閆樂樂 涂洪濤 方俊杰 牛良 曾文芳 崔國朝 魯振華 段文宜 孫世航 潘磊 王志強(qiáng)
摘 ? ?要:【目的】探究試驗(yàn)條件下田間種植抗蚜品種對(duì)昆蟲的種類和數(shù)量造成的影響,為將來抗蚜品種推廣后擬采用的植保栽培措施提供指導(dǎo)?!痉椒ā吭诳寡恋貕K早春不防治蚜蟲和對(duì)照地塊正常防治蚜蟲的情況下,利用馬來式網(wǎng)收集法、昆蟲性誘劑誘捕法和目測調(diào)查法,在昆蟲主要生長季節(jié)(3—8月),對(duì)抗蚜地塊和對(duì)照地塊內(nèi)的昆蟲群落組成和昆蟲群落個(gè)體數(shù)量的動(dòng)態(tài)變化進(jìn)行分析?!窘Y(jié)果】全生長季節(jié)抗蚜地塊共誘集到昆蟲5955頭,分屬9個(gè)目;對(duì)照地塊共誘集昆蟲4606頭,分屬8個(gè)目??寡恋貕K誘集到的昆蟲總數(shù)大于對(duì)照地塊,抗蚜地塊前期(3月下旬至6月下旬)誘集到的昆蟲總數(shù)大于對(duì)照地塊,后期數(shù)量基本一致。與對(duì)照地塊比較,抗蚜地塊中的優(yōu)勢昆蟲種群(雙翅目、半翅目、鱗翅目和膜翅目)的昆蟲總數(shù)存在發(fā)生高峰提前和總數(shù)增加的趨勢。兩地塊誘集到的昆蟲總數(shù)隨時(shí)間變化趨勢一致。抗蚜地塊中的多數(shù)中性昆蟲和天敵昆蟲的數(shù)量也存在發(fā)生高峰提前和總數(shù)增加的趨勢。兩地塊益、害蟲比無明顯差異。【結(jié)論】因早春未防治桃蚜,抗蚜品種的應(yīng)用會(huì)出現(xiàn)田間昆蟲總數(shù)增多的現(xiàn)象,了解抗蚜地塊內(nèi)昆蟲群落的發(fā)生規(guī)律,為未來抗蚜品種應(yīng)用推廣采用適宜的植保措施提供了有益參考。
關(guān)鍵詞:桃樹;抗蚜品種;昆蟲群落;動(dòng)態(tài)變化;防治建議
中圖分類號(hào):S662.1 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2023)07-1434-09
Effects of aphid-resistant varieties of peach on the growth dynamics of insect populations in the field
YAN Lele, TU Hongtao, FANG Junjie, NIU Liang, ZENG Wenfang, CUI Guochao, LU Zhenhua, DUAN Wenyi, SUN Shihang, PAN Lei*, WANG Zhiqiang*
(Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China)
Abstract: 【Objective】 The purpose of this study was to find out the changes of insect community structure in the field growing aphid-resistant varieties of peach tree by using the method of insect mathematical ecology, so as to explore the effects of the aphid-resistant varieties on the species and numbers of insects caused by non-target insects. It would provide a reference for the plant protection cultivation measures adopted when the aphid-resistant varieties come into use in the future. 【Methods】 The aphid-resistant varieties and control varieties were used in the experiment in the Xinxiang Comprehensive Experimental Base of Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences , In the case of using the aphid-resistant variety, aphid control was not applied in the early spring. The dynamic changes of insect community composition and number of insect community individuals in the plots using the aphid-resistant variety and control variety were analyzed by Malay net collection method, insect sex pheromone trapping method and visual survey method. 