亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        中藥防治肺氣血屏障功能障礙的研究進(jìn)展

        2023-08-03 08:13:54秦泓林李逸軒張榮濤
        中草藥 2023年15期
        關(guān)鍵詞:屏障肺泡氣血

        楊 爽,秦泓林,李逸軒,王 曦,張榮濤,楊 劍, 3

        中藥防治肺氣血屏障功能障礙的研究進(jìn)展

        楊 爽1, 2,秦泓林1, 2,李逸軒1, 2,王 曦1, 2,張榮濤1, 2,楊 劍1, 2, 3*

        1. 天津中醫(yī)藥大學(xué) 省部共建組分中藥國家重點(diǎn)實(shí)驗(yàn)室,天津 301617 2. 天津中醫(yī)藥大學(xué)中醫(yī)藥研究院,天津 301617 3. 現(xiàn)代中醫(yī)藥海河實(shí)驗(yàn)室,天津 301617

        肺氣血屏障由肺泡腔、毛細(xì)血管腔及肺間質(zhì)組成,可保證氣體在肺泡與血液間的有效擴(kuò)散,防止肺泡過度膨脹或塌陷,維持肺部的正常功能。氣血屏障功能障礙是急性肺損傷(acute lung injury,ALI)的主要病理特征,氣血屏障一旦被破壞,會導(dǎo)致血漿蛋白滲漏到肺泡腔中誘發(fā)肺水腫,影響正常的氣體交換,加重靶器官的缺氧甚至威脅生命。中藥治療ALI已經(jīng)得到廣泛的認(rèn)可和驗(yàn)證。通過對防治氣血屏障損傷的中藥復(fù)方、單味藥材及中藥單體進(jìn)行了綜述,為中藥防治ALI的應(yīng)用研究及修復(fù)氣血屏障功能障礙的可能作用機(jī)制提供依據(jù)。

        氣血屏障;中藥;急性肺損傷;肺泡上皮細(xì)胞;毛細(xì)血管內(nèi)皮細(xì)胞;屏障穩(wěn)定性;屏障功能性

        肺氣血屏障亦稱肺泡-毛細(xì)血管屏障,由肺泡表面液體層、肺泡上皮細(xì)胞、肺泡上皮基底膜、肺間質(zhì)、毛細(xì)血管內(nèi)皮基底膜和毛細(xì)血管內(nèi)皮細(xì)胞構(gòu)成,是肺泡與肺毛細(xì)血管緊密相連的組織結(jié)構(gòu)[1]。肺氣血屏障不僅是氣體交換的執(zhí)行場所,還用于交換營養(yǎng)物質(zhì)及代謝廢物[2]。此外,作為物理或免疫屏障,在多種刺激下可快速做出動態(tài)調(diào)節(jié),形成抵御病原體入侵的強(qiáng)有力的防線[3]。在正常生理?xiàng)l件下,肺泡上皮與毛細(xì)血管內(nèi)皮細(xì)胞相互作用,氣血屏障正常運(yùn)行,肺泡內(nèi)外水液運(yùn)輸平衡;而在病理狀態(tài)下,氣血屏障被破壞,屏障功能受損,導(dǎo)致毛細(xì)血管通透性增高,蛋白質(zhì)滲漏到肺泡中,引發(fā)以肺泡水腫為特征的急性肺損傷(acute lung injury,ALI)[4]。因此,修復(fù)氣血屏障功能障礙有助于維系肺泡內(nèi)外水液運(yùn)輸平衡,為治療ALI提供一種研究方向。本文擬從中藥防治ALI、修復(fù)肺氣血屏障功能障礙可能的作用機(jī)制、中藥防治氣血屏障功能障礙的科學(xué)內(nèi)涵進(jìn)行綜述,為中藥保護(hù)肺氣血屏障提供臨床用藥指導(dǎo)。

        1 中藥通過影響肺氣血屏障的構(gòu)成防治ALI

        作為發(fā)病率和死亡率較高的危重病,ALI嚴(yán)重威脅人類的生命健康,尤其是當(dāng)下新型冠狀病毒肺炎肆虐全球,ALI已逐漸成為全球公共衛(wèi)生問題[5]。當(dāng)前,ALI的治療策略主要為呼吸支持治療和中西藥物治療,常用化學(xué)藥包括地塞米松、潑尼松龍和烏司他丁等,但往往會引起凝血功能障礙、胃潰瘍和骨質(zhì)疏松癥等多種不良反應(yīng)[6];中藥治療包括中藥復(fù)方、單味藥材等,醫(yī)者往往根據(jù)個體的疾病特點(diǎn),辨證論治,使得有效成分高度靶向病灶,達(dá)到治療ALI的目的,有效降低ALI病死率[7]。目前研究表明,中藥能夠通過減少炎癥因子釋放、調(diào)控炎癥介質(zhì)、抑制炎癥通路等作用治療ALI,此外,調(diào)節(jié)免疫功能、改善凝血障礙、調(diào)控自噬等作用也是中藥防治ALI的重要機(jī)制[8]。

        肺氣血屏障作為屏蔽環(huán)境有害物質(zhì)、抵御病原入侵的有力防線,其緊密結(jié)構(gòu)在維持屏障穩(wěn)態(tài)中發(fā)揮重要作用。屏障結(jié)構(gòu)的維持主要依靠肺泡上皮細(xì)胞和毛細(xì)血管內(nèi)皮細(xì)胞。肺泡上皮細(xì)胞層不僅是防御有害物質(zhì)侵襲的主要攔截層,還可限制和清除肺泡內(nèi)過量液體聚集[9]。肺泡上皮細(xì)胞分I型肺泡上皮細(xì)胞(alveolar type I,ATI)和ATII,其中ATI是肺泡上皮的主要組成細(xì)胞,覆蓋95%的肺泡表面,是維持屏障穩(wěn)態(tài)功能的關(guān)鍵細(xì)胞;ATII在分泌肺表面活性劑,維持肺張力及免疫反應(yīng)中發(fā)揮重要作用,還可以分化替換受損的ATI[10]。肺泡上皮細(xì)胞與毛細(xì)血管內(nèi)皮細(xì)胞密切接觸,雖然前者的細(xì)胞層排列更為緊密[11],但是毛細(xì)血管內(nèi)皮在肺氣血屏障中的作用無法替代。毛細(xì)血管內(nèi)皮細(xì)胞可以介導(dǎo)分子從血管到肺間質(zhì)的轉(zhuǎn)運(yùn),由于其血管孔徑較小,能夠有效的限制流經(jīng)血管內(nèi)皮細(xì)胞的液體和蛋白質(zhì),避免血漿蛋白和血細(xì)胞泄漏到肺間質(zhì),防止在正常血管壓力下發(fā)生肺水腫[12],保證肺氣血屏障的正常水液運(yùn)輸與肺泡穩(wěn)態(tài)。中藥及其有效成分可通過抑制屏障細(xì)胞的損傷和凋亡維持細(xì)胞層完整性,降低屏障通透性。如葛根芩連湯[13]能夠逆轉(zhuǎn)能量代謝失衡并通過磷脂酰肌醇3激酶(phosphatidylinositol- 3-kinase,PI3K)/蛋白激酶B(protein kinase B,Akt)通路抑制屏障細(xì)胞凋亡;絞股藍(lán)皂苷[14]可通過核因子-κB(nuclear factor-κB,NF-κB)和腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)途徑抑制屏障細(xì)胞的炎癥反應(yīng)和凋亡,顯著降低ALI小鼠死亡率。

        在肺氣血屏障調(diào)節(jié)肺泡水液運(yùn)輸過程中,水通道蛋白(aquaporin,AQP)發(fā)揮重要作用,是調(diào)節(jié)水跨膜運(yùn)輸?shù)闹饕?。其中,AQP1、3~5、8和9主要在肺部表達(dá),介導(dǎo)水液在氣血屏障中運(yùn)輸[15]。此外,在肺泡上皮細(xì)胞中有多種離子轉(zhuǎn)運(yùn)蛋白和通道,包括上皮鈉通道(epithelial sodium channel,ENaC)和基底膜側(cè)Na+, K+-ATP酶泵等,這些通道轉(zhuǎn)運(yùn)蛋白能夠維持正常的肺泡滲透壓,將多余的液體從肺泡腔中轉(zhuǎn)運(yùn)到肺間質(zhì)[16],對于水腫的再吸收尤為重要。

        中藥能通過調(diào)節(jié)AQPs,改善ENaC及Na+, K+-ATP酶進(jìn)而影響肺泡液的主動轉(zhuǎn)運(yùn),有效預(yù)防肺氣血屏障功能障礙導(dǎo)致的ALI。

