亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        復合材料中的偏微分方程理論研究

        2023-06-29 13:36:54李海剛徐龍娟
        關鍵詞:復合材料

        李海剛 徐龍娟

        摘 要:在過去的50年,復合材料的發(fā)展無疑是現代技術中的一個重要且成功的領域.復合材料通常由基體材料和夾雜材料復合而成. 高對比度復合材料在使用過程中,當夾雜彼此靠得很近時,往往會產生電場、磁場或應力場等物理場的集中現象,這是數學物理領域中的一個重要課題. 將著重介紹在過去的二十多年彈性復合材料應力集中問題在偏微分方程理論方面取得的一些重要進展和一些待解決的關鍵問題.

        關鍵詞:復合材料;拉梅方程組;梯度估計;爆破速度;漸近展示

        中圖分類號:O175.23;O175.25文獻標志碼:A

        現代科技的飛速發(fā)展離不開材料科學的發(fā)展,如新型納米結構材料以及器件的設計與研制、周期納米結構與等效模量等材料聲學參數的構效關系等復合材料問題的研究,這些在航空航天、深海探測等高端科技領域有著極為迫切的需求.先進復合材料的研制與應用已成為21世紀科技發(fā)展的主要方向之一,其核心技術的突破遇到了大量的數學挑戰(zhàn),涉及偏微分方程、變分法、幾何測度論、隨機分析、非線性分析等領域,因此材料科學的持續(xù)長遠發(fā)展需要大量基礎數學研究人才的加入.

        復合材料通常是由兩種或兩種以上的金屬、陶瓷或高分子等材料經過復合工藝而制備成的一種多相材料, 其中基體材料與夾雜材料在某一特性方面的對比度往往比較高.在高對比度復合材料中,當夾雜靠得很近時會產生物理場的集中現象,如電場、電磁場、應力場等.隨著新型復合材料數目的不斷增加和新的材料不斷被開發(fā),美國科學院院士FRIEDMAN A在《對數學未來的思考》中認為:人類迄今在材料科學的數學研究方面所取得的成就,可以說僅僅是一個開始,還遠遠不能滿足實際應用的需求,甚至對已經研究了很多年的標準材料也仍然面臨著大量的數學挑戰(zhàn).例如,當一個均勻的彈性體在承受高壓時會破裂.那么,破裂從何時開始,怎么開始? 它們又將如何擴展,何時會分裂成許多裂片,以至于材料最終徹底失效.

        自20世紀60年代以來,工業(yè)上的巨大發(fā)展促進了復合材料背后數學理論的發(fā)展,新的數學工具出現也帶動其他領域的發(fā)展.如均勻化、變分法、有限元方法、夾雜形狀優(yōu)化、補償緊方法、擬共形映照等.這些理論的發(fā)展與完善既需要數學家、物理學家、力學家以及工程師們之間的相互交流與互動,也需要理論數學家與計算數學家之間更深層次的通力合作.由于玻璃纖維和輕質碳纖維復合材料在航空航天工業(yè)和體育器材等領域都有廣泛的應用,1999 年,自適應有限元創(chuàng)始人BABUKA IVO(美國工程院院士) 與瑞典航空研究所的兩名工程師合作研究纖維增強復合材料中裂紋與破壞的計算分析[1].在復合材料中往往會有大量的纖維相互接觸或幾乎接觸,而纖維之間的相互位置會嚴重影響復合材料能承受的最大應力.由于在碳纖維增強復合材料中,小形變就會產生大應力,甚至產生裂紋,所以研究線性彈力方程組——拉梅(Lamé)方程組μΔu+(λ+μ)(·u)=0(1)

        能夠精確地達到目的,其中(λ,μ)在基體材料與纖維材料中取不同的值.為了理解這個問題,研究對應的標量方程

        ·(au)=0(2)

        也頗有價值,其中a在基體與纖維中也取不同常數.關于相互接觸纖維之間應力的有界性,以及如何刻畫纖維靠近時應力的集中行為,都是數值仿真過程中需要解決的關鍵問題[1].該問題也被稱為Babuka問題.

        在過去的二十多年間,Babuka問題得到了眾多數學家與應用數學家的關注,如 阿貝爾獎得主NIRENBERG L(美國科學院院士) ,國際數學家大會報告人LI Y(李巖巖),KANG H,MILTON G,以及AMMARI H(歐洲科學院院士),VOGELIUS M等,取得了一系列重要進展.由應力-應變關系,應力的集中問題對應著偏微分方程解的梯度估計問題,本文將從以下3個方面介紹這方面的進展:(1)對比度有限情形梯度的一致有界估計;(2)高對比度的極限情形梯度的最佳爆破估計與漸近展示;(3)雙參數情形梯度的統(tǒng)一估計,并介紹在此過程中發(fā)展的多種偏微分方程方法,如層位勢方法、Neumann-Poincaré算子的譜方法、能量方法和Green函數方法等.

