隨著I增大而減小,且P越小,這種趨勢(shì)越明顯。時(shí)滯上界2與P之間的關(guān)系更為復(fù)雜。當(dāng)I固定時(shí),2隨著P的增加先增大后減小。由此可見(jiàn),PI控制器參數(shù)對(duì)時(shí)滯上界的影響非常明顯。圖2可以在不同的時(shí)滯上界時(shí),為控制器參數(shù)P、I設(shè)計(jì)提供參考。
表4 不同條件下允許的時(shí)滯上界2
表5P、I取不同值時(shí)允許的時(shí)滯上界2
Tab.5 Admissible upper bound h2 under different KP and KI
圖2 控制器參數(shù)KP、KI與時(shí)滯上界h2的關(guān)系
表6、表7給出了本文定理1與現(xiàn)有文獻(xiàn)[5,9,18, 29-30]得到的時(shí)滯上界對(duì)比數(shù)據(jù)。可以看出,由本文方法得到時(shí)滯上界大于其他方法,其中文獻(xiàn)[5]采用Bessel-Legendre積分不等式,文獻(xiàn)[9]運(yùn)用基于Wirtinger積分不等式,文獻(xiàn)[18]使用基于輔助函數(shù)的積分不等式,文獻(xiàn)[29]運(yùn)用Jensen不等式和反凸組合技術(shù),文獻(xiàn)[30]運(yùn)用基于Wirtinger雙重積分不等式。需要說(shuō)明的是,表6、表7所列的時(shí)滯上界數(shù)據(jù)均為基于不同的方法得到估計(jì)值,并非系統(tǒng)時(shí)滯上界的真實(shí)值。越有效的方法得到的時(shí)滯上界越接近真實(shí)值,這也表明本文提出的新積分不等式在精確估計(jì)L-K泛函導(dǎo)數(shù)和提高穩(wěn)定裕度方面具有優(yōu)勢(shì)。
表6 無(wú)負(fù)荷擾動(dòng)系統(tǒng)P、I取不同值時(shí),時(shí)滯上界2結(jié)果對(duì)比
Tab.6 Comparative results of h2 with different KP, KI of no load disturbance system
表7 負(fù)荷擾動(dòng)系統(tǒng)P、I取不同值時(shí),時(shí)滯上界2結(jié)果對(duì)比
Tab.7 Comparative results of h2 with different KP, KI of load disturbance system
表8P=0.1、I=0.2,1取不同值時(shí),時(shí)滯上界2結(jié)果對(duì)比
Tab.8 Comparative results of h2 with various h1 and KP=0.1, KI=0.2
為了驗(yàn)證本文結(jié)果的準(zhǔn)確性,針對(duì)單區(qū)域LFC系統(tǒng)模型,采用Matlab/Simulink進(jìn)行仿真,分兩種情況討論。
1)時(shí)滯為恒定情況。選取負(fù)荷擾動(dòng)參數(shù)=0、=0.1,標(biāo)量=0、=0.025。當(dāng)P=0.1、I=0.4時(shí),由表4可知系統(tǒng)的時(shí)滯上界2=3.32 s。圖3給出了該工況下頻率偏差Δ的變化情況。可以看出,當(dāng)時(shí)滯取上界3.32 s時(shí),頻率偏差收斂到零,系統(tǒng)漸近穩(wěn)定;當(dāng)時(shí)滯(3.60 s)超過(guò)上界值時(shí),頻率偏差出現(xiàn)振蕩,無(wú)法收斂到零,系統(tǒng)不穩(wěn)定。
圖3 固定時(shí)滯情況下頻率響應(yīng)曲線
2)時(shí)滯為時(shí)變情況。選取負(fù)荷擾動(dòng)參數(shù)==0.1,==0.025,當(dāng)P=0.1、I=0.6時(shí),由表4可知系統(tǒng)的時(shí)滯上界2=1.80 s。圖4給出了時(shí)滯隨時(shí)間變化的系統(tǒng)式(6)的頻率響應(yīng)??梢钥闯觯?dāng)時(shí)滯取上界1.80 s時(shí),頻率偏差收斂到零,系統(tǒng)漸近穩(wěn)定;當(dāng)時(shí)滯(2.20 s)超過(guò)上界值時(shí),頻率偏差出現(xiàn)振蕩,無(wú)法收斂到零,系統(tǒng)不穩(wěn)定。