【Results】 A total of 5955 insects samples were collected in the plot using aphid-resistant variety and they belonged to 9 orders. They were Diptera, Hemiptera, Lepidoptera, Hymenoptera, Arachnoidea, Neuroptera, Coleoptera, Orthoptera, and Thysanoptera. A total of 4606 insect samples were collected in the CK plot and they belonged to 8 orders. They were Diptera, Hemiptera, Lepidoptera, Hymenoptera, Arachnoidea, Neuroptera, Coleoptera and Orthoptera. The total number of insects collected in the plot using aphid-resistant variety was greater than those in the CK plot, and there was no significant difference in the percentage of insects of each order in the two plots. The pests in the plot using the aphid-resistant variety accounted for 40.70% of the total number of the insects and 35.93% in the control plot. The pests included Lepidoptera, Hemiptera and Arachnoidea. The beneficial insects in the plot using the aphid-resistant variety accounted for 15.95% of the total number of the insects and 12.26% in the control plot. The beneficial insects included Syrphidae, Coccinellidae and lacewing. The other insects were neutral insects, mainly including Diptera, Coleoptera, Orthoptera and Thysanoptera, they accounted for 43.36% of the total number of the insects in the plot using the aphid-resistant, and 51.81% in the CK plot. The benefit/pest ratio of the plot using the aphid-resistant variety and and of the control plot were not significantly different in terms of the overall trend. The total number of insects collected in the the plot using the aphid-resistant variety was greater than those in the CK plot, and the total number of insects in the early stage of the plot using the aphid-resistant (late March to early June) was greater than those in the control plot, and the number was basically the same in the later stage. The trend of the total number of insects in the plot using the aphid-resistant variety and in the control plot was basically consistent with time. Compared with the CK plot, the total number of insects in the dominant insect populations (Diptera, Hemiptera, Lepidoptera and Hymenoptera) in the plot using the aphid-resistant variety had a tendency to peak earlier and increase the total number during the pest occurrence season. The number of most neutral insects and natural enemy insects in the plot using the aphid-resistant variety also tended to peak earlier and increase total number. 【Conclusion】 Using the aphid-resistant variety in the orchard could possibly increase the total number of insect individuals due to the lack of the use of the pesticide to peach aphids in the early spring
Key words: Peach; Aphid-resistant varieties; Insect communities; Dynamic changes; Prevention advice
桃[Prunus persica (L.) Batsch]是原產(chǎn)我國的世界性重要落葉果樹,栽培歷史悠久,適應(yīng)范圍廣,經(jīng)濟(jì)效益高。在中國果業(yè)中僅次于柑橘、蘋果和梨,居第四位。桃蚜(Myzus persicae Sülze)是桃樹早春的主要害蟲之一,對(duì)桃產(chǎn)業(yè)危害嚴(yán)重。目前中國農(nóng)業(yè)科學(xué)院鄭州果樹研究所已經(jīng)培育了多個(gè)桃樹抗蚜品種,正處于區(qū)試和品種保護(hù)階段。應(yīng)用桃樹抗蚜品種能有效防治桃樹桃蚜危害,在桃樹抗蚜品種大規(guī)模推廣前,對(duì)抗蚜品種田間昆蟲種類和數(shù)量的變化趨勢進(jìn)行研究,可為抗蚜品種配套植保措施的制定提供必要信息。
