馬占忠,黃文波,徐靜,邱建武,劉玉蘭,葉美嫻,范舒舒
·論著·
粵北地區(qū)新生兒耳聾基因突變分析
馬占忠,黃文波,徐靜,邱建武,劉玉蘭,葉美嫻,范舒舒
512026 廣東,汕頭大學醫(yī)學院附屬粵北人民醫(yī)院產(chǎn)前診斷中心(馬占忠、徐靜、劉玉蘭、范舒舒),生殖醫(yī)學中心(黃文波),新生兒科(邱建武),生物樣本庫(葉美嫻)
探討粵北地區(qū)新生兒耳聾基因突變情況,為開展遺傳咨詢和出生缺陷防控提供科學依據(jù)。采用 PCR 和雜交技術檢測 2018 年 1 月– 2021 年 12 月在粵北人民醫(yī)院出生的 7696 例新生兒的 4 個耳聾基因:GJB2、SLC26A4、mtDNA 和 GJB3。在 7696 例新生兒中共檢出 319 例耳聾基因攜帶者,陽性率為 4.15%。其中 GJB2 基因突變檢出 166 例(2.16%),SLC26A4 基因突變檢出 105 例(1.36%);mtDNA 基因突變檢出 33 例(0.43%);GJB3 基因突變檢出 15 例(0.19%)。最常見的耳聾基因是 GJB2,235delC 為其熱點突變;其次是 SLC26A4 基因,IVS7-2A > G 為其熱點突變?;洷钡貐^(qū)新生兒耳聾基因攜帶率較高。開展新生兒耳聾基因篩查,對臨床遺傳咨詢和出生缺陷防控有積極意義。
耳聾基因; 新生兒; 基因突變; 個體化; 遺傳咨詢
據(jù) WHO 統(tǒng)計,全球約有 5 億人患有致殘性聽力損傷。聽力損失是致殘的第四大主要因素,占所有致殘原因的 5.8%[1]。約 70% 的非綜合征型耳聾(non-syndromic hearing loss,NSHL)是遺傳性耳聾[2-3]。我國人群攜帶的耳聾基因主要有 GJB2、SLC26A4、線粒體 DNA(mtDNA)和 GJB3 基因[4]。本研究采用 PCR 和雜交技術對 7696 例新生兒進行耳聾易感基因檢測,探討粵北地區(qū)新生兒耳聾基因突變情況,為耳聾的精準防治提供科學依據(jù)。
回顧性分析 2018 年 1 月– 2021 年 12 月在粵北人民醫(yī)院出生的 7696 例新生兒的耳聾基因檢測結果,本研究通過粵北人民醫(yī)院倫理委員會批準(KY-2021-219),征得新生兒監(jiān)護人同意并簽署知情同意書。
按照采血規(guī)范采集3 滴新生兒足跟血于血斑卡上,待自然晾干后裝入無菌密封袋中,送至分子遺傳實驗室立即檢測或 2 ~ 8 ℃保存?zhèn)溆谩?/p>
采用廣州凱普醫(yī)藥科技有限公司生產(chǎn)的耳聾易感基因檢測試劑盒(國械注準 20153401698),檢測 4 個耳聾基因的 13 個突變位點。其中 GJB2 基因包括 35del G、155delTCTG、176del16、235delC 和 299del AT;SLC26A4 基因包括 1229C > T、2168A > G 和 IVS7-2A > G;mtDNA 基因包括 1555A > G、1494C > T、7445A > G 和 12201T > C;GJB3 基因包括 538C > T。實驗操作和陽性判斷標準參照試劑盒說明書和標準操作規(guī)程。
PCR 反應體系:基因組 DNA 2 μl,PCR 反應液 27.5 μl,DNA 聚合酶 0.5 μl。PCR 反應條件:95 ℃預變性 9 min;95 ℃變性 30 s,55 ℃退火 30 s,72 ℃延伸 1 min,40 個循環(huán);72 ℃延伸5 min,4 ℃保存。
對于耳聾基因篩查陽性的新生兒,結合聽力篩查結果進行遺傳咨詢指導,并對其父母進行家系驗證。
采用 SPSS22.0 軟件進行統(tǒng)計學分析,計數(shù)資料用例(n)或百分率(%)表示。
7696 例新生兒中共檢測出耳聾基因突變者 319 例,陽性率為 4.15%。其中 GJB2 基因突變檢出 166例(2.16%,166/7696),SLC26A4 基因突變檢出 105 例(1.36%,105/7696);mtDNA 基因突變檢出 33 例(0.43%,33/7696);GJB3 基因突變檢出 15 例(0.19%,15/7696)。詳見表 1 和圖 1。
表1 粵北地區(qū) 7696 例新生兒耳聾基因突變分析
Table 1 Analysis of deafness gene mutations in 7696 neonates in northern Guangdong