圖4 時(shí)變時(shí)滯情況下頻率響應(yīng)曲線
除了時(shí)滯對(duì)系統(tǒng)性能產(chǎn)生影響外,控制器參數(shù)也是影響系統(tǒng)性能的重要因素。為了驗(yàn)證PI控制器的比例增益P、積分增益I對(duì)頻率偏差調(diào)節(jié)的影響,考慮固定時(shí)滯(=0)和無(wú)負(fù)荷擾動(dòng)時(shí)(=0、=0),在系統(tǒng)穩(wěn)定的前提下,改變P和I,系統(tǒng)頻率偏差動(dòng)態(tài)響應(yīng)如圖5和圖6所示。其中,圖5給出了P取相同值、I取不同值時(shí),系統(tǒng)頻率偏差響應(yīng)曲線??梢钥闯?,I越大,系統(tǒng)超調(diào)量越小,穩(wěn)態(tài)誤差消除得越快。
圖5 相同KP、不同KI時(shí)頻率響應(yīng)曲線
圖6 相同KI、不同KP時(shí)頻率響應(yīng)曲線
圖6給出了I取相同值、P取不同值時(shí),系統(tǒng)頻率偏差響應(yīng)曲線??梢钥闯觯琍越大,系統(tǒng)響應(yīng)速度越快,趨于穩(wěn)定的時(shí)間越短,但在初始階段,出現(xiàn)了較大的超調(diào)量。
本文研究了時(shí)滯LFC系統(tǒng)的穩(wěn)定性問(wèn)題。通過(guò)構(gòu)造增廣向量和具有多重積分項(xiàng)的L-K泛函,增強(qiáng)了不同變量間的耦合關(guān)系,為得到保守性小的穩(wěn)定性判據(jù)奠定了基礎(chǔ)。處理泛函導(dǎo)數(shù)時(shí),在傳統(tǒng)自由矩陣積分不等式和反凸組合技術(shù)基礎(chǔ)上進(jìn)行拓展延伸,提出了新的DDMB和FMB積分不等式、EDDMB反凸組合不等式,通過(guò)引入時(shí)滯相關(guān)自由矩陣,充分利用更多的時(shí)滯信息,從而使泛函導(dǎo)數(shù)估計(jì)更加精確,進(jìn)而得到了保守性更小的結(jié)論。仿真結(jié)果表明了該方法的有效性和優(yōu)越性。需要注意的是,該方法在一定程度上增加了計(jì)算量。如何在L-K泛函中減少冗余矩陣,從而在保證穩(wěn)定裕度不變的前提下,減小計(jì)算量,并考慮LFC系統(tǒng)中非線性和隨機(jī)出現(xiàn)的不完全信息等其他因素,是需要在今后工作中進(jìn)一步研究的問(wèn)題。此外,本文僅討論了LFC系統(tǒng)各區(qū)域時(shí)滯均相同的情況,在實(shí)際系統(tǒng)中,還存在多時(shí)滯、混合時(shí)滯及隨機(jī)時(shí)滯等更為復(fù)雜的情況,這也是需要進(jìn)一步深入研究探討的問(wèn)題。
定理1證明如下。
針對(duì)系統(tǒng)式(6)構(gòu)造L-K泛函為
其中
考慮式(A4)中第一個(gè)積分項(xiàng),根據(jù)命題1可得
考慮式(A4)中第二個(gè)積分項(xiàng),根據(jù)引理1和命題2可得
由式(A4)~式(A6)可得
將式(A8)中后兩項(xiàng)二重積分的積分區(qū)間進(jìn)行分割,得到
將式(A9)~式(A23)代入式(A8)可得
結(jié)合式(A2)、式(A3)、式(A7)和式(A24)可得到
利用Schur補(bǔ)引理,式(A26)等價(jià)于式(17),證明完畢。
[1] 陳宗遙, 卜旭輝, 郭金麗. 基于神經(jīng)網(wǎng)絡(luò)的數(shù)據(jù)驅(qū)動(dòng)互聯(lián)電力系統(tǒng)負(fù)荷頻率控制[J]. 電工技術(shù)學(xué)報(bào), 2022, 37(21): 5451-5461. Chen Zongyao, Bu Xuhui, Guo Jinli. Neural network based data-driven load frequency control for interconnected power systems[J]. Transactions of China Electrotechnical Society, 2022, 37(21): 5451-5461.