桃蚜通常以若蟲、成蟲群集于桃樹新梢幼嫩葉片背面刺吸汁液造成葉片卷縮,無法抽出嫩梢。桃蚜分泌的蜜露污染植物葉片,易引起煤污病,影響植物光合作用。此外,桃蚜還是植物病毒病的攜帶者和傳播者[1]。由于桃蚜具有繁殖快、個(gè)體小、生活周期短的特點(diǎn),在生產(chǎn)上需要花費(fèi)大量的人力物力多次噴施農(nóng)藥進(jìn)行防治,長期使用農(nóng)藥不僅會(huì)使桃蚜對(duì)農(nóng)藥產(chǎn)生抗藥性,還給環(huán)境帶來了巨大的化學(xué)污染。因此,利用桃樹自身抗性防控桃蚜是最環(huán)保和經(jīng)濟(jì)的一種方式。
在過去50到60年里,植物育種家和昆蟲學(xué)家在使用傳統(tǒng)的植物育種方法培育抗蟲作物品種方面取得了較大的成功,在自然界中發(fā)現(xiàn)了許多對(duì)昆蟲有抗性的資源品種[2]。植物的抗性是由昆蟲誘導(dǎo)的植物蛋白質(zhì)和抗性基因產(chǎn)物合成的防御化物質(zhì)介導(dǎo)的。利用克隆和分子定位已確定Mi-1.2和Vat節(jié)肢動(dòng)物抗性基因?yàn)镃C-NBS-LRR(coiled coil-nucleotide binding site-leucine rich repeat)亞家族NBS-LRR抗性蛋白,以及多個(gè)抗性基因類似物。遺傳連鎖定位已識(shí)別出100多個(gè)用于品種培育的植物抗性基因位點(diǎn)和連鎖分子標(biāo)記[3-6]。目前,在世界范圍內(nèi),已從桃種質(zhì)資源中鑒定出多份抗蚜材料。法國農(nóng)科院鑒定了5種抗蚜種質(zhì),其中“垂枝花桃”(Weeping Flower Peach,WFP)和桃砧木品種Rubira分別由顯性單基因位點(diǎn)Rm1和Rm2控制,山桃為多基因控制,主效基因定位在3號(hào)染色體上[7-9]。王力榮等[10]采用田間自然篩選和人工接種相結(jié)合的方法,對(duì)國家果樹種質(zhì)鄭州桃圃保存的419份資源進(jìn)行了抗桃蚜鑒定,篩選出了壽星桃、碧桃抗性較強(qiáng)的種質(zhì)資源。筆者課題組培育出多個(gè)桃樹的抗蚜品種并且對(duì)蚜蟲的抗性效果顯著[1,11-14]。我國抗蟲品種研發(fā)成果豐碩,近年來抗蟲作物陸續(xù)被批準(zhǔn)商業(yè)化生產(chǎn),世界范圍內(nèi)迄今已有200余個(gè)帶有抗蟲性狀的轉(zhuǎn)基因玉米品種被批準(zhǔn)商業(yè)化生產(chǎn)[15]。20年來,我國共批準(zhǔn)3188個(gè)轉(zhuǎn)基因抗蟲棉生產(chǎn)應(yīng)用安全證書,其中,2572個(gè)獲得品種審定[16]??瓜x棉的應(yīng)用不僅能有效控制棉鈴蟲對(duì)棉花的危害,還能減少棉鈴蟲對(duì)其他作物的危害[17-18]。相對(duì)于常規(guī)棉花,抗蟲棉的種植降低了農(nóng)藥使用量、減少了防治成本[19-21]。但是隨著抗蟲棉的大量種植,一些非靶標(biāo)害蟲(如棉蚜、棉盲蝽、煙粉虱等)因農(nóng)藥施用量減少而出現(xiàn)大暴發(fā)的現(xiàn)象[22-24]。
已有研究表明如BT棉等抗蟲作物在長期種植過程中會(huì)影響田間非靶標(biāo)害蟲種群種類和數(shù)量,導(dǎo)致次要害蟲升級(jí)為重要害蟲,從而影響作物害蟲防治的周年規(guī)律[25-32]。目前桃樹抗蚜品種種植對(duì)田間昆蟲群落結(jié)構(gòu)的影響尚缺乏研究。為此,筆者在本研究中對(duì)桃樹抗蚜品種種植后田間昆蟲群落種類和數(shù)量變化進(jìn)行調(diào)查,旨在探明抗蚜品種的應(yīng)用推廣對(duì)除桃蚜外的昆蟲種類和數(shù)量造成的影響,為將來抗蚜品種應(yīng)用推廣后可采用的植保措施提供科學(xué)參考和理論依據(jù)。
1 材料和方法
1.1 試驗(yàn)時(shí)間、地點(diǎn)
試驗(yàn)于2022年3—8月在中國農(nóng)業(yè)科學(xué)院鄭州果樹研究所新鄉(xiāng)綜合試驗(yàn)基地桃育種課題組育種圃進(jìn)行。
1.2 試驗(yàn)材料及處理
供試材料選用感蚜品種中油13號(hào)和抗蚜品種中蟠1號(hào)(抗性來源于壽星桃,屬于I類抗性),由中國農(nóng)業(yè)科學(xué)院鄭州果樹研究所桃育種課題組提供。
試驗(yàn)共設(shè)2個(gè)處理,分別為抗蚜地塊(種植抗蚜品種中蟠1號(hào))和對(duì)照地塊(種植感蚜品種中油13號(hào))。兩個(gè)地塊面積相同,地塊內(nèi)桃樹的株行距1 m×3 m,3年生樹,樹形為主干形,桃樹地面自然生草。對(duì)照地塊正常防治桃蚜,在桃蚜發(fā)生季節(jié)使用2次防治蚜蟲的農(nóng)藥,于桃樹花露紅時(shí)(3月14日)第1次噴施農(nóng)藥,種類為22%氟啶蟲胺腈懸浮劑10 000倍液和20%氯氰菊酯水乳劑600倍液;于桃樹落花后(4月7日)第2次噴施農(nóng)藥,種類為22%氟啶蟲胺腈懸浮劑10 000倍液、20%氯氰菊酯水乳劑600倍液、22.4%螺蟲乙酯懸浮劑6000倍液和500 g·L-1甲基硫菌靈懸浮劑400倍液??寡恋貕K內(nèi)不針對(duì)蚜蟲進(jìn)行化學(xué)防治。此外,針對(duì)該桃園往年危害桃樹嚴(yán)重的梨小食心蟲和紅蜘蛛進(jìn)行化學(xué)防治,于4月10日噴施35%氯蟲苯甲酰胺水粉散粒劑7000倍液防治梨小食心蟲,于7月1日噴施10%乙螨唑和20%聯(lián)苯肼酯懸浮劑5000倍液防治紅蜘蛛。
1.3 試驗(yàn)方法
