賀丹 李鵬 趙珅 姜虹 田苗 趙婷婷 仁安 周彥麗 李明昊 任毅
摘要:多黏類(lèi)芽孢桿菌(Paenibacillus polymyxa)是一種常見(jiàn)的植物根際促生細(xì)菌(PGPR),具有巨大的生物防治潛力,且在可持續(xù)農(nóng)業(yè)中發(fā)揮的作用越來(lái)越重要。多黏類(lèi)芽孢桿菌可以防治細(xì)菌、真菌、線(xiàn)蟲(chóng)和病毒,這是通過(guò)生產(chǎn)各種抗菌物質(zhì)、生長(zhǎng)必需物質(zhì)的競(jìng)爭(zhēng)以及通過(guò)引發(fā)植物的過(guò)敏防御反應(yīng)來(lái)實(shí)現(xiàn)的。多黏類(lèi)芽孢桿菌衍生的抗菌物質(zhì)包括葡聚糖酶、幾丁質(zhì)酶、淀粉酶、纖維素酶、黏菌素、羊毛硫菌素、殺鐮孢菌素、多肽菌素等,生長(zhǎng)必需物質(zhì)的競(jìng)爭(zhēng)主要是鐵載體,可通過(guò)誘導(dǎo)系統(tǒng)抗性 (ISR)引發(fā)植物的過(guò)敏防御反應(yīng)。因此,多黏類(lèi)芽孢桿菌是生產(chǎn)生物農(nóng)藥的重要菌種,由多黏類(lèi)芽孢桿菌及其衍生物制備的微生物農(nóng)藥以其良好的環(huán)境友好性、生物防治機(jī)制的多樣性和對(duì)土壤病害的良好防治效果,成為植物病害防治的重要策略之一。探究多黏類(lèi)芽孢桿菌的生防機(jī)制具有重要的理論和應(yīng)用價(jià)值,并對(duì)近年來(lái)多黏類(lèi)芽孢桿菌通過(guò)產(chǎn)生抗菌物質(zhì)、競(jìng)爭(zhēng)作用以及誘導(dǎo)植物抗病性等生防機(jī)制的研究進(jìn)展進(jìn)行綜述。
關(guān)鍵詞:多黏類(lèi)芽孢桿菌;生防機(jī)制;抗菌物質(zhì);競(jìng)爭(zhēng)作用;誘導(dǎo)植物抗病性
中圖分類(lèi)號(hào):S476;S182 文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1002-1302(2023)08-0001-07
基金項(xiàng)目:黑龍江省自然科學(xué)基金(編號(hào):LH2019C080、LH2019C079、LH2021C086、LH2021C087)。
作者簡(jiǎn)介:賀 丹(1990—),女,黑龍江哈爾濱人,碩士,助理研究員,從事農(nóng)業(yè)微生物、農(nóng)業(yè)生態(tài)學(xué)研究。E-mail:448077927@qq.com。
生物防治可定義為“利用自然生物及其產(chǎn)物來(lái)防治有害生物的技術(shù),其中自然生物主要包括人類(lèi)、作物、樹(shù)木、動(dòng)物和有益微生物”[1]。真菌細(xì)胞壁和昆蟲(chóng)角質(zhì)層的降解提供了一種在不傷害人類(lèi)和其他哺乳動(dòng)物的情況下防治植物病原真菌和昆蟲(chóng)的方法。生防菌的拮抗作用歸因于幾丁質(zhì)水解酶對(duì)幾丁質(zhì)的水解降解,而微生物或其分泌產(chǎn)物在控制植物病原真菌、線(xiàn)蟲(chóng)或害蟲(chóng)方面的實(shí)際應(yīng)用方面提供了一個(gè)新的途徑[2-8]。研究微生物組生物技術(shù)工具的快速發(fā)展,能夠更精準(zhǔn)地了解微生物生存的不同生態(tài)位(如土壤和植物組織)及多樣性。當(dāng)前大量研究集中在特定植物組織尤其是根際的微生物組上[9]。通過(guò)對(duì)多種作物和土壤進(jìn)行研究,發(fā)現(xiàn)重要的微生物組通常由適合定植于不同植物根部表面和內(nèi)部的細(xì)菌物種組成。