        參 考 文 獻

        [1] ?BABUKA I,ANDERSSON B,SMITH P,et al.Damage analysis of fiber composites. I. Statistical analysis on fiber scale[J].Comput Methods Appl Mech Engrg,1999,172(1/2/3/4):27-77.

        [2]KELLER J.Conductivity of a medium containing a dense array of perfectly conducting spheres or cylinders or nonconducting cylinders[J].J Appl Phys,1963,34: 991-993.

        [3]BONNETIER E,VOGELIUS M.An elliptic regularity result for a composite medium with "touching" fibers of circular cross-section[J].SIAM J Math Anal,2000,31:651-677.

        [4]LI Y,VOGELIUS M.Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients[J].Arch Rational Mech Anal,2000,153:91-151.

        [5]LI Y,NIRENBERG L.Estimates for elliptic systems from composite material[J].Comm Pure Appl Math,2003,56:892-925.

        [6]AMMARI H,KANG H,LIM M.Gradient estimates for solutions to the conductivity problem[J].Math Ann,2005,332(2):277-286.

        [7]AMMARI H,KANG H,LEE H,et al.Optimal estimates for the electric field in two dimensions[J].J Math Pures Appl,2007,88(4):307-324.

        [8]YUN K.Estimates for electric fields blown up between closely adjacent conductors with arbitrary shape[J].SIAM J Appl Math,2007,67:714-730.

        [9]YUN K.Optimal bound on high stresses occurring between stiff fibers with arbitrary shaped cross-sections[J].J Math Anal Appl,2009,350:306-312.

        [10]BAO S,LI Y,YIN B.Gradient estimates for the perfect conductivity problem[J].Arch Ration Mech Anal,2009,193:195-226.

        [11]BAO S,LI Y,YIN B.Gradient estimates for the perfect and insulated conductivity problems with multiple inclusions[J].Comm Partial Differential Equations,2010,35:1982-2006.

        [12]LI H,XU L.Optimal estimates for the perfect conductivity problem with inclusions close to the boundary[J].SIAM J Math Anal,2017,49(4):3125-3142.

        [13]CHEN Y,LI H,XU L.Optimal gradient estimates for the perfect conductivity problem with C1,α inclusions[J].Ann Inst H Poincar Anal Non Linaire,2021,38(4):953-979.

        [14]DONG H,LI Y,YANG Z.Optimal gradient estimates of solutions to the insulated conductivity problem in dimension greater than two[J/OL].[2022-10-20].https://doi.org/10.48550/arXiv.2110.11313.

        [15]DONG H,LI Y,YANG Z.Gradient estimates for the insulated conductivity problem:the non-umbilical case[J/OL].[2022-10-20].https://doi.org/10.48550/arXiv.2203.10081.

        [16]LI Y,YANG Z.Gradient estimates of solutions to the insulated conductivity problem in dimension greater than two[J/OL].[2022-10-15].https://doi.org/10.48550/arXiv.2012.14056.

        [17]WEINKOVE B.The insulated conductivity problem,effective gradient estimates and the maximum principle:10.48550/arxiv.2013.14143[P].2021-03-25.

        [18]AMMARI H,BONNETIER E,TRIKI F,et al.Elliptic estimates in composite media with smooth inclusions:an integral equation approach[J].Ann Sci éc Norm Supér,2015,48(2):453-495.

        [19]BUDIANSKY B,CARRIER G.High shear stresses in stiff fiber composites[J].J App Mech,1984,51:733-735.

        [20]BONNETIER E,TRIKI F.On the spectrum of the Poincaré variational problem for two close-to-touching inclusions in 2D[J].Arch Ration Mech Anal,2013,209(2):541-567.

        [21]DONG H.Gradient estimates for parabolic and elliptic systems from linear laminates[J].Arch Ration Mech Anal,2012,205(1):119-149.

        [22]DONG H,ZHANG H.On an elliptic equation arising from composite materials[J].Arch Rational Mech Anal,2016,222(1):47-89.

        [23]GORB Y.Singular behavior of electric field of high-contrast concentrated composites[J].Multiscale Model Simul,2015,13(4):1312-1326.