調(diào)查采用馬來式網(wǎng)收集法、昆蟲性誘劑誘捕法和目測法。每隔10 d左右收集1次,將收集到的昆蟲標(biāo)本帶回實(shí)驗(yàn)室進(jìn)行初步的分類和鑒定,將昆蟲鑒定到目。
馬來式網(wǎng)收集法:按照均勻分布原則,在每個(gè)地塊安裝1個(gè)馬來式網(wǎng),3次重復(fù),兩個(gè)地塊共安裝6個(gè)馬來式網(wǎng)。昆蟲被誘集于裝有75%乙醇的塑料瓶中,保持了昆蟲的原始形態(tài),收集后及時(shí)更換收集瓶。
昆蟲性誘劑誘捕法:每個(gè)三角形誘捕器配置1枚誘芯,距地面150 cm。每個(gè)地塊設(shè)4種誘芯處理,每處理2次重復(fù),兩個(gè)地塊共16個(gè)誘捕器。每個(gè)地塊內(nèi)的誘捕器均勻分布,隔21 d統(tǒng)一更換誘芯。每隔7 d調(diào)查并記錄誘捕器誘捕到的昆蟲數(shù)量,并重新清理干凈。
目測法:每個(gè)地塊內(nèi)隨機(jī)抽取5株樹,3次生物學(xué)重復(fù),目測調(diào)查并記錄每棵樹上梨小食心蟲的蟲梢數(shù)。
1.4 標(biāo)本鑒定
參照《中國動(dòng)物志:昆蟲綱》[33]、《中國昆蟲生態(tài)大圖鑒》[34]、《桃病蟲害快速鑒別與防治妙招》[35]等分類參考書對(duì)收集到的昆蟲標(biāo)本鑒定到目。
1.5 數(shù)據(jù)統(tǒng)計(jì)分析
采用Microsoft Excel 2019進(jìn)行數(shù)據(jù)整理分析和曲線圖繪制。
2 結(jié)果與分析
2.1 抗蚜地塊和對(duì)照地塊內(nèi)的昆蟲群落組成
調(diào)查期間抗蚜地塊共誘集到昆蟲5955頭,分屬于9個(gè)目,分別是雙翅目、半翅目、鱗翅目、膜翅目、婢螨目、脈翅目、鞘翅目、直翅目和纓翅目(表1)。其中雙翅目為主要類群,個(gè)體數(shù)為3030頭,所占百分比為50.87%;其次是半翅目,個(gè)體數(shù)為1641頭,所占百分比為27.55%;鱗翅目、膜翅目、婢螨目、脈翅目、鞘翅目、直翅目和纓翅目所占百分比分別為12.25%、5.37%、0.69%、0.53%、2.27%、0.41%和0.06%。對(duì)照地塊共誘集到昆蟲4606頭,分屬于8個(gè)目,分別是雙翅目、半翅目、鱗翅目、膜翅目、婢螨目、脈翅目、鞘翅目和直翅目(表1)。其中雙翅目為主要類群,個(gè)體數(shù)為2424頭,所占百分比為52.63%;其次是半翅目,個(gè)體數(shù)為1229頭,所占百分比為26.68%;鱗翅目、膜翅目、婢螨目、脈翅目、鞘翅目、直翅目和纓翅目所占百分比分別為12.25%、5.37%、0.69%、0.53%、2.27%、0.41%和0.06%??寡恋貕K誘集到的昆蟲總數(shù)大于對(duì)照地塊,但兩地塊誘集到的各個(gè)目昆蟲數(shù)量所占百分比并無較大差異。
在抗蚜地塊和對(duì)照地塊所誘集到的昆蟲中,害蟲包括鱗翅目、半翅目和婢螨目,抗蚜地塊占總數(shù)量的40.70%,對(duì)照地塊占總數(shù)量的35.93%。益蟲包括食蚜蠅、瓢蟲和草蛉,抗蚜地塊占總數(shù)量的15.95%,對(duì)照地塊占總數(shù)量的12.26%。
其他昆蟲為中性昆蟲,主要包括雙翅目、鞘翅目、直翅目和纓翅目,抗蚜地塊占總數(shù)量的43.35%,對(duì)照地塊占總數(shù)量的51.81%(圖1)??寡恋貕K和對(duì)照地塊的益害蟲比整體趨勢沒有較大差異。
2.2 抗蚜地塊和對(duì)照地塊內(nèi)的昆蟲群落個(gè)體總數(shù)量的動(dòng)態(tài)變化
調(diào)查期間,抗蚜地塊和對(duì)照地塊昆蟲個(gè)體總數(shù)隨時(shí)間變化趨勢基本一致。抗蚜地塊和對(duì)照地塊昆蟲個(gè)體總數(shù)從3月下旬開始逐漸增加,在6月初達(dá)到峰值,分別達(dá)730、655頭,6月上旬個(gè)體數(shù)迅速下降后又有所回升,直至8月中旬兩地塊個(gè)體數(shù)均呈下降趨勢(圖2)。
2.3 抗蚜地塊和對(duì)照地塊內(nèi)的天敵昆蟲群落個(gè)體數(shù)量的動(dòng)態(tài)變化
本研究中統(tǒng)計(jì)了食蚜蠅和瓢蟲這2類天敵昆蟲在抗蚜地塊和對(duì)照地塊中個(gè)體數(shù)量的變化趨勢情況(圖3)??寡恋貕K中食蚜蠅的個(gè)體總數(shù)大多數(shù)時(shí)間點(diǎn)多于對(duì)照地塊;食蚜蠅個(gè)體總數(shù)在兩地塊中均是4月下旬迅速上升,5月上旬達(dá)到峰值然后迅速下降??寡恋貕K中瓢蟲的個(gè)體總數(shù)大多數(shù)時(shí)間點(diǎn)多于對(duì)照地塊;瓢蟲個(gè)體總數(shù)在4月下旬逐漸上升,6月中旬達(dá)到峰值,之后迅速下降。
2.4 抗蚜地塊和對(duì)照地塊內(nèi)的桃樹常見害蟲群落個(gè)體數(shù)量的動(dòng)態(tài)變化
筆者在本研究中統(tǒng)計(jì)了抗蚜地塊和對(duì)照地塊中桃樹常見害蟲包括梨小食心蟲、桃小食心蟲、蘋小卷葉蛾和桃蛀螟(圖4)。梨小食心蟲的個(gè)體總數(shù)在抗蚜地塊中于6月中旬開始逐漸增加,在對(duì)照地塊中于6月下旬開始逐漸增加,在兩地塊中均于7月上旬達(dá)到峰值,隨后迅速降低。蘋小卷葉蛾的個(gè)體總數(shù)在兩地塊中于6月中旬開始逐漸增加,7月上旬達(dá)到峰值,隨后迅速降低。在發(fā)生期6月中旬至7月上旬,對(duì)照地塊中的蘋小卷葉蛾個(gè)體總數(shù)多于抗蚜地塊。兩地塊內(nèi)誘捕到的桃小食心蟲和桃蛀螟的數(shù)量較少,抗蚜地塊和對(duì)照地塊之間趨勢變化不明顯。
2.5 抗蚜地塊和對(duì)照地塊內(nèi)梨小食心蟲蟲梢數(shù)的動(dòng)態(tài)變化
抗蚜地塊和對(duì)照地塊內(nèi)的梨小食心蟲的蟲梢數(shù)隨時(shí)間變化趨勢基本一致。在抗蚜地塊中,梨小食心蟲的蟲梢數(shù)從4月中旬開始迅速增加,6月下旬達(dá)到峰值,之后逐漸下降。在對(duì)照地塊中,梨小食心蟲的蟲梢數(shù)從5月中旬開始迅速增加,6月下旬達(dá)到峰值,之后逐漸下降。比較得出抗蚜地塊中的梨小食心蟲蟲害發(fā)生時(shí)間早于對(duì)照地塊(圖5)。