        維持細(xì)胞間的正常連接與黏附是調(diào)節(jié)肺氣血屏障穩(wěn)態(tài)的關(guān)鍵[17],也是中藥防治ALI的有效途徑。肺泡上皮與毛細(xì)血管內(nèi)皮細(xì)胞間主要通過緊密連接(tight junctions,TJs),黏附連接(adherens junctions,AJs)和間隙連接(gap juntions,GJs)形成連接復(fù)合體結(jié)構(gòu)[18],這些黏連蛋白通過相互作用將不同細(xì)胞連接起來,維持肺氣血屏障的緊密性。TJs相關(guān)跨膜蛋白(occludin、claudins、連接黏附分子等)建立的細(xì)胞間連接和外周膜蛋白(zonula occludens,ZO)大量關(guān)聯(lián),構(gòu)成從間質(zhì)向肺泡腔的通道,保障緊密屏障結(jié)構(gòu)中水和溶質(zhì)的運(yùn)輸[1]。此外,AJs可以表現(xiàn)為黏附斑或圍繞細(xì)胞的黏附帶,通過跨膜鈣黏蛋白(如上皮細(xì)胞中E-cadherin和存在于血管內(nèi)皮上的VE-cadherin)黏附和錨定蛋白(如黏著斑蛋白、α-、β-和p120連環(huán)蛋白)連接,黏附細(xì)胞的肌動蛋白絲,從而將細(xì)胞黏附到基底膜上,介導(dǎo)細(xì)胞間牢固黏合,抵抗機(jī)械張力[19]。GJs(主要為隙縫連接蛋白)是組成間隙連接通道的基礎(chǔ)和形成細(xì)胞內(nèi)外相互交流的重要條件,保證細(xì)胞間離子和信號分子轉(zhuǎn)移,實(shí)現(xiàn)細(xì)胞間通訊[20]。此外,細(xì)胞骨架蛋白(如肌動蛋白、微管蛋白)在參與維持正常屏障穩(wěn)態(tài)中也發(fā)揮多種生理功能,與連接復(fù)合物相互作用,維持細(xì)胞間連接結(jié)構(gòu)[21]。中藥能夠調(diào)節(jié)這些黏連蛋白和骨架蛋白,保證細(xì)胞間的黏附與結(jié)構(gòu),有效降低肺氣血屏障的高通透性。綜上,中藥通過影響肺氣血屏障的構(gòu)成,包括屏障細(xì)胞(本文所指肺泡上皮細(xì)胞與毛細(xì)血管內(nèi)皮細(xì)胞)、細(xì)胞骨架蛋白與連接蛋白、離子通道蛋白等,維持氣血屏障的穩(wěn)定性與功能性,保證肺的正常運(yùn)行。具體機(jī)制見圖1。

        圖1 肺氣血屏障結(jié)構(gòu)簡圖

        2 中藥修復(fù)肺氣血屏障功能障礙可能的作用機(jī)制

        氣血屏障功能障礙是ALI的主要病理特征,外界物質(zhì)侵染首先造成肺泡上皮細(xì)胞釋放可溶性因子,發(fā)生先天免疫反應(yīng);長時間的刺激,使肺泡上皮細(xì)胞受損,促進(jìn)其向間質(zhì)細(xì)胞轉(zhuǎn)化(epithelial- mesenchymal transition,EMT),介導(dǎo)氣道重塑,持續(xù)的EMT進(jìn)一步加重肺氣血屏障的滲漏[22]。同時,上皮細(xì)胞損傷會釋放炎性因子加速毛細(xì)血管內(nèi)皮細(xì)胞受損與凋亡,增加蛋白水解酶、溶菌酶以及白細(xì)胞介素-1β(interleukin-1β,IL-1β)、IL-6、TNF-α等大量炎性因子或趨化因子的釋放,促進(jìn)屏障細(xì)胞凋亡,造成肺泡壁結(jié)構(gòu)的進(jìn)一步破壞[23]。此外,由于炎性因子或其他介質(zhì)的分泌,細(xì)胞外基質(zhì)(extra cellular matrix,ECM)蛋白易受降解,引起細(xì)胞-基質(zhì)連接松動[24],同時炎性介質(zhì)導(dǎo)致一系列的肌動蛋白調(diào)節(jié)因子磷酸化,增加肌動蛋白與肌球蛋白交聯(lián),聚合肌動蛋白的微絲骨架,促進(jìn)細(xì)胞收縮[25],使細(xì)胞骨架和連接蛋白的排列及表達(dá)發(fā)生改變,造成細(xì)胞骨架重排及細(xì)胞間黏附降低,ZO、claudins和cadherin等反映屏障完整性的連接蛋白的表達(dá)水平下降[26],打破跨細(xì)胞和旁細(xì)胞離子的水液平衡,造成肺氣血屏障對蛋白質(zhì)和液體的高通透性,加重肺水腫[4],減少肺容積,降低肺順應(yīng)性,導(dǎo)致氣血屏障功能障礙,從而引發(fā)ALI和呼吸衰竭。

        中醫(yī)認(rèn)為,肺主氣而司呼吸,有通調(diào)水道之功,氣行則水行,肺氣宣暢則水道通暢。肺為嬌臟,易受邪侵,邪毒郁肺,郁而化熱,肺失宣降,致使痰熱瘀結(jié),肺不主氣,失其治節(jié)。若正虛邪盛,全身氣機(jī)失常,臟腑功能紊亂,則會陰陽兩虛、內(nèi)閉外脫,甚則喘脫而亡。ALI多因外感邪氣,正氣受損,虛實(shí)夾雜,導(dǎo)致肺不主氣或腎不納氣,致使肺氣上逆或氣不歸元,影響水液的輸布和排泄,造成肺部液體內(nèi)停積聚,引起肺氣血屏障功能障礙[27]。該過程中,屏障細(xì)胞數(shù)量/活性降低、細(xì)胞結(jié)構(gòu)形態(tài)變化及ECM降解,造成氣血屏障穩(wěn)定性破壞;細(xì)胞間連接蛋白及離子通道蛋白等功能蛋白受損,造成氣血屏障功能性破壞[28]。中藥可有效調(diào)控肺氣血屏障受損導(dǎo)致的ALI,主要通過調(diào)控炎癥反應(yīng)、抑制細(xì)胞凋亡、平衡氧化/抗氧化、調(diào)節(jié)細(xì)胞間連接蛋白及離子通道蛋白等多種途徑發(fā)揮作用,改善肺部損傷[7]。經(jīng)過大量文獻(xiàn)調(diào)研,筆者認(rèn)為中藥修復(fù)氣血屏障功能障礙主要從2個角度出發(fā):(1)通過維持肺部細(xì)胞數(shù)量,減少屏障細(xì)胞損傷/死亡及細(xì)胞結(jié)構(gòu)形態(tài),降低ECM降解,以維持肺氣血屏障的穩(wěn)定性;(2)通過減少細(xì)胞間TJs、AJs蛋白的破壞,或減少離子通道蛋白的破壞,改善屏障水液運(yùn)輸,以維持肺氣血屏障的功能性,見圖2。

        圖2 氣血屏障功能障礙示意圖

        3 中藥防治氣血屏障功能障礙的科學(xué)內(nèi)涵

        3.1 維持肺氣血屏障結(jié)構(gòu)的穩(wěn)定性

        肺氣血屏障的穩(wěn)定性依賴于屏障相關(guān)細(xì)胞的數(shù)量/活性與結(jié)構(gòu)形態(tài)。生理?xiàng)l件下,屏障細(xì)胞相互作用,肺泡上皮細(xì)胞通過分泌前列腺素E2促進(jìn)毛細(xì)血管內(nèi)皮細(xì)胞連接的完整性[29],而毛細(xì)血管內(nèi)皮細(xì)胞分泌的可溶性因子也可維持肺泡上皮細(xì)胞間的連接穩(wěn)態(tài)[30]。由此表明,保證屏障細(xì)胞的數(shù)量/活性,穩(wěn)定細(xì)胞的結(jié)構(gòu)形態(tài)至關(guān)重要。

        3.1.1 維持細(xì)胞數(shù)量/活性修復(fù)肺氣血屏障 肺氣血屏障功能障礙往往會引起屏障相關(guān)細(xì)胞的損傷與死亡[31],因此,修復(fù)細(xì)胞損傷、抑制細(xì)胞死亡、促進(jìn)肺部細(xì)胞再生,是修復(fù)肺氣血屏障的一個重要方向。