通過(guò)對(duì)土壤微生物組進(jìn)行研究,發(fā)現(xiàn)在植物附近富集的這些細(xì)菌屬之一是類(lèi)芽孢桿菌,其中多黏類(lèi)芽孢桿菌(Paenibacillus polymyxa)以其促進(jìn)植物生長(zhǎng)的潛力而聞名,成為重要的、有潛力的生物防治和生物肥料劑。本文闡述了關(guān)于多黏類(lèi)芽孢桿菌的已知信息及其對(duì)植物的生物防治機(jī)制,明確該生物體如何在可持續(xù)發(fā)展的農(nóng)業(yè)中發(fā)揮重要作用。
1 多黏類(lèi)芽孢桿菌
多黏類(lèi)芽孢桿菌自1880年被發(fā)現(xiàn)以來(lái),已有多個(gè)名稱(chēng),開(kāi)始它被命名為多黏梭菌,1889年因其桿狀細(xì)胞而改名為多黏芽孢桿菌[10];1993年通過(guò)對(duì)芽孢桿菌16S rRNA序列種屬的比較分析,將類(lèi)芽孢桿菌重新分類(lèi),而類(lèi)芽孢桿菌與芽孢桿菌屬的密切關(guān)系體現(xiàn)在其名稱(chēng)上,是后者和拉丁語(yǔ)副詞“paene”的縮寫(xiě),表示“幾乎”的意思。類(lèi)芽孢桿菌屬由165種組成,其中多黏類(lèi)芽孢桿菌是類(lèi)芽孢桿菌的模式菌種。多黏類(lèi)芽孢桿菌是一種革蘭氏陽(yáng)性、兼性厭氧、嗜中性、產(chǎn)孢子、桿狀細(xì)菌,具有周毛鞭毛[11]。它主要存在于土壤、根際和植物組織中,但也有部分是從海洋沉積物和發(fā)酵食品中分離出來(lái)的[12]。在美國(guó)國(guó)家生物技術(shù)信息中心(NCBI)中,有57個(gè)帶注釋的多黏類(lèi)芽孢桿菌全基因組組裝菌株保藏的總基因組長(zhǎng)度中位數(shù)為5.8 Mb,蛋白質(zhì)計(jì)數(shù)中位數(shù)為4 909,GC含量中位數(shù)為45.5% (https://www.ncbi.nlm.nih.gov/)。Zhou等對(duì)14株多黏類(lèi)芽孢桿菌菌株的全基因組進(jìn)行分析,共鑒定出9 345個(gè)基因,其中3 063個(gè)在所有研究菌株中共有,3 194個(gè)基因?qū)儆诟綄倩蚪M,平均每個(gè)菌株有220個(gè)基因是特有的[13]。在這14個(gè)菌株的獨(dú)特基因組中,5個(gè)最具有研究?jī)r(jià)值的功能之一是“次級(jí)代謝產(chǎn)物合成、運(yùn)輸和分解代謝”。在基因組中鑒定9個(gè)次級(jí)代謝物簇(非核糖體肽合成酶[NRPS]簇、Ⅰ型聚酮化合物合成酶[T1PKS]、細(xì)菌素、β內(nèi)酯、羊毛肽、膦酸鹽、鐵載體和反式乙酰轉(zhuǎn)移酶 [AT]-PKS),其中NRPS簇存在于所有菌株中,且在每個(gè)菌株中的含量也最高。次生代謝產(chǎn)物基因簇總數(shù)平均占基因組的12%,表明該菌種生物合成天然產(chǎn)物的潛力很大[13]。迄今為止,已發(fā)表了7個(gè)多黏類(lèi)芽孢桿菌菌株的完整基因組,包括菌株SC2[14]、E681[15]、YC0136[16]、M-1[17]、SQR-21[18]、CR1[19]和YC0573[20]。多黏類(lèi)芽孢桿菌E681是多黏類(lèi)芽孢桿菌的模式菌株,它是從韓國(guó)冬大麥根際中分離出來(lái)的,具有促進(jìn)植物生長(zhǎng)和抑制植物病害的能力[21]。SC2是從中國(guó)貴州省辣椒植物的根際分離出來(lái)的,并被證明對(duì)植物病原真菌有抑制作用,如尖孢鐮刀菌、灰霉病等植物病原菌,但這些細(xì)菌的種類(lèi)尚未發(fā)表[22]。
