亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        用于晶硅異質(zhì)結(jié)太陽(yáng)電池的透明導(dǎo)電薄膜研究進(jìn)展

        2023-06-13 00:00:00王夢(mèng)笑王光紅趙雷莫麗玢刁宏偉王文靜
        太陽(yáng)能學(xué)報(bào) 2023年11期

        收稿日期:2022-07-24

        基金項(xiàng)目:國(guó)家自然科學(xué)基金區(qū)域創(chuàng)新發(fā)展聯(lián)合基金(U21A2072);國(guó)家自然科學(xué)基金(62174161;61904180);中國(guó)科學(xué)院戰(zhàn)略性先導(dǎo)科技專項(xiàng)

        (XDA21060500)

        通信作者:王光紅(1976—),女,博士、副研究員,主要從事太陽(yáng)電池方面的研究。wangguanghong@mail.iee.ac.cn

        DOI:10.19912/j.0254-0096.tynxb.2022-1088 文章編號(hào):0254-0096(2023)11-0016-07

        摘 要:提升晶硅異質(zhì)結(jié)(HJT)太陽(yáng)電池的電流有望進(jìn)一步提高電池效率,透明導(dǎo)電氧化物薄膜(TCO)是影響HJT太陽(yáng)電池電流的重要功能層。該文首先介紹了TCO薄膜的自身特性,包括摻雜元素和摻雜比例、制備技術(shù)對(duì)薄膜特性的影響。同時(shí)總結(jié)了薄膜特性對(duì)HJT太陽(yáng)電池性能的影響。最后闡述了TCO薄膜應(yīng)用的最新進(jìn)展及發(fā)展趨勢(shì),增加蓋帽層或多層TCO薄膜有望改善薄膜整體特性及電池性能。以期指導(dǎo)TCO薄膜特性的優(yōu)化,從而進(jìn)一步提高HJT太陽(yáng)電池效率,加快HJT太陽(yáng)電池產(chǎn)業(yè)化進(jìn)程。

        關(guān)鍵詞:晶硅異質(zhì)結(jié);太陽(yáng)電池;透明導(dǎo)電氧化物薄膜;多層TCO薄膜;載流子遷移率;功函數(shù)

        中圖分類號(hào):O472""""""""""" """""""""""" """"""""文獻(xiàn)標(biāo)志碼:A

        0 引 言

        2022年,隆基創(chuàng)造了晶硅異質(zhì)結(jié)(heterojunction, HJT)太陽(yáng)電池26.50%(274.3 cm2)的世界紀(jì)錄[1],進(jìn)一步推進(jìn)了HJT電池產(chǎn)業(yè)化的進(jìn)程。HJT太陽(yáng)電池發(fā)射結(jié)為摻雜磷或硼的非晶硅薄膜,電阻率高,需要在其表面沉積透明導(dǎo)電氧化物薄膜(transparent conductive oxide, TCO)收集光生載流子,同時(shí)用作減反層,降低表面的光反射損失。此外,TCO還用作阻擋層禁止銀電極等金屬擴(kuò)散進(jìn)硅層。在HJT太陽(yáng)電池制備優(yōu)化過(guò)程中,TCO要兼具高的載流子遷移率和透過(guò)率,同時(shí)要調(diào)控功函數(shù)實(shí)現(xiàn)良好的界面接觸。

        HJT太陽(yáng)電池中主要是錫摻雜氧化銦(indium tin oxide, ITO)薄膜。ITO是具有代表性的n型TCO薄膜,其可見光透過(guò)率高達(dá)85%以上,電阻率低至10-4 Ω·cm[2],且具有硬度高、耐磨、耐化學(xué)腐蝕等特點(diǎn),被廣泛應(yīng)用于發(fā)光二極管、平板液晶顯示器和太陽(yáng)電池中。In2O3基薄膜由于含有稀有金屬In,價(jià)格昂貴、資源儲(chǔ)量少,且In的回收工藝繁瑣[3],為降低生產(chǎn)成本,也在采用ZnO基TCO薄膜做HJT太陽(yáng)電池的電極。

        1 TCO薄膜的摻雜

        TCO薄膜是通過(guò)摻入金屬元素?fù)诫s劑電離出自由電子實(shí)現(xiàn)導(dǎo)電。目前,常用的摻雜元素主要有Ga、In、Zr、Sn 等[4-8]。In2O3基TCO薄膜,其金屬元素的摻雜通常滿足的條件是:1) 價(jià)態(tài)高于3,滿足施主摻雜;2) 離子半徑接近In3+。