        肺部損傷過程會激活并釋放大量炎癥介質(zhì)(如IL-6、IL-1β和TNF-α等),這些炎性介質(zhì)一方面直接損傷屏障細(xì)胞,增加肺氣血屏障通透性,影響器官正常功能;另一方面作用于NF-κB等通路,促進(jìn)更多炎癥因子分泌,使炎癥進(jìn)一步加重[32]。中藥在抑制炎癥反應(yīng)、修復(fù)細(xì)胞損傷、提高細(xì)胞活性方面研究廣泛,如枇杷提取物可以通過激活PI3K/Akt信號通路,提高肺泡上皮細(xì)胞活力[33];半夏生物堿可顯著降低肺部細(xì)胞趨化因子C-X-C基序配體8(C-X-C motif ligand 8,CXCL8)和黏附分子-1的表達(dá),對細(xì)胞炎癥損傷具有保護(hù)作用[34]。這些修復(fù)細(xì)胞損傷的中藥主要是通過調(diào)節(jié)PI3K/Akt、NF-κB和絲裂原活化蛋白激酶(mitogen activated protein kinases,MAPK)等信號通路,降低炎癥因子水平,提高細(xì)胞活性。

        ALI發(fā)生后,屏障細(xì)胞嚴(yán)重?fù)p傷發(fā)生細(xì)胞死亡,肺泡上皮細(xì)胞的死亡受體Fas抗原(Fas antigen,F(xiàn)as)大量表達(dá),激活Fas/Fas配體(Fas ligand,F(xiàn)asL)凋亡途徑,誘導(dǎo)肺泡上皮細(xì)胞凋亡,通過阻斷Fas/ FasL途徑或半胱氨酸天冬氨酸蛋白酶(cystein- asparate protease,Caspase)活性抑制肺泡上皮細(xì)胞凋亡可有效減輕ALI[35]。如通腑清營湯可以降低大鼠肺組織中Fas蛋白水平,抑制TNF-α炎癥介質(zhì)水平,發(fā)揮抗凋亡的作用,減輕肺損傷[36]。除了這種外在死亡受體途徑,細(xì)胞內(nèi)部的線粒體損傷途徑也會導(dǎo)致屏障細(xì)胞凋亡。線粒體介導(dǎo)的細(xì)胞凋亡相關(guān)蛋白B細(xì)胞淋巴瘤-2(B-cell lymphoma-2,Bcl-2)家族是程序性細(xì)胞死亡的關(guān)鍵調(diào)節(jié)因子[37],增加抗凋亡蛋白Bcl-2,降低Bcl-2相關(guān)X蛋白(Bcl-2-associated X protein,Bax)表達(dá)是中藥抑制屏障細(xì)胞凋亡的重要一環(huán)。黃芪注射液[38]和連花清瘟方[39]等都可以降低Bax/Bcl-2的值,抑制細(xì)胞凋亡的其他相關(guān)基因(,,細(xì)胞色素c和等),增強(qiáng)細(xì)胞活力,抑制肺部細(xì)胞凋亡和損傷。此外,甘草酸[40]、延胡索乙素[41]、梔子苷[42]均能通過PI3K/Akt/哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信號通路調(diào)節(jié)細(xì)胞自噬、凋亡等影響細(xì)胞程序性死亡過程。中藥不僅限于調(diào)節(jié)細(xì)胞程序性死亡,還可從多方面發(fā)揮作用,如抑制DNA損傷、細(xì)胞周期停滯、氧化應(yīng)激等。中藥復(fù)方、單味藥材及中藥單體通過修復(fù)細(xì)胞損傷,抑制細(xì)胞死亡,保證細(xì)胞的數(shù)量/活性,達(dá)到維持肺氣血屏障穩(wěn)定性的作用機(jī)制見表1。

        表1 中藥增加細(xì)胞數(shù)量/活性維持氣血屏障穩(wěn)定性的作用機(jī)制

        續(xù)表1

        “↓”-下降 “↑”-上升 “#”-抑制炎癥反應(yīng)發(fā)揮作用 “*”-抑制氧化應(yīng)激發(fā)揮作用 “&”-促進(jìn)自噬 “##”-抑制線粒體損傷途徑減弱細(xì)胞凋亡 “**”-抑制內(nèi)質(zhì)網(wǎng)應(yīng)激減弱細(xì)胞凋亡 “###”-抑制DNA損傷減弱細(xì)胞凋亡 AMPK-腺苷酸活化蛋白激酶 CD3/4/8-淋巴細(xì)胞表面抗原3/4/8 CD31-血小板-內(nèi)皮細(xì)胞黏附分子 ERK1/2-細(xì)胞外調(diào)節(jié)蛋白激酶 FoxO1-叉頭框蛋白O1 GSH-Px-谷胱甘肽過氧化物酶 HPA1-人血小板抗原1 HMGB1-高遷移率族蛋白 iNOS-誘導(dǎo)型一氧化氮合酶 JNK-c-Jun氨基末端激酶 LC3-II-微管相關(guān)蛋白1輕鏈3-II型 LDH-乳酸脫氫酶 MPO-髓過氧化物酶 MyD88-髓樣分化因子88 NLRP3-NOD樣受體熱蛋白結(jié)構(gòu)域相關(guān)蛋白3 NOS-一氧化氮合酶 Nrf2-核因子E2相關(guān)因子2 PD-1-程序性死亡受體-1 PPP1R15A-蛋白磷酸酶1調(diào)節(jié)因子亞基15A STAT-信號轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄激活蛋白 STING-干擾素基因刺激蛋白 SIRT1-沉默調(diào)節(jié)蛋白 SOD-超氧化物歧化酶 T-AOC-總抗氧化能力 TLR4-Toll-樣受體4

        “↓”-means down “↑”-means up “#”-means inhibit inflammatory reaction “*”-means inhibit oxidative stress “&”-means promote autophagy “##”-means inhibit mitochondrial damage to weaken cell apoptosis “**”-means inhibit endoplasmic reticulum stress to weaken cell apoptosis “###”-means inhibit DNA damage to weaken cell apoptosis AMPK-amp-activated protein kinase CD3/4/8-lymphocyte surface antigen 3/4/8 CD31-platelet endothelial cell adhesion molecule ERK1/2-extracellular signal-related kinases 1 and 2 FoxO1-forkhead box transcription factor O1 GSH-Px-glutathione peroxidase HPA1-human platelet antigen-1 HMGB1-high mobility group protein 1 iNOS-inducible nitric oxide synthase JNK-c-Jun-terminal kinase LC3-II-Microtuble-associated protein light chain 3-II LDH-lactate dehydrogenase MPO-myeloperoxidase MyD88-myeloid differentiation primary response gene 88 NLRP3-NOD-like receptor thermal protein domain associated protein 3 NOS-nitric oxide synthases Nrf2-nuclear factor erythroid-2 related factor 2 PD-1-programmed cell death protein 1 PPP1R15A-protein phosphatase 1 regulatory subunit 15A STAT-signal transducer and activator of transcription STING-stimulator of interferon genes SIRT1-sirtuin 1 SOD-superoxide dismutase T-AOC-total antioxidant capacity TLR4-Toll-like receptors 4

        3.1.2 維持細(xì)胞結(jié)構(gòu)形態(tài)修復(fù)肺氣血屏障 維持肺氣血屏障穩(wěn)定性不僅依賴于屏障細(xì)胞的數(shù)量/活性,還與其結(jié)構(gòu)形態(tài)密不可分。已有大量文章報道中藥具有穩(wěn)固細(xì)胞骨架結(jié)構(gòu)、維持ECM穩(wěn)態(tài)及保持細(xì)胞與基底膜的附著等作用。

        細(xì)胞骨架作為細(xì)胞的支架結(jié)構(gòu),為細(xì)胞形態(tài)和運(yùn)動提供機(jī)械支持[86]。細(xì)胞骨架蛋白與磷酸化肌球蛋白輕鏈(myosin light chain,MLC)結(jié)合可引起細(xì)胞骨架收縮和細(xì)胞間隙形成[87]。作為細(xì)胞骨架蛋白的重要組成部分,微管蛋白參與細(xì)胞內(nèi)外的信息傳遞,能夠抑制肌動蛋白的收縮動力[88]。因此,維持屏障細(xì)胞正常骨架蛋白水平能夠保障肺氣血屏障穩(wěn)定性。血必凈注射液[89]及其主要單體川芎嗪[90]可以保持毛細(xì)血管內(nèi)皮細(xì)胞骨架蛋白收縮和細(xì)胞間連接狀態(tài);玉屏風(fēng)散[91]通過激活肺泡上皮和內(nèi)皮細(xì)胞中七缺席同源物2-泛素-蛋白酶體途徑調(diào)節(jié)肌動蛋白細(xì)胞骨架;紫杉醇[92]和毛蕊異黃酮[93]分別從穩(wěn)定毛細(xì)血管內(nèi)皮細(xì)胞微管蛋白結(jié)構(gòu)和抑制Rho/Rho蛋白激酶(Rho-associated kinase,ROCK)通路的角度,激活細(xì)胞骨架重構(gòu)。其中,Rho/ROCK通路能夠促進(jìn)肌球蛋白磷酸酶亞基及MLC磷酸化,影響細(xì)胞骨架結(jié)構(gòu)和細(xì)胞間連接狀態(tài)[94]。五味子苷[95]、丹參酮IIA磺酸鈉[96]等均可通過Rho/ROCK通路保證細(xì)胞結(jié)構(gòu)形態(tài),維持氣血屏障穩(wěn)定性。