2 多黏類(lèi)芽孢桿菌產(chǎn)生的抗菌物質(zhì)
2.1 肽類(lèi)
多黏類(lèi)芽孢桿菌能產(chǎn)生抗菌肽,一般分子量較小,在1~2 ku之間。當(dāng)前研究較廣泛的抗菌肽有多黏菌素(polymyxin)、黏菌素(colistin)、羊毛硫菌素(lantibiotics)、環(huán)桿菌素(circulin)、殺鐮孢菌素(fusaricidins)、多肽菌素(polypeptins)、谷纈菌素(gatavalin)等[23]。多黏類(lèi)芽孢桿菌所產(chǎn)生的抗菌肽主要分為2種,分別為核糖體合成的細(xì)菌素和非核糖體合成的肽。羊毛硫抗生素是細(xì)菌素中重要的一類(lèi),也稱(chēng)為Ⅰ類(lèi)細(xì)菌素,含有非編碼氨基酸羊毛硫氨酸。它們通常對(duì)革蘭氏陽(yáng)性菌具有活性,因?yàn)楦锾m氏陰性菌的外膜具有天然屏障。羊毛硫抗生素通常在細(xì)菌生長(zhǎng)的晚期指數(shù)期或早期穩(wěn)定期表達(dá),并與它們廣泛翻譯后修飾所需的基因一起編碼在一個(gè)簇中。在多黏類(lèi)芽孢桿菌OSY-DF中,多黏類(lèi)芽孢桿菌編碼在一個(gè)簇中,該簇還包含假定的羊毛硫抗生素脫水酶、羊毛硫抗生素環(huán)化酶、乙?;浮㈦拿负虯TP轉(zhuǎn)運(yùn)蛋白,這些基因都具有輸送至胞外的功能[24]。
也有一部分多黏類(lèi)芽孢桿菌產(chǎn)生的許多抗菌肽是非核糖體合成的,獨(dú)立于RNA。氨基酸殘基由非核糖體肽合成酶(NRPS)拼接在一起,NRPS是一種多酶復(fù)合物,可以結(jié)合D-氨基酸和L-氨基酸的混合物。NRPS的每個(gè)模塊都將1個(gè)或多個(gè)特定氨基酸合并到肽鏈中,所得肽在序列和結(jié)構(gòu)上表現(xiàn)出極大的多樣性,且對(duì)蛋白水解酶的抗性增強(qiáng)。非核糖體脂肽主要通過(guò)破壞靶細(xì)胞的膜起作用,且由于靶細(xì)胞很難重組它們的膜,因此抗病效果通常較慢[25]。1996年首次報(bào)道,在多黏類(lèi)芽孢桿菌 KT-8 中的六肽環(huán),除酰胺鍵(縮肽)外還包含1個(gè)或多個(gè)酯鍵,并連接有胍基化的β-羥基脂肪酸[26-27]。單個(gè)操縱子產(chǎn)生多種殺鐮孢菌素(fusaricidins),不同之處在于它們?cè)陔沫h(huán)的6個(gè)位置中有3個(gè)位置摻入了氨基酸,此處多樣性是由于NRPS的底物特異性決定的,與多黏菌素合酶的模塊化正好相反。
多黏菌素作用于細(xì)菌的細(xì)胞膜,能使病原菌細(xì)胞的胞內(nèi)物質(zhì)流失,進(jìn)而失活。在促進(jìn)植物生長(zhǎng)的根際桿菌(PGPR)多黏類(lèi)芽孢桿菌M-1的全基因組序列中檢測(cè)到9個(gè)基因簇,這些基因簇具有抗菌作用的次級(jí)代謝產(chǎn)物具有非核糖體合成功能,其中有多黏菌素和殺鐮孢菌素。通過(guò)進(jìn)一步研究,發(fā)現(xiàn)多黏類(lèi)芽孢桿菌M-1會(huì)抑制植物病原性梨火疫病菌Ea273和胡蘿卜軟腐歐文氏菌(Erwinia carotovora)(分別是火疫病和軟腐病的病原體)的生長(zhǎng)。通過(guò)MALDI-TOF質(zhì)譜和反相高效液相色譜(RP-HPLC)檢測(cè)到2種分子量,分別為1 190.9、1 176.9 u ,其抗菌化合物為多黏菌素P、多黏菌素P1和P2的2種成分。作用于2種歐文氏菌菌株的活性成分從TLC板中分離獲得,并通過(guò)(PSD)-MALDI-TOF質(zhì)譜法鑒定為多黏菌素P1和多黏菌素P2,這些發(fā)現(xiàn)被M-1染色體中檢測(cè)到的多黏菌素(pmx)基因簇的域結(jié)構(gòu)分析所證實(shí),該基因簇顯示對(duì)應(yīng)于多黏菌素P的化學(xué)結(jié)構(gòu)。用粗多黏菌素P或 M-1 培養(yǎng)上清液處理的細(xì)菌植物病原體細(xì)胞壁的相同形態(tài)變化,證實(shí)了多黏菌素P是菌株M-1對(duì)植物病原歐文氏菌產(chǎn)生的生物防治效果的主要成分[28]。
