韓樂(lè) 江怡華
魯棒截?cái)?-2全變分稀疏恢復(fù)模型
韓樂(lè) 江怡華
(華南理工大學(xué) 數(shù)學(xué)學(xué)院,廣東 廣州 510640)
魯棒壓縮感知;截?cái)嗳兎?;非凸非光滑?yōu)化;稀疏噪聲;結(jié)構(gòu)稀疏
隨著計(jì)算機(jī)科學(xué)與技術(shù)的高速發(fā)展,越來(lái)越多的大規(guī)模數(shù)據(jù)庫(kù)的出現(xiàn),推動(dòng)著信號(hào)處理領(lǐng)域的變革。然而,仍然存在著小規(guī)模數(shù)據(jù)領(lǐng)域,如醫(yī)學(xué)圖像領(lǐng)域,由于受輻射劑量限制,只能采集到少量的CT圖像和MRI圖像等[1]。
受硬件條件的限制,信號(hào)在獲取的過(guò)程中不可避免地會(huì)被噪聲污染。除了常見的高斯噪聲外,還有非高斯噪聲,如脈沖噪聲、柯西噪聲、泊松噪聲等,其中脈沖噪聲和柯西噪聲均具有稀疏屬性。魯棒稀疏信號(hào)恢復(fù)[11]就是處理稀疏噪聲影響下的稀疏信號(hào)恢復(fù)問(wèn)題。相關(guān)的優(yōu)化模型通常是用向量零范數(shù)的各種近似來(lái)表示原始信號(hào)和噪聲的稀疏性[12]。
注意到,可以利用指示函數(shù)將問(wèn)題(1)等價(jià)轉(zhuǎn)化為無(wú)約束問(wèn)題
式中,指示函數(shù)定義為
雖然優(yōu)化問(wèn)題(2)是非凸非光滑的,但可以采用鄰近交替線性化算法求解。文中采用有加速的鄰近交替線性化算法GiPALM[13]求解問(wèn)題(2)。
Do
定義3 稱滿足
證畢。
GiPALM算法中的子問(wèn)題(3)可寫為
Do
證畢。
最優(yōu)解可以由軟閾值算子[22]給出,即
文中使用峰值信噪比(PSNR,PSN)和結(jié)構(gòu)相似度(SSIM,SIM)作為噪聲圖像復(fù)原評(píng)價(jià)標(biāo)準(zhǔn),
實(shí)驗(yàn)采用的原始無(wú)噪聲灰度圖像見圖1,其中灰度圖像1-4的大小為256×256,灰度圖像5和6的大小為512×512。在原始灰度圖像上疊加高斯噪聲,生成含噪聲的觀測(cè)數(shù)據(jù),其中高斯噪聲由Matlab中Imnoise函數(shù)按照均值為0、標(biāo)準(zhǔn)差為0.01生成。
圖1 原始灰度圖像
表1 恢復(fù)含高斯噪聲灰度圖像的PSNR、SIMM與運(yùn)行時(shí)間
Table 1 PSNR, SSIM and running time of recovering grey images with Gaussian noise
圖像序號(hào)PSNR/dBSSIM/dB運(yùn)行時(shí)間/s TVT0TVT1TVT0TVT1TVT0TVT1 126.8225.6227.160.760 00.506 90.802 80.020.0145.25 228.1026.7230.190.760 00.438 40.818 00.020.0143.30 326.8426.9629.080.800 00.508 90.880 70.020.0144.01 428.9027.6831.210.820 00.692 10.896 10.020.0146.86 526.9226.5129.380.860 00.807 30.910 00.100.05282.85 623.9824.9024.900.860 00.806 70.834 00.100.05733.15
圖2 原始彩色圖像
文中分別測(cè)試了在原始彩色圖像中添加稀疏噪聲和混合噪聲兩種情形。稀疏噪聲的添加是在每幅圖像中隨機(jī)選取30%的像素,將其設(shè)置為0~255中的隨機(jī)數(shù)(將圖像每個(gè)通道對(duì)應(yīng)位置的值都進(jìn)行破壞),形成噪聲圖像?;旌显肼暤奶砑觿t是在稀疏噪聲的基礎(chǔ)上,用Imnoise函數(shù)疊加均值為0、標(biāo)準(zhǔn)差為0.02的高斯噪聲。
表2 恢復(fù)含噪彩色圖像的PSNR
Table 2 PSNR of recovering color images with noises
圖像序號(hào)含稀疏噪聲的PSNR/dB含混合噪聲的PSNR/dB TRPCATVT0TVT1TRPCATVT0 TVT1 123.2824.3824.7119.1821.4821.74 224.4924.6724.9819.2121.4021.40 327.7028.0027.5020.6823.2222.71 424.4324.6224.4019.5221.3621.08 529.7330.1129.8721.7921.7923.73 631.5231.8929.8320.6321.1220.75
表3 恢復(fù)含噪彩色圖像的平均運(yùn)行時(shí)間與迭代次數(shù)
Table 3 Running time and iteration number of recovering color images with noises
圖像序號(hào)噪聲每次迭代的平均運(yùn)行時(shí)間/s總迭代次數(shù) TRPCATVT0TVT1TRPCATVT0TVT1 1稀疏噪聲0.0020.9934.95643150150 20.0010.9603.81542150150 30.0011.0253.9624384113 40.0021.0433.90943127150 50.0010.9704.0294489143 60.0011.0203.72043116101 1混合噪聲0.0011.1493.474401501 20.0021.1273.087401501 30.0011.0993.071401501 40.0021.0563.140401501 50.0011.1193.092411501 60.0011.1083.25740150150