        Kanai[9]研究得到不同摻雜元素的In2O3基TCO薄膜的電阻率及載流子濃度隨摻雜原子和銦原子數(shù)量比例的變化關(guān)系,如圖1所示[9]。其電阻率隨摻雜原子和銦原子數(shù)量比例的增大逐漸降低,而載流子濃度逐漸增加,當(dāng)增大到一定的摻雜比例時(shí)均達(dá)到飽和狀態(tài)。

        一些研究嘗試摻雜多種元素調(diào)控薄膜能帶結(jié)構(gòu)、功函數(shù)和載流子濃度等。Al-Ga、Al-Ti和Ga-B等[10-12]共摻雜ZnO薄膜的研究表明:共摻雜ZnO基TCO薄膜呈現(xiàn)出低電阻率和高透過(guò)率,具有廣闊的應(yīng)用前景。

        2 TCO薄膜的制備技術(shù)及性能

        TCO薄膜制備方法可分為真空沉積和非真空沉積。非真空沉積法如超聲噴霧及溶膠-凝膠法[13]等;真空沉積如磁控濺射(magnetron sputtering, MS)[14]、反應(yīng)等離子體沉積(reactive plasma deposition, RPD)[15]及原子層沉積等。在HJT太陽(yáng)電池中,制備TCO薄膜多采用MS和RPD技術(shù)[14-15]。

        MS技術(shù)對(duì)靶材有較高的要求,無(wú)法使用不能壓制成高密度陶瓷靶材的TCO材料,如氧化鎢摻雜氧化銦(tungsten doped indium oxide, IWO),這是MS制備TCO薄膜需要解決的問(wèn)題。

        目前,對(duì)銦錫質(zhì)量分?jǐn)?shù)比例為90∶10的ITO靶材研究較多[16-17],也有研究采用97∶3及95∶5[6]。黃梅等[16]采用MS技術(shù)和單變量控制方法,其他參數(shù)不變,適量升高氧含量,使電阻率降至1×10-3 Ω·cm,透過(guò)率升至89%。ITO對(duì)氧非常敏感,適量的氧可提高電導(dǎo)率和透過(guò)率;但過(guò)高的氧含量,會(huì)使載流子濃度變小,電阻率增加。Koida等[18]與Barraud等[19]采用MS技術(shù),通過(guò)在沉積In2O3薄膜過(guò)程中引入水汽,鈍化ITO薄膜中缺陷,達(dá)到提升遷移率的目的;Nishimura等[20]在采用MS沉積ITO薄膜過(guò)程中引入水汽,降低ITO薄膜的擇優(yōu)取向,使薄膜遷移率提升至40 cm2/(V·s);Fujiwara等[18]使用In2O3陶瓷靶并通入Ar、O2和H2O,實(shí)現(xiàn)對(duì)In2O3薄膜的H摻雜,在不加熱的襯底上采用MS沉積薄膜后,進(jìn)行100~200 ℃、2 h的真空退火處理,得到遷移率高于100 cm2/(V·s)的IO∶H薄膜。

        RPD技術(shù)具有低離子損傷、高生長(zhǎng)速率及高薄膜結(jié)晶度等優(yōu)點(diǎn),但設(shè)備成本較高。相比于MS,RPD對(duì)襯底的轟擊弱,靶材物質(zhì)通過(guò)升溫蒸發(fā)生成薄膜沉積活性基元,幾乎不存在高能粒子對(duì)襯底表面的轟擊損傷,鍍膜質(zhì)量更易控制。RPD可降低非晶硅表面的損傷,不會(huì)使非晶硅鈍化后硅片的少子壽命降低。RPD類似蒸發(fā)的原理使其可以制備的材料種類受到限制,高蒸發(fā)溫度的材料難用RPD進(jìn)行鍍膜。目前,適合RPD技術(shù)的TCO材料主要有摻鎵的氧化鋅(gallium-doped zinc oxide, GZO)、ITO、摻鎢的氧化銦(IWO)及摻鈰的氧化銦(cerium-doped indium oxide, ICO)等,其中IWO及ICO與ITO相比具有更高的載流子遷移率[8,15]。不同于MS技術(shù),RPD為便于實(shí)現(xiàn)蒸發(fā),所采用的靶材結(jié)構(gòu)相對(duì)疏松,致密度小。常用的IWO靶振實(shí)密度只有約60%,使用MS技術(shù)很難匹配這種低密度靶材,只能采用RPD技術(shù)。