殺鐮孢菌素是一種具有出色抗真菌活性的脂肽類(lèi)抗生素。它是一類(lèi)從多黏類(lèi)芽孢桿菌中分離出來(lái)的、由6個(gè)氨基酸殘基和1個(gè)2-胍基-3-羥基十五烷酸(GHPD)組成的環(huán)狀多肽類(lèi)抗生素,在1株防治植物枯萎病的多黏類(lèi)芽孢桿菌HY96-2發(fā)酵液中分離得到一種抗真菌活性物質(zhì)6B,被鑒定為殺鐮孢菌素 A。殺鐮孢菌素對(duì)真菌具有活性,其中包括許多重要的植物病原體和多種革蘭氏陽(yáng)性菌。殺鐮孢菌素天然存在的結(jié)構(gòu)和合成修飾都可以化學(xué)合成,從而提高穩(wěn)定性并降低對(duì)人體細(xì)胞的非特異性細(xì)胞毒性[27]。Wang等認(rèn)為,多黏類(lèi)芽孢桿菌 WLY78對(duì)尖孢鐮刀菌有明顯抑制作用,為探究其機(jī)理,篩選WLY78的基因組進(jìn)行研究,結(jié)果發(fā)現(xiàn)8個(gè)潛在的抗生素生物合成基因簇在殺鐮孢菌素合成(FUS)基因簇參與抑制鐮孢屬。進(jìn)一步突變分析表明,除fusTE外,fus簇內(nèi)的7個(gè)基因fusG、fusF、fusE、fusD、fusC、fusB、fusA均參與抑制真菌的作用,其在控制黃瓜枯萎病中發(fā)揮了重要作用。此外,qRT-PCR表明殺鐮孢菌素可以通過(guò)水楊酸 (SA) 信號(hào)誘導(dǎo)黃瓜枯萎病的系統(tǒng)抗性。多黏類(lèi)芽孢桿菌 HK4能夠?qū)σ幌盗姓婢参锊≡w具有抗菌功能,通過(guò)對(duì)HK4細(xì)胞沉淀粗提物的 LC-ESI-MS/MS,可以證實(shí)殺鐮孢菌素作為主要抗真菌代謝物的存在,并證明HK4具備作為生物防治劑和植物生長(zhǎng)促進(jìn)劑的潛力[29]。Li發(fā)表了多黏類(lèi)芽孢桿菌 KF-1 的基因組序列草圖,并表明KF-1具有出色的抗菌活性。它編碼桿菌肽、卡里曼泰星、桿菌霉素、伊圖林、鐮刀菌素、十三菌素和培吉肽的合酶以及果聚糖多糖的生物合成途徑。此外,該基因組中涉及一種新的原噬菌體,其中包含編碼內(nèi)溶素的基因[30]。
2.2 蛋白質(zhì)類(lèi)
多黏類(lèi)芽孢桿菌能產(chǎn)生多種具有抗菌活性的蛋白質(zhì)類(lèi)物質(zhì),這種抗菌蛋白的分子量從10 ku到37 ku不等。多黏類(lèi)芽孢桿菌抗菌蛋白可以攻擊真菌和卵菌競(jìng)爭(zhēng)者的細(xì)胞壁。絲狀真菌的細(xì)胞壁含有大量β-1,3-葡聚糖和幾丁質(zhì),而卵菌的細(xì)胞壁主要由β-1,3-葡聚糖、β-1,6-葡聚糖和纖維素組成,兩者蛋白質(zhì)含量都高達(dá)11%。目前已發(fā)現(xiàn)多類(lèi)芽孢桿菌可以產(chǎn)生葡聚糖酶、幾丁質(zhì)酶、纖維素酶和蛋白酶,這些酶與真核細(xì)胞壁的破壞有關(guān)[31]。糖聚合物幾丁質(zhì)是一種不分枝的結(jié)構(gòu)多糖,由β-D-異聚體構(gòu)型的1,4-連接N-乙酰氨基葡萄糖(GlcNAc)殘基組成。