        細(xì)胞通過跨膜蛋白附著于ECM上,保證組織穩(wěn)定性與彈性,維持正常細(xì)胞遷移、行為及穩(wěn)態(tài)[97]。ECM分為基底膜和間質(zhì)基質(zhì)2種結(jié)構(gòu)[98],能夠被基質(zhì)金屬蛋白酶(matrix metalloproteinase,MMPs)降解。因此,抑制MMPs水平是保障ECM穩(wěn)態(tài),維持肺氣血屏障穩(wěn)定性的重要環(huán)節(jié)。張智琳等[99]研究發(fā)現(xiàn),痰熱清注射液可通過降低MMP-9表達(dá)而減輕ECM基底膜的降解和破壞,從而減輕肺水腫形成。此外,大黃素[100]、小檗堿[101]等均可通過降低MMPs水平改善緊密連接及肺通透性,維持氣血屏障穩(wěn)定,減輕肺組織損傷。

        3.2 中藥恢復(fù)肺氣血屏障的功能性

        在ALI期間,氣血屏障通透性增加,導(dǎo)致肺泡腔水液運(yùn)輸不暢,影響氣體交換??梢詮囊韵?方面恢復(fù)肺氣血屏障的功能性。

        3.2.1 鞏固氣血屏障緊密連接,降低屏障通透性 肺泡上皮與內(nèi)皮細(xì)胞呈連續(xù)性結(jié)構(gòu),在細(xì)胞間隙中的連接蛋白(包括ZO、cadherin、occludin、claudins等)負(fù)責(zé)緊密連接功能,限制水、蛋白質(zhì)和溶質(zhì)跨細(xì)胞屏障的細(xì)胞旁轉(zhuǎn)運(yùn),決定肺氣血屏障的通透性[102]。因此保證連接蛋白正常表達(dá)可以防止蛋白質(zhì)與液體泄漏到肺泡空間,減少屏障損傷,維持肺氣血屏障功能。大多數(shù)治療ALI的中藥都有上調(diào)連接蛋白表達(dá)水平的作用,如小續(xù)命湯[103]能夠通過抑制肺泡上皮細(xì)胞炎癥因子,降低肺泡上皮細(xì)胞焦亡達(dá)到治療ALI的目的,同時回調(diào)肺組織中緊密連接蛋白o(hù)ccludin、ZO-1、claudins的表達(dá)。

        3.2.2 增加離子通道蛋白,維持肺部水液平衡 離子通道蛋白對于保障肺氣血屏障的功能至關(guān)重要[104]。在調(diào)節(jié)肺泡腔水液平衡的過程中,ENaC通道和Na+, K+-ATP酶泵的主動鈉轉(zhuǎn)運(yùn)產(chǎn)生跨上皮滲透梯度,能夠被動轉(zhuǎn)運(yùn)肺泡腔積聚的液體[15],中藥單體柚皮素[105]可以恢復(fù)肺組織中α-ENaC、Na+, K+-ATPaseα1蛋白表達(dá)水平,加強(qiáng)滲透壓,驅(qū)動肺泡水液重吸收,恢復(fù)肺氣血屏障功能。此外,AQPs是存在于細(xì)胞膜上與水通透性相關(guān)的轉(zhuǎn)運(yùn)蛋白,參與肺泡體液容量調(diào)節(jié)[15]。當(dāng)ALI發(fā)生時,肺氣血屏障受損,不能維持AQPs正常的空間構(gòu)象,使其合成障礙、表達(dá)下降,造成肺泡腔、肺間質(zhì)液體積聚[106]。現(xiàn)代藥理學(xué)研究表明,中藥能夠通過提高AQPs水平維持肺組織正常的水液代謝功能,如大黃附子湯[107]能夠增加大鼠肺組織AQP1、AQP5降低血清中IL-6和TNF-α的含量,緩解肺水腫。在此過程中,大黃似乎發(fā)揮主要作用,巫莉萍等[108]發(fā)現(xiàn)大黃能夠提高肺泡II型細(xì)胞中mRNA表達(dá),促進(jìn)機(jī)體肺泡的水液清除,大黃中的大黃素可以修復(fù)大鼠盲腸結(jié)扎和穿刺引起的肺組織緊密連接蛋白ZO-1和claudin-3的破壞,恢復(fù)AQPs的表達(dá)水平,達(dá)到修復(fù)氣血屏障的效果[109]。有研究表示,中藥能夠通過炎癥因子調(diào)節(jié)AQPs,如抑制TNF-α可調(diào)節(jié)支氣管上皮細(xì)胞AQP1和AQP5的蛋白表達(dá)水平[110];此外,TNF-α和IL-1β的下調(diào)直接影響肺泡上皮細(xì)胞中的ENaC水平和蛋白表達(dá),促進(jìn)肺泡上皮細(xì)胞轉(zhuǎn)運(yùn)Na+的能力[111]。綜上,炎癥反應(yīng)或氧化應(yīng)激等作用是導(dǎo)致屏障功能蛋白受損的主要原因,從而加重氣血屏障通透性,影響氣體交換。表2從增加連接蛋白及加強(qiáng)離子通道蛋白2方面總結(jié)能夠恢復(fù)肺氣血屏障功能性、通調(diào)肺泡水液運(yùn)輸?shù)闹兴帯?/p>

        表2 中藥增加連接蛋白/離子通道蛋白恢復(fù)氣血屏障功能性

        續(xù)表2

        “↑”-表示上升 catenin-連環(huán)蛋白 Cx43-縫隙連接蛋白43 vinculin-紐帶蛋白

        “↑”-means up catenin-catenin Cx43-connexin43 vinculin-vinculin

        4 結(jié)語與展望

        肺氣血屏障破壞是ALI發(fā)生發(fā)展過程中的重要原因,屏障相關(guān)細(xì)胞數(shù)量/活性降低及細(xì)胞結(jié)構(gòu)形態(tài)變化打破氣血屏障穩(wěn)定性,細(xì)胞間連接蛋白及肺部離子通道蛋白破壞削弱氣血屏障功能性,肺氣血屏障穩(wěn)定性與功能性受損引起氣血屏障功能障礙。中醫(yī)理論認(rèn)為,氣血屏障功能障礙誘發(fā)的ALI的主要證型是痰熱壅肺、熱毒壅滯、腸熱腑實(shí)、血瘀證,病性關(guān)鍵在于“痰、熱、瘀、虛”,多以清熱化痰、解毒祛瘀、瀉肺通腑、益氣利水、補(bǔ)虛固脫的中藥加以治療,這些藥物主要以歸肺經(jīng)為主,而文中也涉及到主入肝經(jīng)的川芎嗪,歸脾胃大腸經(jīng)的大承氣湯等,并不局限于常見的歸肺經(jīng)的方藥,這與中醫(yī)整體觀密不可分。因此,在中醫(yī)理論指導(dǎo)下進(jìn)行相關(guān)臟腑歸經(jīng)藥物的研究,可以更好地用于氣血屏障受損引發(fā)的ALI的治療。

        氣血屏障功能障礙不僅會導(dǎo)致ALI,還會引發(fā)包括急性呼吸窘迫綜合征、肺纖維化和肺癌等,是多種肺部疾病的核心病理環(huán)節(jié)。中藥在防治肺部疾病方面具有巨大潛力,可以通過不同的途徑干預(yù)疾病的相關(guān)信號通路與作用靶點(diǎn)。然而,由于中藥的多組分、多靶點(diǎn)等特點(diǎn),加之肺部不同疾病的發(fā)病過程較為復(fù)雜,目前研究主要集中于動物或細(xì)胞實(shí)驗(yàn)階段,還未在臨床實(shí)踐中進(jìn)行驗(yàn)證。未來需要從更多方面認(rèn)識中藥改善肺部疾病的作用機(jī)制,深入實(shí)驗(yàn)研究,將實(shí)驗(yàn)結(jié)果以“多、快、好、準(zhǔn)”的標(biāo)準(zhǔn)推向臨床,為藥物轉(zhuǎn)化提供實(shí)驗(yàn)依據(jù)。本文梳理歸納了近些年報道的能有效防治氣血屏障損傷的中藥應(yīng)用研究及可能作用機(jī)制,為以肺屏障為主體病理環(huán)節(jié)的ALI為代表的多種肺部疾病的科學(xué)用藥提供實(shí)驗(yàn)依據(jù)。

        利益沖突 所有作者均聲明不存在利益沖突

        [1] Gillich A, Zhang F, Farmer C G,. Capillary cell-type specialization in the alveolus [J]., 2020, 586(7831): 785-789.