        石建華等[8]采用RPD技術(shù)制備不同厚度的ICO(3% CeO2,質(zhì)量分?jǐn)?shù))薄膜,載流子濃度和遷移率對(duì)厚度顯示出強(qiáng)烈的依賴性,厚度為30 nm時(shí),遷移率最高為153.7 cm2/(V·s)。孟凡英等[15]采用RPD技術(shù)制備IWO(1% WO3,質(zhì)量分?jǐn)?shù))薄膜,氧分壓為9.6×10-2 Pa時(shí),632.8 nm波長(zhǎng)處的折射率為2.01,禁帶寬度為3.83 eV,遷移率最大為89 cm2/(V·s),載流子濃度為1.6×1020 cm-3,用于HJT電池實(shí)現(xiàn)20.8 %的效率。沈磊磊等[21]采用RPD技術(shù)制備IWO薄膜,獲得了60 cm2/(V·s)的遷移率,經(jīng)過(guò)高溫退火處理后,遷移率可達(dá)到120 cm2/(V·s)。周忠信等[22]采用RPD技術(shù),ICO靶材及Ar稀釋的H2混合氣體制備ICOH薄膜,獲得了94 cm2/(V·s)的遷移率。Kobayashi等[23]采用RPD技術(shù),CeO2及H2共摻雜In2O3薄膜,獲得了遷移率高達(dá)142 cm2/(V·s)的ICOH薄膜。Shirakata等[24]采用RPD技術(shù)制備Ga摻雜ZnO薄膜,180 nm厚的GZO薄膜遷移率為27 cm2/(V·s)。黃偉等[25]采用RPD技術(shù)在室溫下實(shí)現(xiàn)W和H2O共摻雜In2O3制備IWOH薄膜,在空氣中退火使遷移率從43.7 cm2/(V·s)提高至65.2 cm2/(V·s)。

        圖2[26]給出了不同制備技術(shù)不同摻雜成分In2O3及ZnO基TCO薄膜的電阻率、載流子濃度和遷移率。RPD技術(shù)制備的TCO薄膜遷移率相對(duì)較高,Ce和H共摻雜的In2O3薄膜遷移率高達(dá)160 cm2/(V·s),且電阻率小于3×10-4 Ω·cm。此外,經(jīng)過(guò)固相結(jié)晶(solid-phase crystallization, spc)的TCO薄膜,無(wú)論采用MS或RPD技術(shù)制備,都獲得了較高的遷移率,這主要得益于其具有較長(zhǎng)的弛豫時(shí)間[26-27]。Koida等[28]將MS低溫工藝制備的非晶IO∶H薄膜真空退火處理,薄膜由非晶轉(zhuǎn)變?yōu)槎嗑ВC明了固相結(jié)晶的發(fā)生。

        3 TCO薄膜對(duì)HJT太陽(yáng)電池性能的影響

        目前,很多公司和科研機(jī)構(gòu)制備的HJT太陽(yáng)電池的效率均已超過(guò)20%,部分已達(dá)到24 %以上,TCO性能如表1所示。

        作為減反射層,TCO薄膜的折射率一般約為2,根據(jù)薄膜在600 nm波長(zhǎng)處反射率最小進(jìn)行測(cè)算,其厚度約為75 nm。Cruz等[36]通過(guò)軟件模擬了太陽(yáng)光從電池前表面或后表面入射時(shí),具有不同TCO薄膜載流子濃度及厚度的太陽(yáng)電池電子和空穴輸運(yùn)功率、電流、及總體功率損失,如圖3所示[36]。TCO薄膜載流子濃度為6×1019 cm-3較小值或4.1×1020 cm-3較大值,其厚度為20或80 nm時(shí),太陽(yáng)光從電池前表面及背表面輻照,電流及功率損失均較大。當(dāng)TCO薄膜厚度較小時(shí),其電阻較大,而厚度較大時(shí)又具有較高的光學(xué)吸收損失。

        TCO薄膜和摻雜硅層薄膜的良好接觸特性可通過(guò)提高摻雜硅層的摻雜濃度增強(qiáng)載流子隧穿能力來(lái)獲得,但非晶硅薄膜的摻雜效率遠(yuǎn)低于晶體硅,因此較難實(shí)現(xiàn)??梢詫?duì)TCO的功函數(shù)進(jìn)行控制,功函數(shù)決定費(fèi)米能級(jí)的位置,從而確定結(jié)區(qū)內(nèi)的電場(chǎng)方向。文獻(xiàn)[37]較詳細(xì)研究了TCO/摻雜非晶硅肖特基結(jié)對(duì)HJT太陽(yáng)電池的影響,通常與p型薄膜硅接觸的TCO需要具有較大的功函數(shù),與n型薄膜硅接觸的TCO功函數(shù)較小。圖4為不同TCO功函數(shù)的HJT太陽(yáng)電池