與纖維素不同,甲殼素可以同時(shí)作為氮和碳的來(lái)源(C ∶N=8 ∶1)。幾丁質(zhì)酶(EC 3.2.1.14)是普遍存在的幾丁質(zhì)裂解糖基水解酶,可水解幾丁質(zhì)N-乙酰氨基葡萄糖殘基之間的β-1,4-糖苷鍵存在于多種生物體中,包括不含幾丁質(zhì)的生物體,如細(xì)菌、病毒、高等植物和動(dòng)物中,在其中發(fā)揮著重要的生理和生態(tài)作用[32-36]。幾丁質(zhì)酶可分為內(nèi)幾丁質(zhì)酶和外幾丁質(zhì)酶兩大類(lèi)。內(nèi)切幾丁質(zhì)酶(EC 32.1.14)在內(nèi)部位點(diǎn)隨機(jī)切割幾丁質(zhì),生成可溶性N-乙酰氨基葡萄糖(GlcNAc)低分子低聚物,如幾丁質(zhì)四糖、幾丁質(zhì)醇和二聚體二乙酰幾丁質(zhì)二糖。外幾丁質(zhì)酶分為2個(gè)亞類(lèi):幾丁糖苷酶(EC 32.1.29),它催化從幾丁質(zhì)微纖絲的非還原端開(kāi)始的二乙酰幾丁質(zhì)糖和1,4-β-N-乙酰氨基葡萄糖苷酶的漸進(jìn)釋放(EC 3.2.1.30),切割產(chǎn)生GIcNAc單體的內(nèi)切幾丁質(zhì)酶和幾丁糖苷酶的低聚物產(chǎn)物(圖1)[35]。幾丁質(zhì)酶因其廣泛的應(yīng)用[37],主要是其在真菌原生質(zhì)形成中的應(yīng)用[38],可作為一種潛在的植物病原真菌生物防治劑[39-42],培養(yǎng)轉(zhuǎn)基因真菌對(duì)攜帶幾丁質(zhì)酶轉(zhuǎn)基因的植物/作物的抗性[43-46],以及生產(chǎn)低聚糖作為生物活性物質(zhì)[47],而受到廣泛關(guān)注。
Cho等從韓國(guó)人參(Panax ginseng C. A. Meyer)根內(nèi)分離到1株多黏類(lèi)芽孢桿菌GS01[48]。從該菌株中克隆了cel44C-man26A基因,表達(dá)和純化的Cel44C基因?qū)w維素酶和地衣酶活性的最適pH值為7.0,對(duì)木聚糖酶和甘露聚糖酶活性的最適pH值為5.0。所有底物酶活性的最適溫度為 50 ℃。菌株9X166表現(xiàn)出最高的拮抗活性,其產(chǎn)生β-1,3-葡聚糖酶的能力是抑制病原體生長(zhǎng)的關(guān)鍵機(jī)制。從牛瘤胃中分離的多黏類(lèi)芽孢桿菌ND25的基因組序列是木質(zhì)纖維素植物生物質(zhì)水解的潛在候選物?;蚪M序列草案生成了5.73 Mb數(shù)據(jù),包含4 922個(gè)假定的蛋白質(zhì)編碼基因,其中140個(gè)被注釋為糖苷水解酶。多黏類(lèi)芽孢桿菌 ND25菌株包含多種木質(zhì)纖維素分解成分,尤其是12種纖維素酶、23 種半纖維素酶和11種酯酶,表明其具有木質(zhì)纖維素水解的潛力。隨后的酶測(cè)定結(jié)果顯示,菌株利用甘蔗渣作為唯一碳源分別產(chǎn)生0.49、0.24、044 U/mL內(nèi)切葡聚糖酶、外切葡聚糖酶、β-葡糖苷酶,上述研究結(jié)果表明有效應(yīng)用多黏類(lèi)芽孢桿菌 ND25促進(jìn)植物生物質(zhì)利用。多黏類(lèi)芽孢桿菌 NSY50從醋渣基質(zhì)中分離,可以抑制黃瓜根際尖孢鐮刀菌的生長(zhǎng),保護(hù)寄主植物免受病原體入侵。通過(guò)Illumina對(duì)16S rRNA基因和內(nèi)部轉(zhuǎn)錄間隔區(qū)(ITS)區(qū)域(ITS1和ITS2)進(jìn)行測(cè)序,分析細(xì)菌和真菌群落,結(jié)果表明,NSY50通過(guò)改變土壤理化性質(zhì)(如pH值、C mic、R mic、總N和C org)可以有效降低枯萎病的發(fā)生率(56.4%)和酶尤其是脲酶和 β-葡萄糖苷酶的活性,相對(duì)于病原體處理?xiàng)l件,它們分別顯著增加2.25、2.64倍。 更具體地說(shuō),NSY50的應(yīng)用降低了鐮刀菌的豐度并促進(jìn)了潛在的有益菌群(包括芽孢桿菌屬、放線(xiàn)菌屬、鏈霉菌屬、放線(xiàn)菌屬、鏈孢菌屬和假單胞菌屬)。結(jié)果表明,NSY50的施用可以改善土壤特性,通過(guò)增加有益菌株和減少黃瓜根際病原體定植來(lái)改變微生物群落,并減少黃瓜枯萎病的發(fā)生,從而促進(jìn)黃瓜生長(zhǎng)[49]。