[2] 常燁骙, 李衛(wèi)東, 巴宇, 等. 基于運(yùn)行安全的頻率控制性能評(píng)價(jià)新方法[J]. 電工技術(shù)學(xué)報(bào), 2019, 34(6): 1218-1229. Chang Yekui, Li Weidong, Ba Yu, et al. A new method for frequency control performance assessment on operation security[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1218-1229.
[3] 梁煜東, 陳巒, 張國(guó)洲, 等. 基于深度強(qiáng)化學(xué)習(xí)的多能互補(bǔ)發(fā)電系統(tǒng)負(fù)荷頻率控制策略[J]. 電工技術(shù)學(xué)報(bào), 2022, 37(7): 1768-1779. Liang Yudong, Chen Luan, Zhang Guozhou, et al. Load frequency control strategy of hybrid power generation system: a deep reinforcement learning-based approach[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1768-1779.
[4] 呂永青, 竇曉波, 楊冬梅, 等. 含荷電狀態(tài)修正和通信延遲的儲(chǔ)能電站負(fù)荷頻率魯棒控制[J]. 電力系統(tǒng)自動(dòng)化, 2021, 45(10): 59-67. Lü Yongqing, Dou Xiaobo, Yang Dongmei, et al. Load-frequency robust control for energy storage power station considering correction of state of charge and communication delay[J]. Automation of Electric Power Systems, 2021, 45(10): 59-67.
[5] Yang Feisheng, He Jing, Pan Quan. Further improvement on delay-dependent load frequency control of power systems via truncated B-L inequality[J]. IEEE Transactions on Power Systems, 2018, 33(5): 5062-5071.
[6] Hua Changchun, Wang Yibo, Wu Shuangshuang. Stability analysis of micro-grid frequency control system with two additive time-varying delay[J]. Journal of the Franklin Institute, 2020, 357(8): 4949-4963.
[7] 馬燕峰, 霍亞欣, 李鑫, 等. 考慮時(shí)滯影響的雙饋風(fēng)電場(chǎng)廣域附加阻尼控制器設(shè)計(jì)[J]. 電工技術(shù)學(xué)報(bào), 2020, 35(1): 158-166. Ma Yanfeng, Huo Yaxin, Li Xin, et al. Design of wide area additional damping controller for doubly fed wind farms considering time delays[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 158-166.
[8] 錢偉, 王晨晨, 費(fèi)樹(shù)岷. 區(qū)間變時(shí)滯廣域電力系統(tǒng)穩(wěn)定性分析與控制器設(shè)計(jì)[J]. 電工技術(shù)學(xué)報(bào), 2019, 34(17): 3640-3650. Qian Wei, Wang Chenchen, Fei Shumin. Stability analysis and controller design of wide-area power system with interval time-varying delay[J]. Transactions of China Electrotechnical Society, 2019, 34(17): 3640-3650.
[9] Luo Haocheng, Hiskens I A, Hu Zechun. Stability analysis of load frequency control systems with sampling and transmission delay[J]. IEEE Transactions on Power Systems, 2020, 35(5): 3603-3615.
[10] Shen Hao, Chen Mengshen, Wu Zhengguang, et al. Reliable event-triggered asynchronous extended passive control for semi-markov jump fuzzy systems and its application[J]. IEEE Transactions on Fuzzy Systems, 2020, 28(8): 1708-1722.
[11] Qian Wei, Yuan Manman, Wang Lei, et al. Stabilization of systems with interval time-varying delay based on delay decomposing approach[J]. ISA Transactions, 2017, 70: 1-6.
[12] Kwon O M, Lee S H, Park M J, et al. Augmented zero equality approach to stability for linear systems with time-varying delay[J]. Applied Mathematics and Computation, 2020, 381: 125329.