        (ITO:Zr/a-Si∶H(p)/a-Si∶H(i)/c-Si(n))的能帶結(jié)構(gòu)示意圖[38]。各層材料功函數(shù)的不同導(dǎo)致能帶彎曲。ITO∶Zr層的功函數(shù)低于a-Si∶H層,但其增大可提高空穴從a-Si∶H(p)到ITO∶Zr層的輸運(yùn),使填充因子增加,內(nèi)建電場(chǎng)的增強(qiáng)提高了電池的開路電壓,因此電池性能得到提高??傊?,ITO∶Zr/a-Si∶H(p)接觸界面肖特基勢(shì)壘高度的降低導(dǎo)致了空穴載流子收集的增強(qiáng)。

        趙雷等[39]采用AFORS-HET軟件模擬得到TCO/a-Si∶H(n)/c-Si(p)太陽(yáng)電池性能隨TCO功函數(shù)變化的關(guān)系,如圖5所示[39],TCO功函數(shù)高于4.1 eV時(shí),太陽(yáng)電池性能隨著功函數(shù)的增加迅速降低。當(dāng)TCO功函數(shù)較低時(shí),TCO/a-Si∶H(n)肖特基接觸的內(nèi)建電場(chǎng)方向與a-Si∶H(n)/c-Si(p)相同;反之,當(dāng)TCO功函數(shù)較高時(shí),內(nèi)建電場(chǎng)方向相反。TCO功函數(shù)的增加會(huì)導(dǎo)致TCO/a-Si∶H(n)接觸的內(nèi)建電勢(shì)增大,使得發(fā)射極內(nèi)的耗盡區(qū)變寬。如果發(fā)射極厚度較小,以至于TCO/a-Si∶H(n)與a-Si∶H(n)/c-Si(p)接觸區(qū)重疊,將使得a-Si∶H(n)/c-Si(p)接觸的內(nèi)建電勢(shì)降低,從而導(dǎo)致太陽(yáng)電池開路電壓和填充因子減小,效率變差。

        Bivour等[40]模擬了不同摻雜濃度a-Si∶H(p)層與接觸層功函數(shù)不匹配對(duì)HJT電池填充因子的影響,如圖6所示[40]。通常TCO的功函數(shù)小于a-Si∶H(p)層的功函數(shù),在界面處甚至a-Si∶H(p)層內(nèi)會(huì)出現(xiàn)耗盡區(qū)或反型區(qū)。在耗盡區(qū)或反型區(qū),3種摻雜的a-Si∶H(p)層接觸層功函數(shù)不匹配導(dǎo)致電池填充因子均較低;在平帶時(shí),接觸層功函數(shù)匹配,因此功函數(shù)對(duì)結(jié)的性能影響較小;在積累區(qū),因a-Si∶H(p)層的高摻雜,降低了界面接觸層功函數(shù)的不匹配程度,有利于電池填充因子的改善。

        4 TCO薄膜應(yīng)用的最新進(jìn)展及發(fā)展趨勢(shì)

        目前,用于HJT電池的ITO薄膜主要是單層ITO薄膜,在兼顧高透過(guò)率、低電阻率和良好接觸時(shí),會(huì)舍棄掉一些優(yōu)異的性能。改進(jìn)TCO的一個(gè)重要方法是采用多層薄膜,以此來(lái)提高電池效率或降低成本。一些學(xué)者基于ITO進(jìn)行薄膜結(jié)構(gòu)上的調(diào)整,如增加蓋帽層或多層ITO薄膜,以期獲得薄膜整體性能的改進(jìn)。采用多層TCO除了提高薄膜自身特性,還具有如下優(yōu)點(diǎn)。

        4.1 降低成本

        德國(guó)HZB研究了在ITO外側(cè)覆蓋一層SiO2蓋帽層可改善HJT電池效率[41]。如圖7所示[41],在ITO外側(cè)覆蓋50 nm的SiO2蓋帽層,有效增加了ITO中的氫含量,提高了薄膜載流子濃度和遷移率。從SIMS分析來(lái)看,氫原子主要來(lái)源于非晶硅層,退火使非晶硅層中的氫向ITO擴(kuò)散,但I(xiàn)TO外表面的氫原子會(huì)向真空中逸出,使用蓋帽層可有效阻止這種逸出。