基因 Gene突變類型 Mutants例數(shù)(n) Cases (n)陽性率(%) Positive rate (%) GJB2 1662.16 35delG 雜合突變 00.00 155delTCTG 雜合突變 00.00 176del16 雜合突變 80.10 235delC 雜合突變1331.73 299del AT 雜合突變 250.32 SLC26A4 1051.36 IVS7-2A > G 雜合突變 801.04 1229C > T 雜合突變 160.21 2168A > G 雜合突變 90.12 mtDNA 330.43 1494C > T 均質(zhì)突變 40.05 1555A > G 均質(zhì)突變 150.19 1555A > G 異質(zhì)突變 80.10 7445A > G 均質(zhì)突變 60.08 GJB3538C > T 雜合突變 150.19 合計 Total 3194.15
圖1 耳聾基因膜條雜交圖(A:野生型;B:GJB2 基因 235delC 雜合突變;C:SLC26A4 基因 IVS7-2A > G 雜合突變;D:mtDNA 1555A > G 均質(zhì)突變;E:GJB3 基因 538C > T 雜合突變)
Figure 1 Membrane hybridization map of deafness gene (A: Wild-type; B: GJB2 gene 235delC heterozygous mutation;C: SLC26A4 gene IVS7-2A > G heterozygous mutation; D: mtDNA 1555A > G homogenous mutation; E: GJB3 gene 538C > T heterozygous mutation)
在粵北地區(qū)的 7696 例新生兒中共檢出 319 例耳聾基因突變攜帶者,陽性率 4.15%,低于全國28 個省區(qū)的平均水平 5.68%[5];高于廣東省惠州市 3.63%[6],廣州市 3.68%[7],江門市 3.72%[8]和粵東地區(qū) 3.85%[9];與珠海市報道的 4.2% 基本一致[10]?;洷钡貐^(qū)新生兒最常見的耳聾基因是 GJB2 基因,235delC 為其熱點突變。其次是 SLC26A4 基因,IVS7-2A > G 為其熱點突變,與國內(nèi)文獻報道基本一致[11-12]。與我們之前報道的韶關地區(qū) 1242 例新生兒中最常見的耳聾基因是 SLC26A4 不同[13],本研究樣本量更大,更具有代表性。
GJB2 基因是遺傳性耳聾最常見的突變基因,以 235delC 為主。GJB2 基因位于 13 號染色體,編碼縫隙連接蛋白 26(Cx26),突變會導致 Cx26 蛋白缺乏引起先天性感音神經(jīng)性耳聾[14]。SLC26A4 基因是遺傳性耳聾的第二大突變基因,其中 IVS7-2A > G 突變最常見。SLC26A4 基因位于7 號染色體,編碼 pendrin 蛋白,突變會導致前庭導水管擴張的非綜合征型耳聾。mtDNA 突變會導致耳蝸和前庭細胞的功能障礙,引起耳聾,是藥物性致聾的病因之一?;颊呤褂冒被擒疹愃幬飼е露@的發(fā)生,表現(xiàn)為遲發(fā)性聽力下降,此類患者及其母系成員應當終身禁用氨基糖苷類藥物[15]。在使用氨基糖苷類藥物前進行耳聾基因突變篩查,可以有效預防一針致聾的悲劇發(fā)生。GJB3 基因位于 1 號染色體,編碼縫隙連接蛋白 31,突變會引起后天遲發(fā)型感音神經(jīng)性耳聾,在我國 GJB3 基因突變的攜帶率較低[16],本研究中 GJB3 基因突變率也較低,僅有 0.19%。
我國的新生兒常規(guī)聽力篩查存在漏診的可能性,有必要將耳聾基因也納入新生兒聽力篩查,及時發(fā)現(xiàn)高風險人群,進行干預或診療指導,對耳聾的個體化精準防治具有重要意義。
[1] Wilson BS, Tucci DL, O'Donoghue GM, et al. A lancet commission to address the global burden of hearing loss. Lancet, 2019, 393(10186): 2106-2108.