3 討 論
昆蟲是種類最多、數(shù)量最大的動(dòng)物類群,開展作物田間昆蟲群落研究是農(nóng)業(yè)害蟲防治的基礎(chǔ)[36-37]。已知,抗蟲品種的推廣應(yīng)用會(huì)對(duì)作物田間昆蟲群落產(chǎn)生影響。例如,通過回顧轉(zhuǎn)基因BT抗蟲棉的應(yīng)用歷史,轉(zhuǎn)基因BT抗蟲棉應(yīng)用多年后,棉田間主要害蟲(棉鈴蟲)雖然得到了很好的控制,但一些次要害蟲的數(shù)量可能會(huì)大幅增加并成為主要害蟲[24,38]。筆者課題組前期針對(duì)壽星桃類桃樹抗蚜材料的抗性鑒定表明,壽星桃抗蚜材料對(duì)桃蚜具有強(qiáng)烈的趨避性抗性[11,39],抗蚜品種種植后能夠控制桃蚜的危害。本研究對(duì)抗蚜地塊和對(duì)照地塊內(nèi)的昆蟲群落組成和昆蟲群落個(gè)體數(shù)量的動(dòng)態(tài)變化分析顯示,綜合全生長期數(shù)據(jù),抗蚜地塊內(nèi)的昆蟲個(gè)體總數(shù)大于對(duì)照地塊;抗蚜地塊前期(3月下旬至6月下旬)誘集到的昆蟲總數(shù)大于對(duì)照地塊,而這之后的昆蟲數(shù)目基本一致,前期抗蚜地塊昆蟲總數(shù)升高可能是減少了桃蚜控制所使用的農(nóng)藥導(dǎo)致的。
抗蟲作物如轉(zhuǎn)基因抗蟲作物在長期種植過程中對(duì)非靶標(biāo)害蟲的影響及防控研究已經(jīng)成為各國科學(xué)家關(guān)注的焦點(diǎn)[25]。例如,在轉(zhuǎn)基因抗蟲棉田中,靶標(biāo)害蟲的有效控制使殺蟲劑在Bt轉(zhuǎn)基因抗蟲棉田中的使用模式發(fā)生了改變,從而導(dǎo)致多種害蟲的種群地位和生態(tài)位空間出現(xiàn)了演替變化[40]。轉(zhuǎn)基因Bt抗蟲棉種植后,用于防治靶標(biāo)害蟲(棉鈴蟲)的化學(xué)農(nóng)藥使用次數(shù)減少到5次[41]。然而,由于非靶標(biāo)害蟲(如蚜蟲、葉蟬、盲蝽)數(shù)量的顯著增加,用于防治非靶標(biāo)害蟲的化學(xué)農(nóng)藥的劑量比原來增加了接近一倍,因此,根據(jù)非靶標(biāo)害蟲的發(fā)生規(guī)律采取相應(yīng)的防治措施對(duì)防治Bt抗蟲棉田間害蟲非常必要。本研究中桃樹非靶標(biāo)害蟲,如梨小食心蟲也是桃栽培生產(chǎn)過程中的主要防治對(duì)象,相比對(duì)照地塊,梨小食心蟲在抗蚜地塊內(nèi)的發(fā)生時(shí)間提前,如不及時(shí)防治,將對(duì)桃樹造成嚴(yán)重的危害。因此,筆者建議,在抗蚜品種應(yīng)用過程中,更應(yīng)該加強(qiáng)對(duì)梨小食心蟲、蘋小卷葉蛾、紅蜘蛛和橘小食蠅等除桃蚜外桃樹主要害蟲的監(jiān)測工作,了解這些桃樹主要害蟲的發(fā)生情況,科學(xué)適時(shí)開展針對(duì)性的防治工作,以避免對(duì)桃園造成的潛在危害。本試驗(yàn)開展對(duì)抗蚜地塊中昆蟲群落的種類和數(shù)量的研究,為將來抗蚜品種應(yīng)用推廣配套植保措施的制定提供了數(shù)據(jù)基礎(chǔ)。
轉(zhuǎn)基因抗蟲作物的種植可以通過減少害蟲數(shù)量而降低天敵種群數(shù)量,而轉(zhuǎn)基因作物田間殺蟲劑使用量的減少,又有利于天敵種群的增加[42]。本研究中,抗蚜地塊和對(duì)照地塊中昆蟲群落個(gè)體總數(shù)隨時(shí)間變化的整體趨勢是一致的,但抗蚜地塊昆蟲總數(shù)出現(xiàn)了增加的現(xiàn)象,其中害蟲總數(shù)和益蟲總數(shù)同步增加,兩地塊之間益害蟲比沒有明顯差異。但這并不是最終的結(jié)果,隨著抗蚜品種應(yīng)用時(shí)間變長,上一年度田間昆蟲通過冬季休眠后會(huì)對(duì)次年田間昆蟲群落造成影響。前人也有研究發(fā)現(xiàn),次要害蟲種群會(huì)在適宜的條件下逐漸發(fā)展成為田間的主要害蟲,并導(dǎo)致次要害蟲大暴發(fā),這個(gè)過程需要持續(xù)很長時(shí)間才會(huì)出現(xiàn),只有通過長期研究才能有效地評(píng)估和監(jiān)測所有的潛在影響[43-44]。目前,本研究僅對(duì)桃樹抗蚜品種短期應(yīng)用后的昆蟲群落結(jié)構(gòu)特征進(jìn)行了為期一年的調(diào)查與分析,試驗(yàn)周期短,桃樹主要害蟲的種群增長已經(jīng)表現(xiàn)出提前的趨勢,雖然部分變化確實(shí)并不非常顯著,但仍值得筆者長期關(guān)注。因此,未來還需要開展更多針對(duì)抗蚜品種田間昆蟲群落中昆蟲種類和數(shù)量變化影響的長期研究工作。
4 結(jié) 論
綜合本研究,發(fā)現(xiàn)抗蚜品種短期應(yīng)用后,田間昆蟲種類和昆蟲總數(shù)的周年變化規(guī)律未發(fā)生較大變化,但抗蚜地塊昆蟲總數(shù)明顯多于對(duì)照地塊。與對(duì)照地塊比較,抗蚜地塊中的優(yōu)勢昆蟲種群(雙翅目、半翅目、鱗翅目和膜翅目)的昆蟲總數(shù)存在發(fā)生高峰提前和總數(shù)增加的趨勢??寡恋貕K中的多數(shù)中性昆蟲和天敵昆蟲的數(shù)量也存在發(fā)生高峰提前和總數(shù)增加的趨勢。兩地塊益、害蟲比無明顯差異。筆者對(duì)抗蚜地塊中昆蟲群落的種類和數(shù)量進(jìn)行了研究,為將來抗蚜品種應(yīng)用推廣配套植保措施的制定提供了有益參考。
參考文獻(xiàn) References:
[1] 牛良,魯振華,曾文芳,崔國朝,潘磊,徐強(qiáng),李國懷,王志強(qiáng). ‘粉壽星對(duì)桃綠蚜抗性的遺傳分析[J]. 果樹學(xué)報(bào),2016,33(5):578-584.