        ITO/SiO2或ITO/SiNX復(fù)合膜組成減反射結(jié)構(gòu),可降低ITO用量,從而降低成本。Meyer Burger公司提出HJT 2.0的概念[42],如圖8所示,在ITO上鍍SiNX膜,SiNX和ITO共同作減反射層,ITO起導(dǎo)電作用,電池性能明顯提高,且可降低成本。

        4.2 降低接觸電阻

        多層TCO薄膜有利于降低TCO和襯底的接觸電阻[43]。漢能公司創(chuàng)造世界紀(jì)錄的效率為25.1%的HJT太陽(yáng)電池使用了多層ITO薄膜,包含緩沖層、種子層和導(dǎo)電層,其中緩沖層主要用于減少a-Si(n)/TCO的接觸電阻,種子層用于改善TCO的結(jié)晶特性和光電特性,如圖9所示[44]。使用多層TCO使電池效率大幅提高0.51%,這主要?dú)w功于短路電流和填充因子的提高。

        4.3 提高電池穩(wěn)定性

        氫作為施主雜質(zhì)可提高TCO薄膜(如摻氫的氧化銦,IO:H)載流子濃度,降低電阻率,適量引入氫可鈍化晶界缺陷,提高遷移率,改善薄膜電學(xué)特性[18-20]。但薄膜內(nèi)的氫易脫附,導(dǎo)致薄膜性能降低。因此,在IO∶H薄膜上覆蓋一層ITO可增強(qiáng)薄膜的穩(wěn)定性,雙層膜遷移率的衰減在雙85實(shí)驗(yàn)中遠(yuǎn)小于IO:H單層膜[45]。

        5 結(jié) 論

        HJT太陽(yáng)電池中的TCO薄膜起著導(dǎo)電、減反射及阻擋層的作用,其優(yōu)化需要從高遷移率特性入手。選擇合適的金屬元素?fù)诫s劑實(shí)現(xiàn)高導(dǎo)電特性,RPD技術(shù)制備的In2O3∶Ce,H薄膜遷移率高達(dá)160 cm2/(V·s),電阻率小于3×10-4 Ω·cm。TCO薄膜的產(chǎn)業(yè)化制備技術(shù)需要滿足高效率低成本的需求,目前產(chǎn)業(yè)化主要采用MS及RPD技術(shù)。TCO薄膜與摻雜薄膜硅之間的良好歐姆接觸主要通過(guò)調(diào)節(jié)TCO的功函數(shù)來(lái)實(shí)現(xiàn),與p型和n型非晶硅摻雜層接觸的TCO分別需要有高的功函數(shù)和低的功函數(shù)。對(duì)TCO薄膜的最新進(jìn)展及發(fā)展趨勢(shì)進(jìn)行討論,多層TCO薄膜是未來(lái)提高HJT電池性能及其穩(wěn)定性的趨勢(shì)之一。

        [參考文獻(xiàn)]

        [1]"""" GERRN M A, DUNLOP E D, SIEFER G, et al. Solar cell efficiency"""" tables"""" (Version"""" 61)[J].""" Progress""""" in photovoltaics: research and application, 2023, 31(1): 3-16.

        [2]"""" ALI D, BUTT M Z, MUNEER I, et al. Correlation between structural and optoelectronic properties of tin doped indium oxide thin films[J]. Optik, 2017, 128:235-246.

        [3]"""" 劉明, 王磊, 于書魁, 等. 高效硅基異質(zhì)結(jié)太陽(yáng)電池銦回收技術(shù)研究[J]. 太陽(yáng)能學(xué)報(bào), 2022, 43(4): 137-141.

        LIU M, WANG L, YU S K, et al. Study of recovery technology for indium in efficient crystalline silicon heterojunction solar cells[J]. Acta energiae solaris sinica, 2022, 43(4): 137-141.

        [4]"""" YU J, BIAN J T, DUAN W Y, et al. Tungsten doped indium oxide film: ready for bifacial copper metallization of"" silicon"" heterojunction"" solar"" cell[J]." Solar"" energy materials and solar cells, 2016, 144: 359-363.

        [5]"""" PARTHIBAN S, GOKULAKRISHNAN V, RAMAMURTHI K, et al. High near-infrared transparent molybdenum-doped indium oxide thin films for nanocrystalline silicon solar cell applications[J]. Solar energy materials and solar cells, 2009, 93(1): 92-97.

        [6]"""" GONG W B, WANG G H, GONG Y B, et al. Investigation of In2O3∶SnO2 films with different doping ratio and application as transparent conducting electrode in silicon heterojunction solar cell[J]. Solar energy materials and solar cells, 2022, 234: 111404.