[2] Writing Group for Practice Guidelines for Diagnosis and Treatment of Genetic Diseases, Medical Genetics Branch of Chinese Medical Association. Clinical practice guidelines for hereditary non-syndromic deafness. Chin J Med Genet, 2020, 37(3):269-276. (in Chinese)
中華醫(yī)學會醫(yī)學遺傳學分會遺傳病臨床實踐指南撰寫組. 遺傳性非綜合征型耳聾的臨床實踐指南. 中華醫(yī)學遺傳學雜志, 2020, 37(3):269-276.
[3] Liu MT. A review of diagnosis and treatment of syndromic hearing loss. J Clin Otorhinolaryngol Head Neck Surg, 2021, 35(3):285-288. (in Chinese)
劉夢婷. 綜合征性耳聾的診斷與治療策略. 臨床耳鼻咽喉頭頸外科雜志, 2021, 35(3):285-288.
[4] Guo XY, Wang B, He J, et al. Advances in research on non-syndromic deafness genes and hearing curve. J Mol Diag Ther, 2022, 14(9):1636- 1640. (in Chinese)
郭曉宇, 王波, 賀娟, 等. 非綜合征型耳聾基因與聽力學表型的研究進展. 分子診斷與治療雜志, 2022, 14(9):1636-1640.
[5] China Multi-center Clinical Research Cooperative Group for Gene Screening and Diagnosis of Deafness, National Technical Guide Group for Prevention and Treatment of Deafness. Genetic screening criteria for hereditary deafness. Natl Med J China, 2021, 101(2):97- 102. (in Chinese)
中國耳聾基因篩查與診斷臨床多中心研究協(xié)作組, 全國防聾治聾技術指導組. 遺傳性耳聾基因篩查規(guī)范. 中華醫(yī)學雜志, 2021, 101(2):97-102.
[6] Zeng Y, Lu XT, Wu LF, et al. Analysis of result of gene screening of neonatal deafness in Huizhou and surrounding urban areas. ChinJ Med Genet, 2021, 38(12):1176-1179. (in Chinese)
曾云, 盧炫廷, 吳麗芳, 等. 惠州地區(qū)及周邊城市新生兒耳聾基因篩查的結果分析. 中華醫(yī)學遺傳學雜志, 2021, 38(12):1176-1179.
[7] Li M, Ye YC, He GW, et al. Screening and analysis of deafness gene mutations among 7234 newborns in Guangzhou area. J Mol Diagn Ther, 2020, 12(1):11-15. (in Chinese)
李瑪, 葉燕綢, 何國煒, 等. 廣州市地區(qū)7234例新生兒耳聾基因突變分析. 分子診斷與治療雜志, 2020, 12(1):11-15.
[8] Tang J, Zeng QL, Li QL, et al. Analysis of genetic screening of 13 725 neonatal hereditary deafness in Jiangmen district, Guangdong province. J Mol Diagn Ther, 2018, 10(4):222-227. (in Chinese)
唐佳, 曾欽龍, 李秋麗, 等. 廣東江門地區(qū)13725例新生兒遺傳性耳聾基因篩查結果分析. 分子診斷與治療雜志, 2018, 10(4):222- 227.
[9] Fang BX, Cai MS, Zhang JX, et al. Screening of deafness gene mutations in 1430 newborns in eastern Guangdong. J Guangdong Med Coll, 2019, 37(1):12-15. (in Chinese)
方炳雄, 蔡勉珊, 張俊賢, 等. 粵東地區(qū)1430例新生兒遺傳性耳聾基因篩查結果分析. 廣東醫(yī)科大學學報, 2019, 37(1):12-15.
[10] Pan L, Su W, Lin DB. Analysis of the screening results of common deafness gene mutations in 9775 newborns in Zhuhai area. Guangdong Med J, 2017, 38 (17):2684-2687. (in Chinese)
潘麗, 蘇文, 林道彬. 珠海地區(qū)9775例新生兒常見耳聾基因突變篩查結果分析. 廣東醫(yī)學, 2017, 38(17):2684-2687.