NIU Liang,LU Zhenhua,ZENG Wenfang,CUI Guochao,PAN Lei,XU Qiang,LI Guohuai,WANG Zhiqiang. Inheritance analysis of resistance to green peach aphids (Myzus persicae Sulzer) for peach cultivar‘Fen Shouxing(Prunus persica var. densa)[J]. Journal of Fruit Science,2016,33(5):578-584.
[2] SMITH C M,CLEMENT S L. Molecular bases of plant resistance to arthropods[J]. Annual Review of Entomology,2012,57:309-328.
[3] CASTEEL C L,WALLING L L,PAINE T D. Behavior and biology of the tomato psyllid,Bactericerca cockerelli,in response to the Mi-1.2 gene[J]. Entomologia Experimentalis et Applicata,2006,121(1):67-72.
[4] NOMBELA G,WILLIAMSON V M,MU?IZ M. The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci[J]. Molecular Plant-Microbe Interactions,2003,16(7):645-649.
[5] ROSSI M,GOGGIN F L,MILLIGAN S B,KALOSHIAN I,ULLMAN D E,WILLIAMSON V M. The nematode resistance gene Mi of tomato confers resistance against the potato aphid[J]. Proceedings of the National Academy of Sciences of the United States of America,1998,95(17):9750-9754.
[6] DOGIMONT C,CHOVELON V,TUAL S,BOISSOT N,RITTENER V, GIOVINAZZO N,BENDAHMANE A. Molecular diversity at the Vat/PM-W resistance locus in melon[C]. Proceedings of the IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae. PITRAT M, ed. INRA, Avignon (France),2008:219-230.
[7] PASCAL T,ABERLENC R,CONFOLENT C,HOERTER M,LECERF E,TU?RO C,LAMBERT P. Mapping of new resistance (Vr2,Rm1) and ornamental (Di2,pl) Mendelian trait loci in peach[J]. Euphytica,2017,213(6):132.
[8] LAMBERT P,PASCAL T. Mapping Rm2 gene conferring resistance to the green peach aphid (Myzus persicae Sulzer) in the peach cultivar “Rubira?”[J]. Tree Genetics & Genomes,2011,7(5):1057-1068.
[9] SAUGE M H,LAMBERT P,PASCAL T. Co-localisation of host plant resistance QTLs affecting the performance and feeding behaviour of the aphid Myzus persicae in the peach tree[J]. Heredity,2012,108(3):292-301.
[10] 王力榮,朱更瑞,方偉超,左覃元,韓立新. 桃種質(zhì)資源對(duì)桃蚜的抗性評(píng)價(jià)[J]. 果樹學(xué)報(bào),2001,18(3):145-147.
WANG Lirong,ZHU Gengrui,F(xiàn)ANG Weichao,ZUO Qinyuan,HAN Lixin. Study on the resistance to peach aphid (Myzus persicae Sulzer) of peach germplasm[J]. Journal of Fruit Science,2001,18(3):145-147.
[11] NIU L,PAN L,ZENG W F,LU Z H,CUI G C,F(xiàn)AN M L,XU Q,WANG Z Q,LI G H. Dynamic transcriptomes of resistant and susceptible peach lines after infestation by green peach aphids (Myzus persicae Sulzer) reveal defence responses controlled by the Rm3 locus[J]. BMC Genomics,2018,19(1):846.
[12] 張南南,魯振華,崔國朝,潘磊,曾文芳,牛良,王志強(qiáng). 基于SNP標(biāo)記桃抗蚜性狀的基因定位[J]. 中國農(nóng)業(yè)科學(xué),2017,50(23):4613-4621.
ZHANG Nannan,LU Zhenhua,CUI Guochao,PAN Lei,ZENG Wenfang,NIU Liang,WANG Zhiqiang. Gene mapping of aphid-resistant for peach using SNP markers[J]. Scientia Agricultura Sinica,2017,50(23):4613-4621.
[13] 潘磊,閆樂樂,魯振華,曾文芳,崔國朝,牛良,王志強(qiáng). 一類桃樹桃蚜抗性新種質(zhì)09南3-30[J]. 果樹學(xué)報(bào),2021,38(6):895-900.
PAN Lei,YAN Lele,LU Zhenhua,ZENG Wenfang,CUI Guochao,NIU Liang,WANG Zhiqiang. 09N3-30,a new peach germplasm with green peach aphid resistance[J]. Journal of Fruit Science,2021,38(6):895-900.
[14] 閆樂樂,卜璐璐,牛良,曾文芳,魯振華,崔國朝,苗玉樂,潘磊,王志強(qiáng). 廣泛靶向代謝組學(xué)解析桃蚜危害對(duì)桃樹次生代謝產(chǎn)物的影響[J]. 中國農(nóng)業(yè)科學(xué),2022,55(6):1149-1158.
YAN Lele,BU Lulu,NIU Liang,ZENG Wenfang,LU Zhenhua,CUI Guochao,MIAO Yule,PAN Lei,WANG Zhiqiang. Widely targeted metabolomics analysis of the effects of Myzus persicae feeding on Prunus persica secondary metabolites[J]. Scientia Agricultura Sinica,2022,55(6):1149-1158.
[15] 梁晉剛,張旭冬,畢研哲,王顥潛,張秀杰. 轉(zhuǎn)基因抗蟲玉米發(fā)展現(xiàn)狀與展望[J]. 中國生物工程雜志,2021,41(6):98-104.