        [2] Dutra Silva J, Su Y, Calfee C S,. Mesenchymal stromal cell extracellular vesicles rescue mitochondrial dysfunction and improve barrier integrity in clinically relevant models of ARDS [J]., 2021, 58(1): 2002978.

        [3] Brune K, Frank J, Schwingshackl A,. Pulmonary epithelial barrier function: Some new players and mechanisms [J]., 2015, 308(8): L731-L745.

        [4] Esquivel-Ruiz S, González-Rodríguez P, Lorente J A,. Extracellular vesicles and alveolar epithelial-capillary barrier disruption in acute respiratory distress syndrome: Pathophysiological role and therapeutic potential [J]., 2021, 12: 752287.

        [5] Wang L L, Yang J W, Xu J F. Severe acute respiratory syndrome coronavirus 2 causes lung inflammation and injury [J]., 2022, 28(4): 513-520.

        [6] Hussien N R, Al-Niemi M S, Al-Kuraishy H M,. Statins and COVID-19: The neglected front of bidirectional effects [J]., 2021, 71(Suppl 8) (12): S133-S136.

        [7] Ding Z H, Zhong R X, Xia T Y,. Advances in research into the mechanisms of Chinese materia medica against acute lung injury [J]., 2020, 122: 109706.

        [8] He Y Q, Zhou C C, Yu L Y,. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms [J]., 2021, 163: 105224.

        [9] Liberti D C, Kremp M M, Liberti W A,. Alveolar epithelial cell fate is maintained in a spatially restricted manner to promote lung regeneration after acute injury [J]., 2021, 35(6): 109092.

        [10] Aspal M, Zemans R L. Mechanisms of ATII-to-ATI cell differentiation during lung regeneration [J]., 2020, 21(9): 3188.

        [11] Steve N, Georas, MD,. Epithelial barrier function: At the front line of asthma immunology and allergic airway inflammation [J]., 2014, 134(3): 509-520.

        [12] Sukriti S, Tauseef M, Yazbeck P,. Mechanisms regulating endothelial permeability [J]., 2014, 4(4): 535-551.

        [13] Ding Z H, Zhong R X, Yang Y N,. Systems pharmacology reveals the mechanism of activity of Ge-Gen-Qin-Lian Decoction against LPS-induced acute lung injury: A novel strategy for exploring active components and effective mechanism of TCM formulae [J]., 2020, 156: 104759.

        [14] Tu Q, Zhu Y B, Yuan Y,. Gypenosides inhibit inflammatory response and apoptosis of endothelial and epithelial cells in LPS-induced ALI: A study based on bioinformatic analysis and/experiments [J]., 2021, 15: 289-303.

        [15] Ekta Y, Niket Y, Ariel H,. Aquaporins in lung health and disease: Emerging roles, regulation, and clinical implications [J]., 2020, 174: 106193.

        [16] Meyer N J, Gattinoni L, Calfee C S. Acute respiratory distress syndrome [J]., 2021, 398(10300): 622-637.

        [17] Yuksel H, Turkeli A. Airway epithelial barrier dysfunction in the pathogenesis and prognosis of respiratory tract diseases in childhood and adulthood [J].2017, 5(4): e1367458.

        [18] Linfield D T, Raduka A, Aghapour M,. Airway tight junctions as targets of viral infections [J]., 2021, 9(2): 1883965.

        [19] Chanson M, Watanabe M, O’Shaughnessy E,. Connexin communication compartments and wound repair in epithelial tissue [J]., 2018, 19(5): 1354.

        [20] Laird D W, Lampe P D. Therapeutic strategies targeting connexins [J]., 2018, 17(12): 905-921.

        [21] Wagener B M, Hu R H, Wu S W,. The role ofvirulence factors in cytoskeletal dysregulation and lung barrier dysfunction [J]., 2021, 13(11): 776.

        [22] Hou W, Hu S Y, Li C Y,. Cigarette smoke induced lung barrier dysfunction, EMT, and tissue remodeling: A possible link between COPD and lung cancer [J]., 2019, 2019: 2025636.

        [23] Robb C T, Regan K H, Dorward D A,. Key mechanisms governing resolution of lung inflammation [J]., 2016, 38(4): 425-448.

        [24] Varga Z, Flammer A J, Steiger P,. Endothelial cell infection and endotheliitis in COVID-19 [J]., 2020, 395(10234): 1417-1418.

        [25] Bandela M, Belvitch P, Garcia J G N,. Cortactin in lung cell function and disease [J]., 2022, 23(9): 4606.

        [26] Bandela M, Belvitch P, Garcia J G N,. VE-cadherin and endothelial adherens junctions: Active guardians of vascular integrity [J]., 2013, 26(5): 441-454.

        [27] 蘇子珊, 劉佳欣, 張文鳳, 等. 急性肺損傷肺泡液轉(zhuǎn)運(yùn)障礙的發(fā)生機(jī)制和中醫(yī)治療進(jìn)展 [J]. 廣州中醫(yī)藥大學(xué)學(xué)報, 2022, 39(9): 2212-2218.

        [28] Peteranderl C, Sznajder J I, Herold S,. Inflammatory responses regulating alveolar ion transport during pulmonary infections [J]., 2017, 8: 446.

        [29] B?rnthaler T, Maric J, Platzer W,. The role of PGE2in alveolar epithelial and lung microvascular endothelial crosstalk [J]., 2017, 7: 7923.

        [30] Simmons S, Erfinanda L, Bartz C,. Novel mechanisms regulating endothelial barrier function in the pulmonary microcirculation [J]., 2019, 597(4): 997-1021.

        [31] Dias-Freitas F, Metelo-Coimbra C, Roncon-Albuquerque R Jr. Molecular mechanisms underlying hyperoxia acute lung injury [J]., 2016, 119: 23-28.

        [32] Ju M J, Liu B F, He H Y,. MicroRNA-27a alleviates LPS-induced acute lung injury in mice via inhibiting inflammation and apoptosis through modulating TLR4/ MyD88/NF-κB pathway [J]., 2018, 17(16): 2001-2018.

        [33] 陳寶磊, 高映春, 吳磊. 枇杷葉提取物通過激活磷脂酰肌醇3激酶/蛋白激酶B信號通路減輕脂多糖誘導(dǎo)的肺細(xì)胞損傷 [J]. 安徽醫(yī)藥, 2022, 26(3): 453-457.

        [34] 吳偉斌, 祝春燕, 羅超. 半夏生物堿對肺上皮細(xì)胞炎癥損傷的保護(hù)作用研究 [J]. 內(nèi)蒙古農(nóng)業(yè)大學(xué)學(xué)報: 自然科學(xué)版, 2018, 39(4): 1-8.

        [35] Wang Y X, Yang Y Y, Chen L,. Death-associated protein kinase 1 mediates ventilator-induced lung injury in mice by promoting alveolar epithelial cell apoptosis [J]., 2020, 133(4): 905-918.

        [36] 陳乾, 任瀟瀟, 韓丹, 等. 通腑清營湯對膿毒癥急性肺損傷大鼠Fas及腫瘤壞死因子-α水平的影響 [J]. 中國中醫(yī)藥信息雜志, 2019, 26(12): 40-44.

        [37] Gu L, Surolia R, Larson-Casey J L,. Targeting Cpt1a-Bcl-2 interaction modulates apoptosis resistance and fibrotic remodeling [J]., 2022, 29(1): 118-132.

        [38] 顧儉勇, 黃培志. 黃芪注射液對脂多糖致大鼠急性肺損傷后細(xì)胞凋亡的保護(hù)作用 [J]. 中國新藥與臨床雜志, 2007, 26(3): 212-214.

        [39] Yang R H, Yang H Z, Li W Q,. Lianhuaqingwen alleviates p53-mediated apoptosis in alveolar epithelial cells to prevent LPS-induced ALI [J]., 2022, 74(8): 1117-1124.

        [40] Qu L H, Chen C, He W,. Glycyrrhizic acid ameliorates LPS-induced acute lung injury by regulating autophagy through the PI3K/Akt/mTOR pathway [J]., 2019, 11(4): 2042-2055.

        [41] Wen H, Zhang H, Wang W,. Tetrahydropalmatine protects against acute lung injury induced by limb ischemia/reperfusion through restoring PI3K/Akt/mTOR- mediated autophagy in rats [J]., 2020, 64: 101947.

        [42] Luo X, Lin B, Gao Y G,. Genipin attenuates mitochondrial-dependent apoptosis, endoplasmic reticulum stress, and inflammation via the PI3K/Akt pathway in acute lung injury [J]., 2019, 76: 105842.

        [43] 卓玉珍, 楊磊, 鹿燕敏, 等. 涼血活血方通過抑制NLRP3炎性小體活化保護(hù)膿毒癥急性肺損傷小鼠的實(shí)驗(yàn)研究 [J]. 中國中西醫(yī)結(jié)合外科雜志, 2022, 28(2): 173-178.