[13] Qian Wei, Xing Weiwei, Fei Shumin. H(∞) state estimation for neural networks with general activation function and mixed time-varying delays[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(9): 3909-3918.
[14] Xu Haotian, Zhang Chuanke, Jiang Lin, et al. Stability analysis of linear systems with two additive time-varying delays via delay-product-type Lyapunov functional[J]. Applied Mathematical Modelling, 2017, 45: 955-964.
[15] Zhang Zhiming, He Yong, Wu Min, et al. Exponential synchronization of neural networks with time-varying delays via dynamic intermittent output feedback control[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(3): 612-622.
[16] Zeng Hongbing, He Yong, Wu Min, et al. Free-matrix-based integral inequality for stability analysis of systems with time-varying delay[J]. IEEE Transactions on Automatic Control, 2015, 60(10): 2768-2772.
[17] Qian Wei, Gao Yanshan, Chen Yonggang, et al. The stability analysis of time-varying delayed systems based on new augmented vector method[J]. Journal of the Franklin Institute, 2019, 356(3): 1268-1286.
[18] Yang Feisheng, He Jing, Wang Jing, et al. Auxiliary-function-based double integral inequality approach to stability analysis of load frequency control systems with interval time-varying delay[J]. IET Control Theory & Applications, 2018, 12(5): 601-612.
[19] Seuret A, Gouaisbaut F. Stability of linear systems with time-varying delays using Bessel-Legendre inequalities[J]. IEEE Transactions on Automatic Control, 2018, 63(1): 225-232.
[20] Zhang Ruimei, Zeng Deqiang, Park J H, et al. New approaches to stability analysis for time-varying delay systems[J]. Journal of the Franklin Institute, 2019, 356(7): 4174-4189.
[21] Yang Feisheng, He Jing, Wang Dianhui. New stability criteria of delayed load frequency control systems via infinite-series-based inequality[J]. IEEE Transactions on Industrial Informatics, 2018, 14(1): 231-240.
[22] Jin Li, Zhang Chuanke, He Yong, et al. Delay-dependent stability analysis of multi-area load frequency control with enhanced accuracy and computation efficiency[J]. IEEE Transactions on Power Systems, 2019, 34(5): 3687-3696.
[23] van Hien L, Trinh H. Refined Jensen-based inequality approach to stability analysis of time-delay systems[J]. IET Control Theory & Applications, 2015, 9(14): 2188-2194.
[24] Liu Yajuan, Park J H, Guo Baozhu. Results on stability of linear systems with time varying delay[J]. IET Control Theory & Applications, 2017, 11(1): 129-134.
[25] Kwon O M, Park M J, Park J H, et al. Enhancement on stability criteria for linear systems with interval time-varying delays[J]. International Journal of Control, Automation and Systems, 2016, 14(1): 12-20.
[26] Abolpour R, Dehghani M, Talebi H A. Stability analysis of systems with time-varying delays using overlapped switching Lyapunov Krasovskii functional[J]. Journal of the Franklin Institute, 2020, 357(15): 10844-10860.
[27] Zhang Chuanke, He Yong, Jiang Lin, et al. Notes on stability of time-delay systems: bounding inequalities and augmented Lyapunov-Krasovskii functionals[J]. IEEE Transactions on Automatic Control, 2017, 62(10): 5331-5336.
[28] Gyurkovics é, Takács T. Comparison of some bounding inequalities applied in stability analysis of time-delay systems[J]. Systems & Control Letters, 2019, 123: 40-46.
[29] Ramakrishnan K, Ray G. Stability criteria for nonlinearly perturbed load frequency systems with time-delay[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2015, 5(3): 383-392.
[30] Park M J, Kwon O M, Park J H, et al. Stability of time-delay systems via Wirtinger-based double integral inequality[J]. Automatica, 2015, 55: 204-208.
[31] Qian Wei, Xing Weiwei, Wang Lei, et al. New optimal analysis method to stability and(∞) performance of varying delayed systems[J]. ISA Transactions, 2019, 93: 137-144.