LIANG Jingang,ZHANG Xudong,BI Yanzhe,WANG Haoqian,ZHANG Xiujie. Development status and prospect of genetically modified insect-resistant maize[J]. China Biotechnology,2021,41(6):98-104.
[16] 李雪,朱永紅,肖冰,李靜,張換樣,劉曉佩,梁晉剛. 我國20年轉(zhuǎn)基因抗蟲棉育種成果及轉(zhuǎn)基因生物安全監(jiān)管政策分析[J]. 農(nóng)業(yè)科技管理,2022,41(2):41-43.
LI Xue,ZHU Yonghong,XIAO Bing,LI Jing,ZHANG Huanyang,LIU Xiaopei,LIANG Jingang. Achievements of genetically modified insect-resistant cotton breeding and analysis of the safety regulatory and administration on agricultural GMOs in China in the last 20 years[J]. Management of Agricultural Science and Technology,2022,41(2):41-43.
[17] WU K M,LU Y H,F(xiàn)ENG H Q,JIANG Y Y,ZHAO J Z. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton[J]. Science,2008,321(5896):1676-1678.
[18] ZHAO J H,HO P,AZADI H. Benefits of Bt cotton counterbalanced by secondary pests?Perceptions of ecological change in China[J]. Environmental Monitoring and Assessment,2011,173(1/2/3/4):985-994.
[19] 蘇軍,黃季焜,喬方彬. 轉(zhuǎn)Bt基因抗蟲棉生產(chǎn)的經(jīng)濟(jì)效益分析[J]. 農(nóng)業(yè)技術(shù)經(jīng)濟(jì),2000(5):26-31.
SU Jun,HUANG Jikun,QIAO Fangbin. Economic benefit analysis of Bt gene insect-resistant cotton production[J]. Journal of Agrotechnical Economics,2000(5):26-31.
[20] PRAY C E,HUANG J K,HU R F,ROZELLE S. Five years of Bt cotton in China - the benefits continue[J]. The Plant Journal,2002,31(4):423-430.
[21] NARANJO S E. Impacts of Bt transgenic cotton on integrated pest management[J]. Journal of Agricultural and Food Chemistry,2011,59(11):5842-5851.
[22] QAIM M,ZILBERMAN D. Yield effects of genetically modified crops in developing countries[J]. Science,2003,299(5608):900-902.
[23] WU K,LI W,F(xiàn)ENG H,GUO Y. Seasonal abundance of the mirids,Lygus lucorum and Adelphocoris spp. (Hemiptera:Miridae) on Bt cotton in Northern China[J]. Crop Protection,2002,21(10):997-1002.
[24] 吳孔明,陸宴輝,王振營. 我國農(nóng)業(yè)害蟲綜合防治研究現(xiàn)狀與展望[J]. 昆蟲知識(shí),2009,46(6):831-836.
WU Kongming,LU Yanhui,WANG Zhenying. Advance in integrated pest management of crops in China[J]. Chinese Bulletin of Entomology,2009,46(6):831-836.
[25] 關(guān)正君,魯順保,霍艷林,郝浩永,曹建斌,魏偉,劉標(biāo). 轉(zhuǎn)Bt基因抗蟲作物對(duì)非靶標(biāo)害蟲的影響[J]. 生物多樣性,2018,26(6):636-644.
GUAN Zhengjun,LU Shunbao,HUO Yanlin,HAO Haoyong,CAO Jianbin,WEI Wei,LIU Biao. Effects of Bt crops on non-target insect pests[J]. Biodiversity Science,2018,26(6):636-644.
[26] 吳啟佳,崔旭紅,張國安,梁宏合,焦曉國. Bt水稻對(duì)青翅蟻形隱翅蟲和非靶標(biāo)害蟲種群動(dòng)態(tài)的影響[J]. 湖北大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,38(5):445-448.
WU Qijia,CUI Xuhong,ZHANG Guoan,LIANG Honghe,JIAO Xiaoguo. Effects of transgenic Bt rice on population dynamics of dominant predator Paederus fuscipes Curtis and non-target phloem-sucking pests[J]. Journal of Hubei University (Natural Science),2016,38(5):445-448.
[27] 李博,龍正,陳金湘. 轉(zhuǎn)Bt基因抗蟲棉靶標(biāo)害蟲與非靶標(biāo)害蟲消長動(dòng)態(tài)研究進(jìn)展[J]. 作物研究,2011,25(6):634-638.
LI Bo,LONG Zheng,CHEN Jinxiang. Research progress on the growth and decline dynamics of target and non-target pests of Bt gene insect-resistant cotton[J]. Crop Research,2011,25(6):634-638.
[28] 馬惠,夏曉明,周玉,趙鳴,王紅艷. 轉(zhuǎn)Bt基因抗蟲棉對(duì)非靶標(biāo)昆蟲的影響[J]. 中國農(nóng)學(xué)通報(bào),2009,25(7):214-218.
MA Hui,XIA Xiaoming,ZHOU Yu,ZHAO Ming,WANG Hongyan. Impact of transgenic Bt cotton on Non-target insects[J]. Chinese Agricultural Science Bulletin,2009,25(7):214-218.
[29] 陳彥君,關(guān)瀟,任夢云. 轉(zhuǎn)Cry1Ah基因抗蟲玉米HGK60對(duì)田間節(jié)肢動(dòng)物及雜草多樣性的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2020,31(12):4180-4188.
CHEN Yanjun,GUAN Xiao,REN Mengyun. Impacts of transgenic insect-resistant maize HGK60 with Cry1Ah gene on biodiversity of arthropods and weeds in the field[J]. Chinese Journal of Applied Ecology,2020,31(12):4180-4188.