Kavitha等將多黏類(lèi)芽孢桿菌VLB16的發(fā)酵液用40%硫酸銨沉淀分離得到一分子量為37 ku的抗菌蛋白,可作用于病原真菌稻紋枯病菌(Rhicoctnia solani)和稻瘟?。∕agnaporthe oryzae)的菌絲細(xì)胞壁,引起細(xì)胞形態(tài)發(fā)生改變,抗菌蛋白對(duì)這2種菌表現(xiàn)出良好的抑制作用[50]。多黏類(lèi)芽孢桿菌WY110分離得到一種P2抗菌蛋白,其具有廣泛的抗菌性[51]。多黏類(lèi)芽孢桿菌VLB16的發(fā)酵液中分離出一種分子量為37 ku的抗菌蛋白,可作用于多種植物病原真菌的細(xì)胞壁,使真菌細(xì)胞形態(tài)發(fā)生改變,從而抑制植物病原真菌的活性[52]。
3 競(jìng)爭(zhēng)作用
競(jìng)爭(zhēng)作用主要為營(yíng)養(yǎng)和空間位點(diǎn)競(jìng)爭(zhēng),是存在于同一微生態(tài)環(huán)境中2種或2種以上微生物之間對(duì)其生長(zhǎng)都必需的物質(zhì)及條件進(jìn)行競(jìng)爭(zhēng)的現(xiàn)象。鐵載體對(duì)鐵的競(jìng)爭(zhēng)是很多細(xì)菌生防菌劑抑制植物病原真菌的重要特征。鐵載體主要由非核糖體肽合成酶(NRPS)合成,由基因簇編碼。這些多酶復(fù)合物由各種模塊組成,每個(gè)模塊都將1個(gè)或多個(gè)特定氨基酸整合到肽主鏈中(另見(jiàn)“2.1”節(jié))。3類(lèi)鐵載體根據(jù)其官能團(tuán)進(jìn)行分類(lèi),即兒茶酚酸鹽、異羥肟酸鹽和α-羥基碳酸鹽[53]。paenibactin是由類(lèi)芽孢桿菌(Paenibacillus elgii)B69產(chǎn)生的2,3-DHB-丙氨酸-蘇氨酸的環(huán)狀三聚內(nèi)酯,在多黏類(lèi)芽孢桿菌SQR-21的培養(yǎng)物中未檢測(cè)到兒茶酚酸鹽,而是在對(duì)數(shù)后期產(chǎn)生低濃度的異羥肟酸鹽型鐵載體[54]。鐵載體合成基因簇僅存在于某些類(lèi)芽孢桿菌屬的某些菌株中,且被認(rèn)為從最近發(fā)生的水平基因轉(zhuǎn)移事件中獲得[55-56]。
Zhou等研究了多黏類(lèi)芽孢桿菌BFKC01通過(guò)刺激擬南芥以增強(qiáng)其對(duì)鐵的吸收的機(jī)制,發(fā)現(xiàn)BFKC01利用轉(zhuǎn)錄激活缺鐵誘導(dǎo)的轉(zhuǎn)錄因子1(FIT1),從而上調(diào)IRT1和FRO2的表達(dá)[57]。此外,BFKC01不僅可以增加MYB72的轉(zhuǎn)錄來(lái)誘導(dǎo)植物系統(tǒng)反應(yīng),還可以激活酚類(lèi)化合物的生物合成途徑。在接種BFKC01的植物根系分泌物中檢測(cè)到豐富的酚類(lèi)化合物,這有效地促進(jìn)了堿性條件下Fe的遷移。此外,BFKC01還能分泌生長(zhǎng)素,進(jìn)一步改善根系,增強(qiáng)植物從土壤中獲取鐵的能力。
4 誘導(dǎo)植物抗病性