        [24]GORB Y,BERLYAND L.Asymptotics of the effective conductivity of composites with closely spaced inclusions of optimal shape[J].Quart J Mech Appl Math,2005,58:83-106.

        [25]KANG H,KIM E.Estimation of stress in the presence of closely located elastic inclusions:A numerical study[J].Contemporary Math,2016,660:45-57.

        [26]LI H,LI Y,BAO S,et al.Derivative estimates of solutions of elliptic systems in narrow regions[J].Quart Appl Math,2014,72(3):589-596.

        [27]LIM M,YU S.Asymptotics of the solution to the conductivity equation in the presence of adjacent circular inclusions with finite conductivities[J].J Math Anal Appl,2015,421:131-156.

        [28]LIM M,YUN K.Blow-up of electric fields between closely spaced spherical perfect conductors[J].Comm Partial Differential Equations,2009,34:1287-1315.

        [29]CIRAOLO G,SCIAMMETTA A.Gradient estimates for the perfect conductivity problem in anisotropic media[J].J Math Pures Appl,2019,127:268-298.

        [30]CIRAOLO G,SCIAMMETTA A.Stress concentration for closely located inclusions in nonlinear perfect conductivity problems[J].J Differential Equations,2019,266(9):6149-6178.

        [31]GORB Y,NOVIKOV A.Blow-up of solutions to a p-Laplace equation[J].Multiscale Model Simul,2012,10:727-743.

        [32]KANG H,LIM M,YUN K.Asymptotics and computation of the solution to the conductivity equation in the presence of adjacent inclusions with extreme conductivities[J].J Math Pures Appl,2013,99:234-249.

        [33]AMMARI H,CIRAOLO G,KANG H,et al.Spectral analysis of the Neumann-Poincaré operator and characterization of the stress concentration in anti-plane elasticity[J].Arch Ration Mech Anal,2013,208(1):275-304.

        [34]KANG H,LEE H,YUN K.Optimal estimates and asymptotics for the stress concentration between closely located stiff inclusions[J].Math Ann,2015,363:1281-1306.

        [35]KANG H,LIM M,YUN K.Characterization of the electric field concentration between two adjacent spherical perfect conductors[J].SIAM J Appl Math,2014,74:125-146.

        [36]LI H,WANG F,XU L.Characterization of Electric Fields between two Spherical Perfect Conductors with general radii in 3D[J].J Differential Equations,2019,267(11):6644-6690.

        [37]LI H.Asymptotics for the electric field concentration in the perfect conductivity problem[J].SIAM J Math Anal,2020,52:3350-3375.

        [38]LI H,LI Y,YANG Z.Asymptotics of the gradient of solutions to the perfect conductivity problem[J].Multiscale Model Simul,2019,17:899-925.

        [39]CHEN Y,HAO X,XU L.Upper and lower bounds for stress concentration in linear elasticity when C1,α inclusions are close to boundary[J].Quart Appl Math,2022.DOI:10.1090/qam/1621.

        [40]BAO J,LI H,LI Y.Gradient estimates for solutions of the Lamé system with partially infinite coefficients[J].Arch Ration Mech Anal,2015,215(1):307-351.

        [41]BAO J,LI H,LI Y.Gradient estimates for solutions of the Lamé system with partially infinite coefficients in dimensions greater than two[J].Adv Math,2017,305:298-338.

        [42]LI H.Lower bounds of gradient's blow-up for the Lamé system with partially infinite coefficients[J].J Math Pures Appl,2021,149:98-134.

        [43]CHEN Y,LI H.Estimates and asymptotics for the stress concentration between closely spaced stiff C1,γ inclusions in linear elasticity[J].J Funct Anal,2021, 281:1-63.

        [44]BAO J,JU H,LI H.Optimal boundary gradient estimates for Lamé systems with partially infinite coefficients[J].Adv Math,2017, 314:583-629.

        [45]LI H,ZHAO Z.Boundary blow-up analysis of gradient estimates for Lamé systems in the presence of M-convex hard inclusions[J].SIAM J Math Anal,2020,52(4):3777-3817.

        [46]KANG H,YU S.Quantitative characterization of stress concentration in the presence of closely spaced hard inclusions in two-dimensional linear elasticity[J].Arch Rational Mech Anal,2019,232:121-196.

        [47]LI H,XU L.Asymptotics of the stress concentration in high-contrast elastic composites:1048550/arXiv:2004.06310[P].2020-04-14.

        [48]FLAHERTY J,KELLER J.Elastic behavior of composite media[J].Comm Pure Appl Math,1973,26:565-580.