[30] 尹俊琦,武奉慈,周琳,宋新元. 轉(zhuǎn)Cry1Ac基因抗蟲玉米Bt-799對(duì)田間節(jié)肢動(dòng)物群落多樣性的影響[J]. 生物安全學(xué)報(bào),2017,26(2):159-167.
YIN Junqi,WU Fengci,ZHOU Lin,SONG Xinyuan. Impacts of a transgenic insect-resistant maize (Bt-799) containing a Cry1Ac gene on arthropod biodiversity[J]. Journal of Biosafety,2017,26(2):159-167.
[31] 曾華蘭,何煉,葉鵬盛,劉朝輝,韋樹谷,張騫方. 四川棉區(qū)轉(zhuǎn)基因抗蟲棉對(duì)棉田昆蟲群落的影響[J]. 西南農(nóng)業(yè)學(xué)報(bào),2009,22(3):632-635.
ZENG Hualan,HE Lian,YE Pengsheng,LIU Zhaohui,WEI Shugu,ZHANG Qianfang. Effect of transgenic cotton on the population dynamics of insect in Sichuan cotton region[J]. Southwest China Journal of Agricultural Sciences,2009,22(3):632-635.
[32] 徐文華,劉標(biāo),王瑞明,鄭央萍,張毅,李孝剛. 江蘇沿海地區(qū)轉(zhuǎn)Bt基因抗蟲棉對(duì)棉田昆蟲種群的影響[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào),2008,24(1):32-38.
XU Wenhua,LIU Biao,WANG Ruiming,ZHENG Yangping,ZHANG Yi,LI Xiaogang. Effects of transgenic Bt cotton on insect populations in cotton fields in coastal agricultural region of Jiangsu Province[J]. Journal of Ecology and Rural Environment,2008,24(1):32-38.
[33] 馮紀(jì)年. 動(dòng)物志(昆蟲綱)[M]. 北京:科學(xué)出版社,2021.
FENG Jinian. Fauna (insecta)[M]. Beijing:Sience Press,2021.
[34] 張巍巍,李元?jiǎng)? 中國昆蟲生態(tài)大圖鑒[M].重慶:重慶大學(xué)出版社,2019.
ZHAGN Weiwei,LI Yuansheng. Chinese insect ecology map[M]. Chongqing:Chongqing University Press,2019.
[35] 王天元. 桃病蟲害快速鑒別與防治妙招[M]. 北京:化學(xué)工業(yè)出版社,2019.
WANG Tianyuan. Quick identification and control of peach pests and diseases[M]. Beijing:Chemical Industry Press,2019.
[36] 鄒運(yùn)鼎,畢守東,周夏芝,李磊,高彩球,丁程成. 桃園害蟲及天敵群落動(dòng)態(tài)研究[J]. 應(yīng)用生態(tài)學(xué)報(bào),2003,14(5):717-720.
ZOU Yunding,BI Shoudong,ZHOU Xiazhi,LI Lei,GAO Caiqiu,DING Chengcheng. Dynamics of the pest and natural enemy communities in peach orchards[J]. Chinese Journal of Applied Ecology,2003,14(5):717-720.
[37] 巫厚長,程遐年,魏重生,鄒運(yùn)鼎. 吡蟲啉對(duì)煙田節(jié)肢動(dòng)物群落的影響研究[J]. 應(yīng)用生態(tài)學(xué)報(bào),2004,15(1):95-98.
WU Houchang,CHENG Xianian,WEI Chongsheng,ZOU Yunding. Effects of imidacloprid on arthropod community structure in tobacco field[J]. Chinese Journal of Applied Ecology,2004,15(1):95-98.
[38] 趙微微. 蘋果園次要害蟲發(fā)生及防治[J]. 農(nóng)民致富之友,2016(4):79.
ZHAO Weiwei. Occurrence and control of secondary pests in apple orchard[J]. Nongmin Zhi Fu Zhi You,2016(4):79.
[39] PAN L,LU Z H,YAN L L,ZENG W F,SHEN Z J,YU M L,BU L L,CUI G C,NIU L,WANG Z Q. NLR1 is a strong candidate for the Rm3 dominant green peach aphid (Myzus persicae) resistance trait in peach[J]. Journal of Experimental Botany,2022,73(5):1357-1369.
[40] 陸宴輝. Bt棉花害蟲綜合治理研究前沿[J]. 應(yīng)用昆蟲學(xué)報(bào),2012,49(4):809-819.
LU Yanhui. Advance in insect pest management in Bt cotton worldwide[J]. Chinese Journal of Applied Entomology,2012,49(4):809-819.
[41] NARANJO S E. Impacts of Bt transgenic cotton on integrated pest management[J]. Journal of Agricultural and Food Chemistry,2011,59(11):5842-5851.
[42] 周霞,謝翔,左嬌,譚燕華,曹揚(yáng),霍姍姍,易小平,趙輝,張麗麗,郭安平. 轉(zhuǎn)基因作物對(duì)天敵的影響研究進(jìn)展[J]. 環(huán)境昆蟲學(xué)報(bào),2018,40(5):1021-1026.
ZHOU Xia,XIE Xiang,ZUO Jiao,TAN Yanhua,CAO Yang,HUO Shanshan,YI Xiaoping,ZHAO Hui,ZHANG Lili,GUO Anping. The advance on the effects of transgenic crops on natural enemies[J]. Journal of Environmental Entomology,2018,40(5):1021-1026.
[43] LU Y H,WU K M,JIANG Y Y,XIA B,LI P,F(xiàn)ENG H Q,WYCKHUYS K A G,GUO Y Y. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China[J]. Science,2010,328(5982):1151-1154.
[44] CATARINO R,CEDDIA G,AREAL F J,PARK J. The impact of secondary pests on Bacillus thuringiensis (Bt) crops[J]. Plant Biotechnology Journal,2015,13(5):601-612.