許多多黏類(lèi)芽孢桿菌是與根相關(guān)的共生菌,當(dāng)其以足夠高的種群密度存在時(shí),可以觸發(fā)誘導(dǎo)系統(tǒng)抗性(ISR)。ISR是一種發(fā)生在植物組織中的潛在防御機(jī)制,不是立即激活防御狀態(tài),而是通過(guò)使植物對(duì)潛在威脅高度敏感,能夠啟動(dòng)更快、更強(qiáng)的防御[58]。多黏類(lèi)芽孢桿菌可以誘導(dǎo)植物產(chǎn)生針對(duì)病原菌、線(xiàn)蟲(chóng)和病毒的抗病機(jī)制。當(dāng)植物識(shí)別來(lái)自多黏類(lèi)芽孢桿菌的誘導(dǎo)物(如結(jié)構(gòu)蛋白、酶、活性氧或揮發(fā)性有機(jī)化合物)時(shí),ISR途徑就開(kāi)始了[59-60]。ISR可導(dǎo)致植物激素水楊酸的全身水平升高(SA依賴(lài)性反應(yīng))或?qū)е耂A非依賴(lài)性反應(yīng)。后者可包括受植物激素茉莉酸調(diào)節(jié)的基因轉(zhuǎn)錄增加,或?qū)岳蛩峄蛞蚁┯蟹磻?yīng)的基因表達(dá)增強(qiáng),然后在受到攻擊時(shí)誘導(dǎo)這些基因。此外,不依賴(lài)于SA的ISR可以引發(fā)物理反應(yīng),如病原體侵染植物的一些部位,通過(guò)脫落酸的調(diào)節(jié),該部位的細(xì)胞質(zhì)沉積增強(qiáng),會(huì)形成防止病原菌進(jìn)一步攻擊的結(jié)構(gòu)屏障[58]。植物系統(tǒng)抗性被誘導(dǎo)后,便具有廣譜抗性[60]。
多黏類(lèi)芽孢桿菌 KNUC265分泌的細(xì)菌揮發(fā)物和可擴(kuò)散代謝物作為誘導(dǎo)物,防治辣椒與煙草中的細(xì)菌病原體柑橘潰瘍病菌(Xanthomonas axonopodis)和歐文氏菌(Erwinia carotovora)[61]。多黏類(lèi)芽孢桿菌E681被證實(shí),使用揮發(fā)性有機(jī)化合物誘導(dǎo)劑來(lái)保護(hù)擬南芥免受丁香假單胞菌的侵害[62]。多黏類(lèi)芽孢桿菌菌株產(chǎn)生的揮發(fā)物和NRP也有助于誘導(dǎo)系統(tǒng)抗性(ISR)的發(fā)生,從而為植物隨后的病原體侵染做好防御準(zhǔn)備[63-67]。
揮發(fā)性有機(jī)化合物(VOC)可用于作物病害(特別是水果)的生物防治。它可以增強(qiáng)土壤微生物之間的相互作用,因?yàn)檫@些化合物通過(guò)土壤中充滿(mǎn)空氣的孔隙擴(kuò)散到物理分離的生物體[68]。大量VOC由多黏類(lèi)芽孢桿菌以及其他微生物產(chǎn)生。如發(fā)現(xiàn)多黏類(lèi)芽孢桿菌 WR-2產(chǎn)生42種VOC,其中超過(guò)30種對(duì)尖孢鐮刀菌(F.oxysporum)具有一定程度的抗真菌活性,有13種會(huì)完全抑制其生長(zhǎng)。這些化合物包括苯、醛、酮和醇,但有些產(chǎn)量很低;苯并噻唑、苯甲醛、十一醛、十二醛、十六醛、2-十三烷酮和苯酚是主要的抗真菌化合物。菌株KM2501-1和Sb3-1可以通過(guò)分泌有毒揮發(fā)性化合物(VOC)保護(hù)宿主免受南方根結(jié)線(xiàn)蟲(chóng)和真菌長(zhǎng)輪枝孢菌的侵害[69-70]。
參考文獻(xiàn):
[1]Monte E,Llobell A. Trichoderma in organic agriculture[C]//Proceedings V World Avocado Congress (Actas V Congreso Mundial del Aguacate),2003:725-733.
