亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一類具有Holling IV型功能反應(yīng)函數(shù)的競爭模型平衡態(tài)正解的存在性和穩(wěn)定性

        2023-07-14 10:14:12王利娟白娜娜武陽鴿楊佳饒
        渭南師范學院學報 2023年5期

        王利娟 白娜娜 武陽鴿 楊佳饒

        摘? ? 要:在Dirichlet 邊界條件下研究一類具有Holling IV 型功能反應(yīng)函數(shù)的競爭模型平衡態(tài)正解的存在性和穩(wěn)定性。利用特征值問題的主特征值得到平衡態(tài)正解存在的必要條件,通過橢圓型方程比較原理給出平衡態(tài)正解的先驗估計。運用局部分歧理論和穩(wěn)定性理論研究了平衡態(tài)正解的存在性和穩(wěn)定性。 通過數(shù)值模型驗證了平衡態(tài)正解的存在性定理。結(jié)果表明,當兩競爭物種的增長率滿足一定條件時,兩競爭物種可以共存且共存態(tài)是穩(wěn)定的。

        關(guān)鍵詞:Holling IV型功能反應(yīng)函數(shù);競爭模型;分歧理論;穩(wěn)定性理論

        中圖分類號:O175. 26? ? ? ? ?文獻標志碼:A? ? ? ? ?文章編號:1009-5128(2023)05-0087-08

        收稿日期:2022-12-22

        基金項目:陜西省自然科學基礎(chǔ)研究計劃面上項目:兩類電流體宏觀連續(xù)介質(zhì)模型大解的定性理論研究(2022JM-034);陜西省科技廳自然科學基礎(chǔ)研究計劃項目:具有自控能力的V-T捕食模型的Dirichlet問題研究(2018JQ1066)

        作者簡介:王利娟,女,山西呂梁人,寶雞文理學院數(shù)學與信息科學學院副教授,理學博士,主要從事反應(yīng)擴散方程研究;白娜娜,女,陜西榆林人,寶雞文理學院數(shù)學與信息科學學院碩士研究生。

        5? ? 結(jié)語

        本文討論了一類具有Holling IV型功能反應(yīng)函數(shù)的兩種競爭的反應(yīng)擴散模型。在齊次Dirichlet邊界條件下,運用分歧理論分析了該模型在兩個半平凡解附近,平衡態(tài)正解的局部存在性。通過線性算子的穩(wěn)定性理論得到平衡態(tài)正解穩(wěn)定和不穩(wěn)定性的充分條件,并利用數(shù)值模擬對得到的部分結(jié)果進行了驗證。該研究表明,當兩競爭物種的增長率滿足一定條件時,兩競爭物種可以共存且共存解穩(wěn)定。另外,我們的數(shù)值模擬表明,在適當遠離兩個半平凡解時,模型也存在平衡態(tài)正解,這說明從半平凡解處發(fā)出的局部分歧解可能延拓為全局解。

        參考文獻:

        [1]? CASTILLO-ALVINO H H,MARVA M.Group defense promotes coexistence in interference? competition:The Holling type IV competitive response[J].Mathematics and Computers in Simulation,2022,198:426-445.

        [2]? PAO C V.Coexistence and stability of a competition-diffusion system in population dynamics[J].Journal of Mathematical Analysis and Applications,1981,83(1):54-76.

        [3]? BROWN K J.Spatially inhomogeneous steady state solutions for systems of equations describing interacting populations[J].Journal of Mathematical Analysis and Applications,1983,95(1):251-264.

        [4]? WU J H.Global bifurcation of coexistence state for the competition model in the chemostat[J].Nonlinear Analysis,2000,39(7):817-835.

        [5]? GUO Z M,GAO R H.Structure of positive solutions for some semilinear elliptic systems where bifurcation from infinity occurs[J].Nonlinear Analysis Real World Applications,2006,7(1):109-123.

        [6]? HE X Q,NI W M.The effects of diffusion and spatial variation in Lotka-Volterra competition-diffusion system I:heterogeneity vs.homogeneity[J].Journal of Differential Equations,2013,254(2):528-546.

        [7]? JIANG H,WU J,WANG L,et al.Qualitative Analysis for a Competition Model with B-D Functional Response and Numerical Simulation[J].Numerical Methods for Partial Differential Equations,2014,30(5):1575-1594.

        [8]? SMOLLER J.Shock waves and reaction-diffusion equations[M].New York:Springer-Verlag,1983.

        [9]? CRANDALL M G,RABINOWITZ P H.Bifurcation,perturbation of simple eigenvalues and linearized stability[J].Arch. Rat.Mech. Anal,1973,52(2):161-180.

        [10]? CRANDALL M G,RABINOWITZ P H.Bifurcation from simple eigenvalues[J].Functional Analysis,1971,8(2):321-340.

        【責任編輯? ? 牛懷崗】

        Existence and Stability of Positive Solutions for a Competing Model with Type Holling IV Functional Response

        WANG Lijuan, BAI Nana, WU Yangge, YANG Jiarao

        (School of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji 721013, China)

        Abstract: The existence and the stability of steady-state positive solutions of a competition model with Holling type IV functional response are studied under Dirichlet boundary conditions. The necessary conditions for the existence of the steady-state positive solution of the model are obtained by using the principal eigenvalue of the eigenvalue problem, and a priori estimate of the steady-state positive solution is given by using the comparison principle of the elliptic equation. The existence and the stability of steady-state positive solutions of the model are studied by using local bifurcation theory and stability theory. The existence theorem of steady-state positive solution is verified by numerical simulation. The results show that when the growth rates of two competing species satisfy certain conditions, the two competing species can coexist and the coexistence state is stable.

        Key words:Holling IV functional response; competition model; bifurcation theory; stability theory

        优优人体大尺大尺无毒不卡| 狠狠色噜噜狠狠狠888米奇视频| 狠狠色成人综合网| 精品成人乱色一区二区| 欧美日韩精品乱国产538| 亚洲红杏AV无码专区首页| 色婷婷精品午夜在线播放| 人妻 偷拍 无码 中文字幕| 亚洲欧洲中文日韩久久av乱码| 欧美亚洲国产日韩一区二区三区| 亚洲高清国产品国语在线观看 | 日本在线中文字幕一区| av毛片亚洲高清一区二区| 国产av一区二区三区性入口 | 99久久超碰中文字幕伊人| 国产自偷自偷免费一区| 国精品无码一区二区三区在线看 | 中文字幕永久免费观看| 精品久久精品久久精品| 日韩精品在线视频一二三| 国产乱人对白| 亚洲精品国产精品国自产观看| 午夜无码片在线观看影院y| 国产av午夜精品一区二区入口 | 亚洲国产精品久久艾草| 亚洲а∨精品天堂在线| 免费看奶头视频的网站| 国内精品女同一区二区三区| 亚洲av色香蕉一区二区三区| 久久精品中文字幕一区| 色窝窝手在线视频| 亚洲最新精品一区二区| 五月丁香六月综合缴清无码| 黄色成人网站免费无码av| 亚洲精品成人网线在线播放va| 视频一区视频二区自拍偷拍| 日韩精品视频一区二区三区| 久青草国产视频| 人妻少妇中文字幕久久69堂| 蜜臀人妻精品一区二区免费| 日韩人妻ol丝袜av一二区|