New Integral Inequality Approach on Stability Criteria for Delayed Load Frequency Control Systems
Guo Jianfeng1Qian Wei1Wang Nan1Fei Shumin2
(1. School of Electrical Engineering and Automation Henan Polytechnic University Jiaozuo 454000 China 2. School of Automation Southeast University Nanjing 210096 China)
In wide-area interconnected power systems, load frequency control (LFC) has a pivotal role in addressing the issue of upholding the variations in system frequency and power exchange between different control areas at desired scheduled values. With the development of smart grid technologies and the emergence of numerous private networks, open communication networks are widely used, which inevitably leads to communication delay. The communication delay is an important factor affecting the stability and performance of LFC system. At present, Lyapunov-Krasovskii (L-K) functional method is one of the main methods to study the stability of LFC system. To this issue, how to construct appropriate L-K functional and estimate the functional derivatives accurately to reduce the conservatism of conclusions is the core problem, and the sustained efforts have been made, but it is far from enough in how to coordinate functional construction with estimating techniques efficiently. In this paper, the stability problem of LFC system with delay influence and load disturbance is further studied, by proposing some new methods, the less conservative stability criteria are obtained, and the influence of controller parameters on the delay margin is analyzed.
Firstly, by considering time delay and load disturbance, the LFC system model is established. Secondly, a new L-K functional with augmented vector and multiple integral terms is constructed. The single integral terms and the double integral terms are introduced, which builds more relations among different vectors. Moreover, state vector and its derivative are augmented to deepen the relationships between L-K functional and the system. Besides, integral functionals with double and triple forms are also created to get a better exploitation of delay information, all of which conduce to the stability criteria with less conservatism.
Then, in order to cooperate with the constructed functional effectively, two inequalities named delay-dependent-matrix-based and free-matrix-based integral inequality (DDMB and FMB integral inequality) and extended delay-dependent-matrix-based reciprocally convex inequality (EDDMB reciprocally convex inequality) are proposed to estimate the functional derivatives more accurately. Compared with the existing estimation approaches with constant matrices, DDMB and FMB integral inequality employs delay-dependent matrices and utilizes more information of time delay and its derivative, which provides more freedom in reducing the conservatism of the main results.Compared with the existing DDMB reciprocally convex inequality, EDDMB reciprocally convex inequality is more general because the value of delay lower bound is relaxed, which expands its scope of application. In addition, auxiliary-function-based integral inequalities (AFBII) together with relaxed integral inequality are also used, which helps to get less conservative stability conditions.
The simulation of typical second-order delay system and single-region delay LFC system are given, and the influence of load disturbance and controller parameters on the upper bound of single-region delayed LFC system under different conditions is analyzed. The following conclusions can be drawn from the simulation analysis: (1) Compared with the research results of some existed literatures, the upper bound of time delay obtained by the proposed method is significantly larger, which indicates that the proposed method can effectively improve the stability margin of time delay and reduce the conservatism of the conclusion. (2) The influence of load disturbance and controller parameters on the upper bound of system delay is obvious, the larger the load disturbance is, the smaller the upper bound of system delay is. When the PI control is applied, the upper bound of time delay decreases with the increase of integral gain, and this trend is more obvious when the proportional gain is smaller. The relation between the upper bound of time delay and the proportional gain is more complicated, the upper bound of time delay increases first and then decreases with the increase of the proportional gain.
Power system stability, load frequency control, time-varying delay, Lyapunov-Krasovskii functional, delay-dependent-matrix-based
10.19595/j.cnki.1000-6753.tces.220811
TM712
國(guó)家自然科學(xué)基金項(xiàng)目(61973105)、河南省創(chuàng)新型科技團(tuán)隊(duì)項(xiàng)目(CXTD2016054)和河南省科技攻關(guān)項(xiàng)目(232102240096)資助。
2022-05-14
2022-09-26
郭建鋒 男,1980年生,博士研究生,研究方向?yàn)殡娏ο到y(tǒng)分析與控制。E-mail:gjf@hpu.edu.cn
錢 偉 男,1978年生,博士,教授,博士生導(dǎo)師,研究方向?yàn)轸敯艨刂?、智能控制。E-mail:qwei@hpu.edu.cn(通信作者)
(編輯 李冰)