表4 含混合噪聲彩色圖像的恢復(fù)效果
Table 4 Recovering results of color images with mixed noise
圖像序號(hào)混合噪聲圖像恢復(fù)結(jié)果 TRPCATVT0TVT1 1 2 4
表5 含高斯噪聲視頻恢復(fù)結(jié)果的PSNR
Table 5 PSNR of recovering video with Gaussian noise
幀數(shù)PSNR/dB TRPCA中值濾波TVT0TVT1 123.3824.8525.6725.64 721.0322.5223.4423.48 1320.7721.9322.9222.92 1820.6521.7422.5322.45 2420.4721.5122.3422.26 3020.6021.4422.1022.10 3620.6121.3222.0922.12 4219.3120.5520.8620.84 4821.2922.8823.9323.86
圖4 混合噪聲下視頻恢復(fù)的幀數(shù)-PSNR曲線
[1] WANG C,TAO M,NAGY J G,et al.Limited-angle CT reconstruction via the1/2minimization [J].SIAM Journal on Imaging Sciences,2021,14(2):749-777.
[2] FANNJIANG A,LIAO W.Coherence pattern-guided compressive sensing with unresolved grids [J].SIAM Journal on Imaging Sciences,2012,5(1):179-202.
[4] BIAN W,CHEN X J.A smoothing proximal gradient algorithm for nonsmooth convex regression with cardinality penalty[J].SIAM Journal on Numerical Analysis,2020,58(1):858-883.
[5] YOU J,JIAO Y,LU X,et al.A nonconvex model with minimax concave penalty for image restoration [J].Journal of Scientific Computing,2019,78(2):1063-1086.
[6] THI H A L,PHAMDINH T.DC programming and DCA:thirty years of developments [J].Mathematical Programming,2018,169:5-68.
[7] ARAGóN ARTACHO F J,VUONG P T.The boosted difference of convex functions algorithm for nonsmooth functions [J].SIAM Journal on Control and Optimization,2020,30(1):980-1006.
[10] LIU T X,PONG T K,TAKED A.A refined convergence analysis of pDCAwith applications to simultaneous sparse recovery and outlier detection [J].Computational Optimization and Applications,2019,73:69-100.
[11] CARRILLO R E,RAMIREZ A B,ARCE G R,et al.Robust compressive sensing of sparse signals:a review [J].EURASIP Journal on Advances in Signal Processing,2016,2016:108/1-17.
[12] BABAHREINIAN M,TRON R.A computational theory of robust localization verifiability in the presence of pure outlier measurements [EB/OL].(2019-10-12)[2021-05-03].https://arxiv.org/abs/1910.05509.
[13] GAO X,CAI X,HAN D.A Gauss-Seidel type inertial proximal alternating linearized minimization for a class of nonconvex optimization problems [J].Journal of Global Optimization,2020,76:863-887.
[14] BOLTE J,DANIILIDIS A,LEWIS A S,et al.Clark subgradients of stratifiable functions [J].SIAM Journal on Optimization,2007,18(2):556-572.