[11] Zhang XX, Murong HM, Li PP, et al. Results of deafness gene hotspot mutations screening in 99,582 neonates in southwest Guizhou. Chin J Otology, 2022, 20(4):612-619. (in Chinese)
張秀秀, 慕容紅梅, 李盼盼, 等. 黔西南地區(qū)99582位新生兒耳聾基因熱點突變篩查結果. 中華耳科學雜志, 2022, 20(4):612-619.
[12] Wen C, Huang LH, Xie ST, et al. Current status of newborn deafness gene screening in parts of China. J Clin Otorhinolaryngol Head Neck Surg, 2020, 34(11):972-977. (in Chinese)
文鋮, 黃麗輝, 解舒婷, 等. 中國部分地區(qū)新生兒耳聾基因篩查現(xiàn)況調(diào)查. 臨床耳鼻咽喉頭頸外科雜志, 2020, 34(11):972-977.
[13] Ma ZZ, Xu HY, Zhang X, et al. Screening results of deafness susceptibility genes among 1,242 newborns in Shaoguan region. Pract Prev Med, 2018, 25(12):1452-1454. (in Chinese)
馬占忠, 許紅雁, 張潯, 等. 韶關地區(qū)1242例新生兒耳聾易感基因篩查結果分析. 實用預防醫(yī)學, 2018, 25(12):1452-1454.
[14] Lin YF, Lin HC, Tsai CL, et al. GJB2 mutation spectrum in the Taiwanese population and genotype-phenotype comparisons in patients with hearing loss carrying GJB2 c.109G > A and c.235delC mutations. Hear Res, 2022, 413:108135.
[15] Nakano A, Arimoto Y, Mutai H, et al. Clinical and genetic analysis of children with hearing loss and bilateral enlarged vestibular aqueducts. Int J Pediatr Otorhinolaryngol, 2022, 152:110975.
[16] Lei J, Han LH, Deng Q, et al. Analysis of results of concurrent hearing and deafness genetic screening and follow up of 33 911 newborns. Chin J Med Genet, 2021, 38(1):32-36. (in Chinese)
雷潔, 韓璐好, 鄧茜, 等. 33 911例新生兒聽力聯(lián)合耳聾基因篩查及隨訪結果的分析. 中華醫(yī)學遺傳學雜志, 2021, 38(1):32-36.
Analysis of deafness gene mutations of neonates in northern Guangdong
MA Zhan-zhong, HUANG Wen-bo, Xu Jing, Qiu Jian-wu, Liu Yu-lan, YE Mei-xian, Fan Shu-shu
Author Affiliation:Prenatal Diagnosis Center (MA Zhan-zhong, XU Jing, LIU Yu-lan, Fan Shu-shu), Reproductive Medicine Center (HUANG Wen-bo), Neonatology (QIU Jian-wu), Biobank (YE Mei-xian), Yuebei People's Hospital, Medical College of Shantou University, Guangdong 512026, China
To explore the deafness gene mutations of neonates in northern Guangdong and to provide scientific basis for genetic counseling and prevention and control of birth defect.PCR and hybridization technique were used to detect four deafness genes, namely GJB2, SLC26A4, mtDNA and GJB3, in 7696 neonates in Yuebei People's Hospital from January 2018 to December 2021.A total of 319 deafness gene carriers were detected among 7696 neonates and the positive rate was 4.15%. Among them, 166 cases (2.16%) were found to have GJB2 gene mutation, 105 cases (1.36%) were found to have SLC26A4 gene mutation, 33 cases (0.43%) were found to have mtDNA gene mutation, and 15 cases (0.19%) were found to have GJB3 gene mutation. The most common deafness gene was GJB2 with 235delC as its hotspot mutation, and then followed by SLC26A4 carrying IVS7-2A > G as its hotspot mutation.There exists a high prevalence of deafness gene mutations among neonates in the northern Guangdong. It is of great significance for clinical genetic counseling and birth defect prevention and control to carry out genetic screening for deafness in neonates.
deafness gene; neonates; gene mutation; individuation; genetic counseling
FAN Shu-shu, Email: shaoguanfss@aliyun.com
10.3969/j.issn.1673-713X.2023.03.006
韶關市科技計劃項目(210926144531422);韶關市衛(wèi)生健康科研項目(Y22091);粵北人民醫(yī)院臨床科研培育項目(RS-04)
范舒舒,Email:shaoguanfss@aliyun.com
2023-01-06