        [44] 葛瑜, 繆華. 宣白承氣湯調(diào)控SIRT1/FoxO1通路對脂多糖致大鼠急性肺損傷的影響 [J]. 四川中醫(yī), 2020, 38(7): 52-56.

        [45] 王寶娟, 崔利鋒, 李冬霞, 等. 苓甘五味姜辛湯對脂多糖誘導(dǎo)的急性肺損傷大鼠免疫細(xì)胞和炎性細(xì)胞因子的影響 [J]. 中國中醫(yī)急癥, 2019, 28(2): 220-224.

        [46] Wang Y Y, Wang X, Li Y X,. Xuanfei Baidu Decoction reduces acute lung injury by regulating infiltration of neutrophils and macrophages via PD-1/ IL17A pathway [J]., 2022, 176: 106083.

        [47] 梁婷, 黃露, 曹征宇. 清宣止咳顆粒止咳、祛痰、抗炎作用評價 [J]. 中成藥, 2022, 44(2): 410-415.

        [48] 劉美秀, 馮高華, 嚴(yán)正平, 等. 宣肺通腑方加減對腸缺血/再灌注肺損傷導(dǎo)致的急性肺損傷大鼠抗炎、抗氧化作用 [J]. 中國中醫(yī)急癥, 2020, 29(3): 441-444.

        [49] He Y Q, Zhou C C, Deng J L,. Tanreqing inhibits LPS-induced acute lung injuryandthrough downregulating STING signaling pathway [J]., 2021, 12: 746964.

        [50] He W J, Xi Q, Cui H T,. Liang-Ge Decoction ameliorates acute lung injury in septic model rats through reducing inflammatory response, oxidative stress, apoptosis, and modulating host metabolism [J]., 2022, 13: 926134.

        [51] Diao Y R, Ding Q, Xu G H,. Qingfei Litan Decoction against acute lung injury/acute respiratory distress syndrome: The potential roles of anti- inflammatory and anti-oxidative effects [J]., 2022, 13: 857502.

        [52] Gao P Y, Zhao Z Y, Zhang C T,. The therapeutic effects of traditional Chinese medicine Fusu agent in LPS-induced acute lung injury model rats [J]., 2018, 12: 3867-3878.

        [53] 張靜, 劉天榮, 薛克棟. 丹參對小鼠急性肺損傷的保護(hù)作用研究 [J]. 臨床急診雜志, 2017, 18(2): 93-97.

        [54] Abdallah H M, El-Agamy D S, Ibrahim S R M,.represses LPS-induced acute lung injury in mice via its antioxidative and anti-inflammatory activities [J]., 2020, 9(11): 1620.

        [55] 葉永山, 湯明杰, 曹春琪, 等. 生地黃對內(nèi)毒素誘導(dǎo)的急性肺損傷的保護(hù)作用 [J]. 現(xiàn)代生物醫(yī)學(xué)進(jìn)展, 2015, 15(14): 2610-2613.

        [56] 湯明杰, 葉永山, 張旗, 等. 牡丹皮對內(nèi)毒素性急性肺損傷大鼠的保護(hù)作用 [J]. 環(huán)球中醫(yī)藥, 2015, 8(10): 1167-1170.

        [57] 韓文杰, 王晴, 張旗, 等. 赤芍對LPS誘導(dǎo)急性肺損傷大鼠的預(yù)防作用 [J]. 中醫(yī)藥信息, 2017, 34(2): 14-18.

        [58] 龍勇, 姜英, 李長羅, 等. 大黃對百草枯中毒大鼠肺損傷的保護(hù)作用 [J]. 中國中醫(yī)急癥, 2016, 25(9): 1734-1736.

        [59] 李顯倫, 褚純雋, 韋孝晨, 等. 野馬追各化學(xué)部位對小鼠急性肺損傷的保護(hù)作用 [J]. 西部中醫(yī)藥, 2017, 30(9): 9-15.

        [60] 劉雅慧, 陳蘭英, 周朦靜, 等. 澤漆水提物對LPS誘導(dǎo)的急性肺損傷的影響 [J]. 中成藥, 2022, 44(3): 732-739.

        [61] 鄧多, 譚會玲, 上官云蘭, 等. 云南松松塔對LPS誘導(dǎo)急性肺損傷大鼠炎癥和氧化應(yīng)激的影響 [J]. 中成藥, 2021, 43(7): 1721-1726.

        [62] 李長力, 鄭喜勝, 賈明雅. 黃芩苷通過調(diào)節(jié)miR-223-3p/NLRP3通路對膿毒癥急性肺損傷大鼠的保護(hù)作用 [J]. 中成藥, 2021, 43(8): 2047-2052.

        [63] 張欽欽, 曾夢楠, 張貝貝, 等. 貓眼草酚D抑制小鼠急性肺損傷的作用及其機(jī)制研究 [J]. 中國新藥雜志, 2022, 31(4): 362-368.

        [64] Jiang Y L, Wang X Q, Yang W C,. Procyanidin B2 suppresses lipopolysaccharides-induced inflammation and apoptosis in human type II alveolar epithelial cells and lung fibroblasts [J]., 2020, 40(1): 54-63.

        [65] 郭民, 高繼萍, 張瑞虎, 等. 冬凌草甲素對急性肺損傷小鼠肺組織炎癥的抑制作用及相關(guān)機(jī)制研究 [J]. 中藥新藥與臨床藥理, 2022, 33(4): 441-445.

        [66] Lee W, Ku S K, Kim J E,. Inhibitory effects of protopanaxatriol type ginsenoside fraction (Rgx365) on particulate matter-induced pulmonary injury [J]., 2019, 82(5): 338-350.

        [67] Shaukat A, Yang C, Yang Y P,. Ginsenoside Rb1: A novel therapeutic agent in-induced acute lung injury with special reference to oxidative stress and apoptosis [J]., 2020, 143: 104109.

        [68] Ji Q J, Sun Z R, Yang Z Z,Protective effect of ginsenoside Rg1on LPS-induced apoptosis of lung epithelial cells [J]., 2021, 136: 168-174.

        [69] 古麗尼歌爾·阿布都米吉提, 沙依拜·沙比提, 叢媛媛, 等. 基于Nrf2通路探討阿里紅三萜酸減輕脂多糖誘導(dǎo)的小鼠急性肺損傷的作用 [J]. 中國病理生理雜志, 2021, 37(1): 112-118.

        [70] 黃小強(qiáng), 李宣宣, 吳水生, 等. 澤瀉三萜對小鼠急性肺損傷的保護(hù)作用 [J]. 中成藥, 2022, 44(9): 2979-2984.

        [71] 黃晗, 李鳳芝, 李楊, 等. 靈芝多糖對膿毒癥急性肺損傷大鼠肺功能及TLR4/NF-κB通路的影響 [J]. 中草藥, 2021, 52(8): 2351-2356.

        [72] Zhou B, Weng G H, Huang Z X,. Arctiin prevents LPS-induced acute lung injury via inhibition of PI3K/Akt signaling pathway in mice [J]., 2018, 41(6): 2129-2135.

        [73] Cai X D, Chen Y F, Xie X N,. Erratum: Astaxanthin prevents against lipopolysaccharide-induced acute lung injury and sepsis via inhibiting activation of MAPK/ NF-κB [J]., 2021, 13(6): 7420-7421.

        [74] Chen Y, Guo S, Jiang K F,. Glycitin alleviates lipopolysaccharide-induced acute lung injury via inhibiting NF-κB and MAPKs pathway activation in mice [J]., 2019, 75: 105749.

        [75] Zhang D, Li L, Li J,. Colchicine improves severe acute pancreatitis-induced acute lung injury by suppressing inflammation, apoptosis and oxidative stress in rats [J]., 2022, 153: 113461.

        [76] 徐玲文, 王華兵, 揭鳳英, 等. 麥冬皂苷D預(yù)處理對LPS介導(dǎo)的人肺上皮Beas-2B細(xì)胞炎性及氧化損傷的抑制作用 [J]. 沈陽藥科大學(xué)學(xué)報, 2021, 38(12): 1302-1308.

        [77] Sun Z Y, Gao M, Jiang Y,. Effect of icariin on sepsis-induced acute lung injury in mice [J]., 2021, 5(3): 146-149.

        [78] Sun X, Feng X L, Zheng D D,. Ergosterol attenuates cigarette smoke extract-induced COPD by modulating inflammation, oxidative stress and apoptosisand[J]., 2019, 133(13): 1523-1536.

        [79] Liu B Y, Chiou J Z, Huang K M,. Effects of taurine against benzo[α]pyrene-induced cell cycle arrest and reactive oxygen species-mediated nuclear factor-kappa B apoptosis via reduction of mitochondrial stress in A549 cells [J]., 2022, 65(4): 199-208.