        [7]"""" KHOKHAR M Q, HUSSAIN S Q, PHAM D P, et al. ITO:Zr bi-layers deposited by reactive O2 and Ar plasma with high work function for silicon heterojunction solar cells[J]. Current applied physics, 2020, 20(8): 994-1000.

        [8]"""" SHI J H, MENG F Y, BAO J, et al. Surface scattering effect on the electrical mobility of ultrathin Ce doped In2O3 film prepared at low temperature[J]. Materials letters, 2018, 225: 54-56.

        [9]"""" KANAI Y. Electrical properties of In2O3 single crystals doped with metallic donor impurity[J]. Japanese journal of applied physics, 1984, 23(1): 127.

        [10]""" JIANG M H, LIU X Y. Structural, electrical and optical properties of Al-Ti codoped ZnO (ZATO) thin films prepared by RF magnetron sputtering[J]. Applied surface science, 2008, 255(5): 3175-3178.

        [11]""" LEE W, SHIN S, JUNG D R, et al. Investigation of electronic and optical properties in Al-Ga codoped ZnO thin films[J]. Current applied physics, 2012, 12(3): 628-631.

        [12]""" ABDUEV A K, AKHMEDOV A K, ASVAROV A S. The structural and electrical properties of Ga-doped and Ga, B codoped ZnO thin films: the effects of additional boron impurity[J]. Solar energy materials and solar cells, 2007, 91(4): 258-260.

        [13]""" EO I S, HWANGBO S, KIM J T, et al. Photoluminescence of chemical solution-derived amorphous ZnO layers prepared by low-temperature process[J]. Current applied physics, 2010, 10(1): 1-4.

        [14]""" KHATAMI S, FEKRI AVAL L, BEHZADI POUR G. Investigation of nanostructure and optical properties of flexible AZO thin films at different powers of RF magnetron sputtering[J]. Nano, 2018, 13(6): 1850062(1-9).

        [15]""" MENG F Y, SHI J H, LIU Z X, et al. High mobility transparent conductive W-doped In2O3 thin films prepared at low substrate temperature and its application to solar cells[J]. Solar energy materials and solar cells, 2014, 122: 70-74.

        [16]""" HUANG M, HAMEIRI Z, VENKATARAJ S, et al. Characterisation and optimisation of indium tin oxide films deposited by pulsed DC magnetron sputtering for heterojunction" silicon" wafer"" solar" cell"" applications[J]. Energy procedia, 2013, 33: 91-98.

        [17]""" 何永才, 董剛強(qiáng), 張小燕, 等. 高效硅基異質(zhì)結(jié)太陽(yáng)電池的ITO薄膜研究[J]. 太陽(yáng)能學(xué)報(bào), 2020, 41(4): 1-6.

        HE Y C, DONG M G, ZHANG X Y, et al. Investigation on high quality ito films used for SHJ solar cell[J]. Acta energiae solaris sinica, 2020, 41(4): 1-6.

        [18]""" KOIDA T, FUJIWARA H, KONDO M. High-mobility hydrogen-doped In2O3 transparent conductive oxide for a-Si:H/c-Si heterojunction solar cells[J]. Solar energy materials and solar cells, 2009, 93(6/7): 851-854.

        [19]""" BARRAUD L, HOLMAN Z C, BADEL N, et al. Hydrogen-doped indium oxide/indium tin oxide bilayers for high-efficiency silicon heterojunction solar cells[J]. Solar energy materials and solar cells, 2013, 115: 151-156.

        [20]""" NISHIMURA E, OHKAWA H, SONG P, et al. Microstructures of ITO films deposited by DC magnetron sputtering with H2O introduction[J]. Thin solid films, 2003, 445(2): 235-240.

        [21]""" 沈磊磊, 孟凡英, 石建華, 等. 高遷移率IWO薄膜特性及其在薄膜硅/晶體硅異質(zhì)結(jié)太陽(yáng)電池中的應(yīng)用研究[J]. 太陽(yáng)能學(xué)報(bào),2018, 39(5): 1329-1334.

        SHEN L L, MENG F Y, SHI J H, et al. Study of high mobility IWO thin films and its application to SHJ solar cells[J]. Acta energiae solaris sinica, 2018, 39(5): 1329-1334.

        [22]""" 周忠信, 陳新亮, 張?jiān)讫垼?等. RPD技術(shù)生長(zhǎng)ICO:H薄膜及其在晶體硅異質(zhì)結(jié)太陽(yáng)電池中的應(yīng)用[J]. 太陽(yáng)能學(xué)報(bào), 2021, 42(1): 50-55.