        [49]KANG H,YU S.A proof of the Flaherty-Keller formula on the effective property of densely packed elastic composites[J].Calc Var Partial Differential Equations,2020,59(1):13.

        [50]LI H,LI Y.An extension of Flaherty-Keller formula for density packed m-convex inclusion[J/OL].[2022-10-20].https://doi.org/10.48550/arxiv.192.13261.

        [51]DONG H,LI H.Optimal estimates for the conductivity problem by Green's function Method[J].Arch Ration Mech Anal,2019,231:1427-1453.

        [52]JI Y,KANG H.Spectrum of the Neumann-Poincaré operator and optimal estimates for transmission problems in presence of two circular inclusions[J/OL].[2022-10-21].https://doi.org/10.1093/imrn/rnac057,2022.

        [53]DONG H,YANG Z.Optimal estimates for transmission problems including relative conductivities with different signs[J/OL].[2022-10-23].https://doi.org/10.48550/arXiv.2208.12237.

        On study for the theory of partial differential equations in composite materials

        Li Haigang1, Xu Longjuan2

        (1. School of Mathematical Sciences; Key Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing Normal University,

        Beijing 100875, China; 2. Academy for Multidisciplinary Studies, Capital Normal University, Beijing 100048, China)

        Abstract: In the past 50 years, the improvement of composite materials is undoubtedly an important and successful field in modern technology. It is composed of the matrix and inclusions. In high contrast composite materials, a high concentration of physical fields such as electric field, magnetic field or stress field will occur when the inclusions are close to each other, which is an important subject in the field of mathematical physics. In this paper, we will focus on the important advances in the theory of partial differential equations and some key open problems for the stress concentration of elastic composite materials in the past 20 years.

        Keywords: composite materials; Lamé systems; gradient estimates; blow-up rates; asymptotics

        [責任編校 陳留院 趙曉華]

        收稿日期:2022-10-28;修回日期:2022-12-22.

        基金項目:國家自然科學基金 (11971061).

        作者簡介(通信作者):

        李海剛(1981-),男,河南安陽人,北京師范大學教授,博士生導師,教育部青年長江學者,主要從事材料科學中的偏微分方程理論研究,E-mail:hgli@bnu.edu.cn.

        猜你喜歡
        復合材料
        淺談現代建筑中新型復合材料的應用
        金屬復合材料在機械制造中的應用研究
        敢為人先 持續(xù)創(chuàng)新:先進復合材料支撐我國國防裝備升級換代
        民機復合材料的適航鑒定
        復合材料無損檢測探討
        電子測試(2017年11期)2017-12-15 08:57:13
        復合材料性能與應用分析
        PET/nano-MgO復合材料的性能研究
        中國塑料(2015年6期)2015-11-13 03:02:54
        ABS/改性高嶺土復合材料的制備與表征
        中國塑料(2015年11期)2015-10-14 01:14:14
        聚乳酸/植物纖維全生物降解復合材料的研究進展
        中國塑料(2015年8期)2015-10-14 01:10:41
        TiO2/ACF復合材料的制備及表征
        應用化工(2014年10期)2014-08-16 13:11:29
        久久国产乱子伦精品免费强| 蜜桃高清视频在线看免费1| 久久精品国产色蜜蜜麻豆国语版| 麻豆tv入口在线看| 中文字幕 人妻熟女| 亚洲男人在线无码视频| 久久国产精品免费专区| 深夜福利啪啪片| 国产精品户露av在线户外直播| 亚洲国产综合专区在线电影| 伊人婷婷综合缴情亚洲五月| 亚洲综合色无码| 国产啪精品视频网站| 久草热这里只有精品在线| 久久色悠悠综合网亚洲| 日本熟妇人妻xxxx| 精品国精品无码自拍自在线| 日韩激情网| 国产性感午夜天堂av| 狠狠的干性视频| 欧美怡红院免费全部视频| 国产精品自产拍在线18禁| 亚洲一区视频中文字幕| 手机在线看片| 亚洲av无码av制服丝袜在线 | 蜜桃无码一区二区三区| 永久免费av无码网站性色av| 无遮高潮国产免费观看韩国| 中文字幕人妻久久久中出| 久久久久久av无码免费网站下载| 久久九九久精品国产| 国产偷v国产偷v亚洲偷v| 亚洲性无码av在线| 在线观看一区二区三区在线观看| 成人午夜特黄aaaaa片男男| 日韩手机在线免费视频| 男女搞黄在线观看视频| 国产精品高清网站| 性色av无码不卡中文字幕| 中国精品久久久久国产| 亚洲av高清天堂网站在线观看|