        [80] Guan R J, Yao H W, Li Z Y,. Sodium tanshinone IIAsulfonate attenuates cigarette smoke extract-induced mitochondrial dysfunction, oxidative stress, and apoptosis in alveolar epithelial cells by enhancing SIRT1 pathway [J]., 2021, 183(2): 352-362.

        [81] Jiang L, Xu L Y, Zheng L Z,. Salidroside attenuates sepsis-associated acute lung injury through PPP1R15A mediated endoplasmic reticulum stress inhibition [J]., 2022, 71: 116865.

        [82] Sang A M, Wang Y, Wang S,. Quercetin attenuates sepsis-induced acute lung injury via suppressing oxidative stress-mediated ER stress through activation of SIRT1/ AMPK pathways [J]., 2022, 96: 110363.

        [83] Yang B, Ma L, Wei Y L,. Isorhamnetin alleviates lipopolysaccharide-induced acute lung injury by inhibiting mTOR signaling pathway [J]., 2022, 44(3): 387-399.

        [84] Zhang Z J, Wang X, Ma C Z,Genipin protects rats against lipopolysaccharide-induced acute lung injury by reinforcing autophagy [J]., 2019, 72: 21-30.

        [85] Zhang Y, Guo L L, Law B Y,. Resveratrol decreases cell apoptosis through inhibiting DNA damage in bronchial epithelial cells [J]., 2020, 45(6): 1673-1684.

        [86] Cerutti C, Ridley A J. Endothelial cell-cell adhesion and signaling [J]., 2017, 358(1): 31-38.

        [87] Thomas G W, Rael L T, Bar-Or R,. Biphasic effect of danazol on human vascular endothelial cell permeability and f-actin cytoskeleton dynamics [J]., 2012, 421(4): 707-712.

        [88] Müller M T, Schempp R, Lutz A,. Interaction of microtubules and actin during the post-fusion phase of exocytosis [J]., 2019, 9(1): 11973.

        [89] Xu Q L, Liu J X, Wang Z L,. Heat stress-induced disruption of endothelial barrier function is via PAR1 signaling and suppressed by Xuebijing Injection [J]., 2015, 10(2): e0118057.

        [90] 王慧琦, 陳遠(yuǎn)卓, 李叢燁, 等. 川芎嗪對膿毒癥急性肺損傷的保護(hù)作用 [J]. 同濟(jì)大學(xué)學(xué)報: 醫(yī)學(xué)版, 2014, 35(5): 20-25.

        [91] Wang D, Li Q, Pan C S,. Yu-Ping-Feng Formula ameliorates alveolar-capillary barrier injury induced by exhausted-exercise via regulation of cytoskeleton [J]., 2022, 13: 891802.

        [92] Mirzapoiazova T, Kolosova I A, Moreno L,. Suppression of endotoxin-induced inflammation by taxol [J]., 2007, 30(3): 429-435.

        [93] Jiang Y H, Sun W, Li W,. Calycosin-7--β-- glucoside promotes oxidative stress-induced cytoskeleton reorganization through integrin-linked kinase signaling pathway in vascular endothelial cells [J]., 2015, 15: 315.

        [94] Wu L M, Ramirez S H, Andrews A M,. Neuregulin1-β decreases interleukin-1β-induced RhoA activation, myosin light chain phosphorylation, and endothelial hyperpermeability [J]., 2016, 136(2): 250-257.

        [95] Zhang R J, Hao H Y, Liu Q J,. Protective effects of schisandrin on high glucose-induced changes of RhoA and eNOS activity in human umbilical vein endothelial cells [J]., 2018, 214(9): 1324-1329.

        [96] Zhou Z Y, Huang B, Li S,. Sodium tanshinone IIAsulfonate promotes endothelial integrity via regulating VE-cadherin dynamics and RhoA/ROCK-mediated cellular contractility and prevents atorvastatin-induced intracerebral hemorrhage in zebrafish [J]., 2018, 350: 32-42.

        [97] Zhou Y, Horowitz J C, Naba A,. Extracellular matrix in lung development, homeostasis and disease [J]., 2018, 73: 77-104.

        [98] Karakioulaki M, Papakonstantinou E, Stolz D. Extracellular matrix remodelling in COPD [J]., 2020, 29(158): 190124.

        [99] 張智琳, 周麗梅, 王倩, 等. 不同劑量痰熱清對急性肺損傷大鼠MMP-9的影響 [J]. 中華中醫(yī)藥學(xué)刊, 2013, 31(11): 2533-2534.

        [100]Cui Y L, Zhang S, Tian Z T,. Rhubarb antagonizes matrix metalloproteinase-9-induced vascular endothelial permeability [J]., 2016, 129(14): 1737-1743.

        [101]Huang L N, Zhang X H, Ma X. Berberine alleviates endothelial glycocalyx degradation and promotes glycocalyx restoration in LPS-induced ARDS [J]., 2018, 65: 96-107.

        [102]Yang J, Wang Y, Liu H,. C2-ceramide influences alveolar epithelial barrier function by downregulating ZO-1, occludin and claudin-4 expression [J]., 2017, 27(4): 293-297.

        [103]項(xiàng)憶瑾, 蔡定芳, 王平, 等. 小續(xù)命湯通過下調(diào)USP9X調(diào)控NLRP3泛素化水平干預(yù)急性肺損傷的機(jī)制研究 [J]. 上海中醫(yī)藥雜志, 2022, 56(3): 48-55.

        [104]Varas S M, Chaca M V P, Gómez N N. Ion transporters in the lungs. Use as therapeutic targets [J]., 2019, 79(4): 303-314.

        [105]陳倩倩, 王榮麗. 柚皮素對急性肺損傷小鼠保護(hù)作用的機(jī)制研究 [J]. 臨床肺科雜志, 2022, 27(5): 711-715.

        [106]Yin S M, Ding M Z, Fan L,. Inhibition of inflammation and regulation of AQPs/ENaCs/Na+-K+- ATPase mediated alveolar fluid transport by total flavonoids extracted fromin lipopolysaccharide-induced acute lung injury [J]., 2021, 12: 603863.

        [107]Kang X, Lu X G, Zhan L B,. Dai-Huang-Fu-Zi-Tang alleviates pulmonary and intestinal injury with severe acute pancreatitis via regulating aquaporins in rats [J]., 2017, 17(1): 288.

        [108]巫莉萍, 鄧時貴, 黃海定. 大黃對LPS損傷肺泡II型上皮細(xì)胞水通道蛋白及mRNA表達(dá)的影響 [J]. 中國實(shí)驗(yàn)方劑學(xué)雜志, 2011, 17(16): 213-217.

        [109]Guo R M, Li Y J, Han M,. Emodin attenuates acute lung injury in Cecal-ligation and puncture rats [J]., 2020, 85: 106626.

        [110]Mezzasoma L, Cagini L, Antognelli C,. TNF-α regulates natriuretic peptides and aquaporins in human bronchial epithelial cells BEAS-2B [J]., 2013, 2013: 159349.

        [111]Wynne B M, Zou L, Linck V,. Regulation of lung epithelial sodium channels by cytokines and chemokines [J]., 2017, 8: 766.

        [112]Zheng Y L, Zheng M, Shao J,. Upregulation of claudin?4 by Chinese traditional medicine Shenfu attenuates lung tissue damage by acute lung injury aggravated by acute gastrointestinal injury [J]., 2022, 60(1): 1981-1993.

        [113]崔雯雯, 金鑫, 張彥芬, 等. 連花清瘟膠囊對脂多糖致急性肺損傷小鼠炎癥因子和連接蛋白表達(dá)的影響 [J]. 中國藥理學(xué)與毒理學(xué)雜志, 2015, 29(2): 213-219.

        [114]姜越, 張宇林, 董盈妹, 等. 固本防哮飲對哮喘緩解期小鼠氣道上皮緊密連接蛋白及CCSP的影響 [J]. 南京中醫(yī)藥大學(xué)學(xué)報, 2022, 38(6): 483-489.

        [115]Zhao G, Zhuo Y Z, Cui L H,. Modified Da-Chai-Hu Decoction regulates the expression of occludin and NF-κB to alleviate organ injury in severe acute pancreatitis rats [J]., 2019, 17(5): 355-362.

        [116]邵萍, 李學(xué)莉, 朱金源, 等. 中藥火把花根對油酸致急性肺損傷大鼠氣道緊密連接蛋白表達(dá)的影響 [J]. 中華危重病急救醫(yī)學(xué), 2016, 28(6): 523-527.

        [117]Wang J, Luo L, Zhao X T,.extracts alleviates LPS-induced acute lung injury in mice by regulating PPAR-γ/RXR-α in lungs and colons [J]., 2022, 293: 115322.

        [118]Li X, Zhang Q, Hou N,. Carnosol as a Nrf2 activator improves endothelial barrier function through antioxidative mechanisms [J]., 2019, 20(4): 880.