        ZHOU Z X, CHEN X L, ZHANG Y L, et al. RPD-grown ICO∶H thin films for crystalline sillicon heterojunction solar cells[J]. Acta energiae solaris sinica, 2021, 42(1): 50-55.

        [23]""" KOBAYASHI E, WATABE Y, YAMAMOTO T, et al. Cerium oxide and hydrogen co-doped indium oxide films for high-efficiency silicon heterojunction solar cells[J]. Solar energy materials and solar cells, 2016, 149: 75-80.

        [24]""" SHIRAKATA S, SAKEMI T, AWAI K, et al. Electrical and optical properties of large area Ga-doped ZnO thin films prepared by reactive plasma deposition[J]. Superlattices and microstructures, 2006, 39(1/2/3/4): 218-228.

        [25]""" HUANG W, SHI J H, LIU Y Y, et al. Effect of crystalline structure on optical and electrical properties of IWOH films fabricated by low-damage reactive plasma deposition at room temperature[J]. Journal of alloys and compounds, 2020, 843: 155151.

        [26]""" KOIDA T. Environmental and thermal stability of high-mobility In2O3-based transparent conducting oxide films fabricated at low process temperatures[C]//Research Center for Photovoltaics, AIST, 1st SHJ Workshop. Shanghai, China, 2018.

        [27]""" KOIDA T, NOMOTO J. Effective mass of high-mobility In2O3-based transparent conductive oxides fabricated by solid-phase crystallization[J]. Physical review materials, 2022, 6(5): 055401.

        [28]""" KOIDA T, KONDO M, TSUTSUMI K, et al. Hydrogen-doped In2O3 transparent conducting oxide films prepared by solid-phase crystallization method[J]. Journal of applied physics, 2010, 107(3): 033514.

        [29]""" LACHAUME R, FAVRE W, SCHEIBLIN P, et al. Influence"" of"" a-Si:H/ITO"" interface"" properties"" on performance of heterojunction solar cells[J]. Energy procedia, 2013, 38: 770-776.

        [30]""" SCHERG-KURMES H, K?RNER S, RING S, et al. High mobility In2O3:H as contact layer for a-Si:H/c-Si heterojunction and μc-Si:H thin film solar cells[J]. Thin solid films, 2015, 594: 316-322.

        [31]""" KIM S, IFTIQUAR S M, LEE D, et al. Improvement in front-contact"" resistance"" and"" interface"" passivation"" of heterojunction amorphous/crystalline silicon solar cell by hydrogen-diluted" stacked" emitter[J]. IEEE" journal" of photovoltaics, 2016, 6(4): 837-845.

        [32]""" WU Z P, DUAN W Y, LAMBERTZ A, et al. Low-resistivity" p-type"" a-Si:H/AZO"" hole"" contact"" in"" high-efficiency silicon heterojunction solar cells[J]. Applied surface science, 2021, 542: 148749.

        [33]""" HUANG W, SHI J H, LIU Y Y, et al. High-performance Ti and W co-doped indium oxide films for silicon heterojunction solar cells prepared by reactive plasma deposition[J]. Journal of power sources, 2021, 506: 230101.

        [34]""" QIU D P, DUAN W Y, LAMBERTZ A, et al. Effect of oxygen and hydrogen flow ratio on indium tin oxide films in rear-junction silicon heterojunction solar cells[J]. Solar energy, 2022, 231: 578-585.

        [35]""" RU X N, QU M H, WANG J Q, et al. 25.11% efficiency silicon heterojunction solar cell with low deposition rate intrinsic amorphous silicon buffer layers[J]. Solar energy materials and solar cells, 2020, 215: 110643.

        [36]""" CRUZ A, ERFURT D, WAGNER P, et al. Optoelectrical analysis of TCO+Silicon oxide double layers at the front and rear side of silicon heterojunction solar cells[J]. Solar energy materials and solar cells, 2022, 236: 111493.

        [37]""" ZHAO L, ZHOU C L, LI H L, et al. Design optimization of bifacial HIT solar cells on p-type silicon substrates by simulation[J]. Solar energy materials and solar cells, 2008, 92(6): 673-681.

        [38]""" HUSSAIN S Q, KIM S, AHN S, et al. Influence of high work function ITO:Zr films for the barrier height modification in a-Si:H/c-Si heterojunction solar cells[J]. Solar energy materials and solar cells, 2014, 122: 130-135.