[15] CHAMBOLLE A.An algorithm for total variation m?inimization and applications [J].Journal of Mathematical Imaging & Vision,2004,20:89-97.
[16] XU Y,HUANG T Z,LIU J,et al.Split Bregman iteration algorithm for image deblurring using fourth-order total bounded variation regularization model [J].Journal of Applied Mathematics,2013,2013:238561/1-11.
[17] CHAMBOLLE A,EHRHARDT M J,RICHTàRIK P,et al.Stochastic primal-dual hybrid gradient algorithm with arbitrary sampling and imaging applications [J].SIAM Journal on Optimization,2018,28(4):2783-2808.
[18] HINTERRMULLER M,STADLER G.An infeasible primal-dual algorithm for total bounded variation-based inf-convolution-type image restoration [J].SIAM Journal on Scientific Computing,2006,28(1):1-23.
[19] CHEN C,MICHAEL K N,ZHAO X.Alternating direction method of multipliers for nonlinear image restoration problems [J].IEEE Transaction on Image Processing,2015,24(1):32-43.
[20] GOLDFARB D,YIN W.Parametric maximum flow algorithms for fast total variation minimization [J].SIAM Journal on Scientific Computing,2009,31(5):3712-3743.
[21] BARBERO L,SRA S.Modular proximal optimizatio??n? for multidimensional total-variation regularization [J].Journal of Machine Learning Research,2018,19(1):1-82.
[22] NOCEDAL J,WRIGHT S T.Numerical optimization[M].New York:Springer,1999:510.
[23] MARTIN D,F(xiàn)OWLKES C,TAL D,et al.A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]∥ Proceedings of the Eighth IEEE International Conference on Computer Vision.Vancouver:IEEE,2001:416-423.
[24] LU C,F(xiàn)ENG J,CHEN Y,et al.Tensor robust principal component analysis with a new tensor nuclear norm [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(4):925-938.
[25] BIOUCAS-DIAS J M,F(xiàn)IGUEIREDO M,OLIVEIRA J P.Total variation-based image deconvolution:a majorization minimization approach[C]∥ Proceedings of 2006 IEEE International Conference on Acoustics Speech and Signal Processing.Toulouse:IEEE,2006:861-864.
(School of Mathematics,South China University of Technology,Guangzhou 510640,Guangdong,China)
In addition to Gaussian noise, there is sparse noise with impulsive properties in the signal acquisition process. The common robust sparse signal recovery models can recover the original sparse signal under sparse noise environment. However, in many practical applications, the structural sparsity of the original signal, for example, gradient sparsity needs to be considered. In order to recover the sparse structure of the original high-dimensional signal from the coexistence of sparse noise and Gaussian noise, this paper proposed two nonconvex and nonsmooth optimization models based on truncated1-2total variation (TV) and 3D truncated1-2TV, respectively. These optimization models were solved by the proximal alternating linearized minimization algorithm with extrapolation, and the sub-problems involved were solved by the proximal convex difference algorithm with extrapolation. Under the assumption that the potential function has Kurdyka-Lojasiewicz (KL) property, the convergence analysis of these algorithms was given. The numerical experiments test grey images with Gaussian noise, color images with mixed noise, grey video with mixed noise and so on. The peak signal-to-noise ratio (PSNR) was used as the evaluation criterion for recovered quality. The experimental results show that the new models can correctly recover the original structured sparse signal, and have better PSNR values in the same noisy environment.
robust compressed sensing;truncated total variation;nonconvex and nonsmooth optimization;sparse noise;structural sparse
Supported by the General Program of the National Natural Science Foundation of China (11971177),the Basic and Applied Basic Research Foundation of Guangdong Province (2021A1515010210) and the Degree and Graduate Education Reform Research Foundation of Guangdong Province (2022JGXM011)
10.12141/j.issn.1000-565X.220485
2022?08?01
國(guó)家自然科學(xué)基金面上項(xiàng)目(11971177);廣東省基礎(chǔ)與應(yīng)用基礎(chǔ)研究基金資助項(xiàng)目(2021A1515010210);廣東省學(xué)位與研究生教育改革研究項(xiàng)目(2022JGXM011)
韓樂(lè)(1977-),女,副教授,主要從事矩陣優(yōu)化、圖像處理研究。E-mail:hanle@scut.edu.cn
TP391.41
1000-565X(2023)05-0045-09
華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版)2023年5期