        [119]Sun K, Huang R, Li Y,. Schisandrin attenuates lipopolysaccharide-induced lung injury by regulating TLR-4 and Akt/FoxO1 signaling pathways [J]., 2018, 9: 1104.

        [120]Wu Y H, Yu X, Wang Y W,. Ruscogenin alleviates LPS-triggered pulmonary endothelial barrier dysfunction through targeting NMMHC IIAto modulate TLR4 signaling [J]., 2022, 12(3): 1198-1212.

        [121]Chen L, Li W, Qi D,. Honokiol protects pulmonary microvascular endothelial barrier against lipopolysaccharide- induced ARDS partially via the SIRT3/AMPK signaling axis [J]., 2018, 210: 86-95.

        [122]Liu X, Yang J H, Li J Q,. Vanillin attenuates cadmium-induced lung injury through inhibition of inflammation and lung barrier dysfunction through activating AhR [J]., 2021, 44(6): 2193-2202.

        [123]Peng L Y, Shi H T, Yuan M,. Madecassoside protects against LPS-induced acute lung injury via inhibiting TLR4/NF-κB activation and blood-air barrier permeability [J]., 2020, 11: 807.

        [124]吳瑩, 李季倩, 孟建, 等. 中藥復(fù)方對流感病毒性肺炎小鼠肺血管通透性的影響及機(jī)制 [J]. 北京中醫(yī)藥大學(xué)學(xué)報, 2011, 34(10): 668-672.

        [125]周建龍, 鄧青南, 郭振輝. 清氣化痰湯對急性肺損傷小鼠水通道蛋白5表達(dá)的影響 [J]. 中華中醫(yī)藥學(xué)刊, 2011, 29(6): 1303-1305.

        [126]Hu X X, Liu S, Zhu J,. Dachengqi Decoction alleviates acute lung injury and inhibits inflammatory cytokines production through TLR4/NF-κB signaling pathwayand[J]., 2019, 120(6): 8956-8964.

        [127]Gao Z M, Xu J F, Sun D G,. Traditional Chinese medicine, Qing Ying Tang, ameliorates the severity of acute lung injury induced by severe acute pancreatitis in rats via the upregulation of aquaporin-1 [J]., 2014, 8(6): 1819-1824.

        [128]韓安邦, 路迎冬, 張丹丹, 等. 益氣活血方對慢性心力衰竭大鼠肺組織水通道蛋白表達(dá)的影響 [J]. 中華中醫(yī)藥雜志, 2017, 32(10): 4395-4399.

        [129]劉毅, 梅榮, 楊明會, 等. 黃芪對急性肺損傷模型大鼠肺組織水通道蛋白-1和水通道蛋白-5表達(dá)的影響 [J]. 環(huán)球中醫(yī)藥, 2012, 5(9): 651-653.

        [130]張朝暉, 徐小云, 瞿星光, 等. 葶藶子水提液對內(nèi)毒素致急性肺損傷大鼠肺泡II型上皮細(xì)胞水通道蛋白5表達(dá)的影響 [J]. 中國中醫(yī)急癥, 2016, 25(4): 606-608.

        [131]Li X N, Yang J Y, Pan X,. Influence of extract ofleaves tablets on the aquaporin-1 expression in isolated lung ischemia reperfusion [J]., 2013, 126(24): 4720-4723.

        [132]Wang C, Yan M Y, Jiang H,. Protective effects of puerarin on acute lung and cerebrum injury induced by hypobaric hypoxia via the regulation of aquaporin (AQP) via NF-κB signaling pathway [J]., 2016, 40: 300-309.

        [133]鞏秀麗, 毛毅敏, 孫瑜霞, 等. 人參皂甙對內(nèi)毒素所致大鼠急性肺損傷的影響 [J]. 中華中醫(yī)藥雜志, 2011, 26(11): 2743-2745.

        [134]Gao J L, Bao L D, Zhang A W. The mechanism underlying hypaconitine-mediated alleviation of pancreatitis-associated lung injury through up-regulating aquaporin-1/TNF-Α [J]., 2020, 31(11): 790-798.

        [135]Li J H, Xu M, Fan Q X,. Tanshinone IIAameliorates seawater exposure-induced lung injury by inhibiting aquaporins (AQP)1 and AQP5 expression in lung [J]., 2011, 176(1/2): 39-49.

        Research progress on traditional Chinese medicine in prevention and treatment of alveolar-capillary barrier dysfunction

        YANG Shuang1, 2, QIN Hong-lin1, 2, LI Yi-xuan1, 2, WANG Xi1, 2, ZHANG Rong-tao1, 2, YANG Jian1, 2, 3

        1. State Key Laboratory of Component-based Chinese Medicine of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China 2. Institute of Chinese Medicine of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China 3. Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China

        The pulmonary alveolar-capillary barrier composed of alveolar air space, capillary cavity and pulmonary interstitium, which ensures the effective diffusion of gas between alveoli and blood, prevents the excessive expansion or collapse of alveolar, and maintains the normal function of the lung. Alveolar-capillary barrier dysfunction is the main pathological feature of acute lung injury (ALI). Once the alveolar-capillary barrier is destroyed, which leads to the leakage of plasma protein into the alveolar space to induce pulmonary edema, resulting in the abnormal gas exchange, the hypoxia of target organs and even life threatening. Nowadays, the treatment of ALI with traditional Chinese medicine has been widely recognized and verified. This paper provides a review of traditional Chinese medicine prescriptions, herbs and monomers used to prevent and treat the damage to the alveolar-capillary barrier, providing a basis for the application research of traditional Chinese medicine in preventing and treating ALI and the possible mechanism of action in repairing dysfunction of the alveolar-capillary barrier.

        alveolar-capillary barrier; traditional Chinese medicine; acute lung injury; alveolar epithelial cells; capillary endothelial cells; barrier stability; barrier functionality

        R285

        A

        0253 - 2670(2023)15 - 5075 - 13

        10.7501/j.issn.0253-2670.2023.15.031

        2023-01-15

        國家自然科學(xué)基金資助項(xiàng)目(82074032);天津市科技計(jì)劃項(xiàng)目(22ZXGBSY00020);現(xiàn)代中藥海河實(shí)驗(yàn)室科技項(xiàng)目(22HHZYSS00011)

        楊 爽(1997—),碩士研究生,研究方向?yàn)橹兴幩幚韺W(xué)。E-mail: yangs6666668@163.com

        通信作者:楊 劍,博士生導(dǎo)師,副研究員,從事中藥藥理學(xué)研究。E-mail: wosyjianya@126.com

        [責(zé)任編輯 趙慧亮]

        猜你喜歡
        屏障肺泡氣血
        小肺泡的大作用
        咬緊百日攻堅(jiān) 筑牢安全屏障
        觀察益氣養(yǎng)血湯治療氣血兩虛型月經(jīng)過少的臨床療效(1)
        觀察益氣養(yǎng)血湯治療氣血兩虛型月經(jīng)過少的臨床療效
        屏障修護(hù)TOP10
        經(jīng)支氣管肺泡灌洗術(shù)確診新型冠狀病毒肺炎1例
        女性與氣血的不解之緣
        一道屏障
        肺泡微石癥并發(fā)氣胸一例報道并文獻(xiàn)復(fù)習(xí)
        鈣結(jié)合蛋白S100A8、S100A9在大鼠肺泡巨噬細(xì)胞中的表達(dá)及作用
        在线视频观看免费视频18| 人人妻人人添人人爽欧美一区| 风韵人妻丰满熟妇老熟| 麻豆69视频在线观看| 凌辱人妻中文字幕一区| 国产精品理论片在线观看| 久久久久国产精品| 天天爽天天爽夜夜爽毛片| 18女下面流水不遮图| 131美女爱做视频| 国产亚洲精久久久久久无码苍井空 | 在线亚洲精品一区二区三区| 久久影院最新国产精品| 99久久精品一区二区国产 | 国产一区二区三区杨幂| 久久婷婷色香五月综合激激情| 亚洲第一页在线免费观看| 日本女优中文字幕在线播放| av影片在线免费观看| 色欲欲www成人网站| 香港三级日本三级a视频| 骚小妹影院| 精品无码国产污污污免费| 中文字幕久久精品波多野结百度| 国产在线观看精品一区二区三区| 国产亚洲精品一区二区在线观看| 成人影院视频在线免费观看| 精品无码国产自产在线观看水浒传 | 国产午夜无码片在线观看影院| 一本久久a久久精品亚洲| 国产成人福利在线视频不卡 | 日本一道dvd在线中文字幕| 久久亚洲中文字幕精品一区四| 日本熟妇视频在线中出| 激情都市亚洲一区二区| 中文字幕亚洲精品久久| 国产欧美亚洲精品第一页| 国产精品免费精品自在线观看| 亚洲综合色丁香婷婷六月图片| 国产精品成人无码久久久久久| 亚洲成人av一区二区|