        [39]""" ZHAO L, ZHOU C L, LI H L, et al. Role of the work function of transparent conductive oxide on the performance of amorphous/crystalline silicon heterojunction solar cells studied by computer simulation[J]. Physica status solidi (a), 2008, 205(5): 1215-1221.

        [40]""" BIVOUR M, REICHEL C, HERMLE M, et al. Improving the a-Si:H(p) rear emitter contact of n-type silicon solar cells[J]. Solar energy materials and solar cells, 2012, 106: 11-16.

        [41]""" STANNOWSKI B, ERFURT D, CRUZ A. TCOs for SHJ solar cells[C]//3rd International Workshop on SHJ Solar cell, Web. Meeting, 2020.

        [42]""" B?TZNER D L, PAPET P, LEGRADIC B, et al. Alleviating performance and cost constraints in silicon heterojunction cells with HJT 2.0[C]//2019 IEEE 46th Photovoltaic Specialists Conference (PVSC). Chicago, USA, 2020: 1471-1474.

        [43]""" LUDERER C, TUTSCH L, MESSMER C, et al. Influence of TCO and a-Si:H doping on SHJ contact resistivity[J]. IEEE journal of photovoltaics, 2021, 11(2): 329-336.

        [44]""" CHRIS X X. Micro-crystalline silicon oxide front contact layer for silicon heterojunction solar cells[C]//2nd International Workshop on SHJ Solar Cells. Chengdu, China, 2019.

        [45]""" TOHSOPHON T, DABIRIAN A, DE WOLF, et al. Environmental stability of high-mobility indium-oxide based transparent electrodes[J]. APL materials, 2015, 3(11): 116105.

        RESEARCH PROGRESS OF TCO FILMS FOR SILICON

        HETEROJUNCTION SOLAR CELLS

        Wang Mengxiao1,2,Wang Guanghong1,2,Zhao Lei1,2,Mo Libin1,Diao Hongwei1,Wang Wenjing1,2

        (1. Key Laboratory of Solar Thermal Energy and Photovoltaic System of Chinese Academy of Sciences, Institute of Electrical Engineering,

        Chinese Academy of Sciences, Beijing 100190, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China)

        Abstract:Increasing the current of the silicon heterojunction(HJT) solar cell is expected to further improve its efficiency. Transparent conductive oxide film (TCO) is an important functional layer that affects the current of the HJT solar cell. In this paper, the characteristics of TCO films are firstly introduced, including the effects of doping elements, doping ratios and preparation techniques on the film properties. Moreover, the influence of film properties on the performance of HJT cells is summarised. Finally, the latest progress and development trend of TCO film application are described. Increasing the cap layer or adopting multilayer TCO film structure is expected to improve the characteristics of TCO films and solar cell performance. It is expected to guide the optimization of TCO films characteristics, so as to further improve the efficiency of HJT solar cell and accelerate its industrialization process.

        Keywords:silicon heterojunction; solar cells; transparent conductive oxide films; multilayer TCO films; carrier mobility; work function

        午夜成人鲁丝片午夜精品| 精品老熟女一区二区三区在线| 久久天堂精品一区二区三区四区| 久久久久久国产精品免费免费| 亚洲欧美日韩在线观看一区二区三区 | 日本高清色倩视频在线观看| 99精品欧美一区二区三区美图 | 经典三级免费看片天堂| 亚洲妇女自偷自偷图片| 北条麻妃毛片在线视频| 国产人妖赵恩静在线视频| 人妻中文字幕日韩av| 又色又爽又高潮免费视频观看| 尤物99国产成人精品视频| 亚洲国产精品亚洲高清| 极品av一区二区三区| 蜜桃视频无码区在线观看| 国产一区二区三区小说| 午夜宅男成人影院香蕉狠狠爱| 日韩精品人成在线播放| 牲欲强的熟妇农村老妇女| 亚洲av高清在线观看三区| 国产夫妻精品自拍视频| 中国老熟妇506070| 亚洲精品成人网久久久久久| 91精品人妻一区二区三区蜜臀| 国产乱码一区二区三区精品| av在线免费观看男人天堂| 亚洲av网一区二区三区| 麻豆av传媒蜜桃天美传媒| 国产99久久精品一区| 操风骚人妻沉沦中文字幕| 日韩精品一区二区三区免费视频 | 亚洲性无码av在线| 深夜一区二区三区视频在线观看 | 国产三级久久精品三级91| 九九久久精品无码专区| 国产av综合一区二区三区最新| 狼人精品剧情av在线观看| 国产md视频一区二区三区| 免费一级肉体全黄毛片|