[2]Ajit N S,Verma R,Shanmugam V. Extracellular chitinases of fluorescent pseudomonads antifungal to Fusarium oxysporum f. sp. dianthi causing carnation wilt[J]. Current Microbiology,2006,52(4):310-316.
[3]Gortari M C,Hours R A. Fungal chitinases and their biological role in the antagonism onto nematode eggs:a review[J]. Mycological Progress,2008,7(4):221-238.
[4]Simmons C R,Litts J C,Huang N,et al. Structure of a rice β-glucanase gene regulated by ethylene,cytokinin,wounding,salicylic acid and fungal elicitors[J]. Plant Molecular Biology,1992,18(1):33-45.
[5]Neeraja C,Anil K,Purushotham P,et al. Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants[J]. Critical Reviews in Biotechnology,2010,30(3):231-241.
[6]Radjacommare R,Venkatesan S,Samiyappan R. Biological control of phytopathogenic fungi of Vanilla through lytic action of Trichoderma species and Pseudomonas fluorescens[J]. Archives of Phytopathology and Plant Protection,2010,43(1):1-17.
[7]Wang S L,Shih I L,Liang T W,et al. Purification and characterization of two antifungal chitinases extracellularly produced by Bacillus amyloliquefaciens V656 in a shrimp and crab shell powder medium[J]. Journal of Agricultural and Food Chemistry,2002,50(8):2241-2248.
[8]Zhang Z,Yuen G Y. The role of chitinase production by Stenotrophomonas maltophilia strain C3 in biological control of Bipolaris sorokiniana[J]. Phytopathology,2000,90(4):384-389.
[9]Lebeis S L,Powell K R,Merlin D,et al. Interleukin-1 receptor signaling protects mice from lethal intestinal damage caused by the attaching and effacing pathogen Citrobacter rodentium[J]. Infection and Immunity,2009,77(2):604-614.
[10]Padda K P,Puri A,Zeng Q W,et al. Effect of GFP-tagging on nitrogen fixation and plant growth promotion of an endophytic diazotrophic strain of Paenibacillus polymyxa[J]. Botany,2017,95(9):933-942.
[11]Ash C,Priest F G,Collins M D. Molecular identification of rRNA group 3 bacilli (Ash,F(xiàn)arrow,Wallbanks and Collins) using a PCR probe test[J]. Antonie Van Leeuwenhoek,1993,64(3/4):253-260.
[12]Lal S,Tabacchioni S. Ecology and biotechnological potential of Paenibacillus polymyxa:a minireview[J]. Indian Journal of Microbiology,2009,49(1):2-10.
[13]Zhou L L,Zhang T,Tang S,et al. Pan-genome analysis of Paenibacillus polymyxa strains reveals the mechanism of plant growth promotion and biocontrol[J]. Antonie Van Leeuwenhoek,2020,113(11):1539-1558.
[14]Lohans C T,Huang Z D,van Belkum M J,et al. Structural characterization of the highly cyclized lantibiotic paenicidin A via a partial desulfurization/reduction strategy[J]. Journal of the American Chemical Society,2012,134(48):19540-19543.
[15]MacKelprang R,Grube A M,Lamendella R,et al. Microbial community structure and functional potential in cultivated and native tallgrass prairie soils of the Midwestern United States[J]. Frontiers in Microbiology,2018,9:1775.
[16]Liu J,Luo J G,Ye H,et al. Preparation,antioxidant and antitumor activities in vitro of different derivatives of levan from endophytic bacterium Paenibacillus polymyxa EJS-3[J]. Food and Chemical Toxicology,2012,50(3/4):767-772.
[17]Niu B,Vater J,Rueckert C,et al. Polymyxin P is the active principle in suppressing phytopathogenic Erwinia spp.by the biocontrol rhizobacterium Paenibacillus polymyxa M-1[J]. BMC Microbiology,2013,13:137.
[18]Li Y L,Chen S F. Fusaricidin produced by Paenibacillus polymyxa WLY78 induces systemic resistance against Fusarium wilt of cucumber[J]. International Journal of Molecular Sciences,2019,20(20):5240.
[19]Eastman A W,Heinrichs D E,Yuan Z C. Comparative and genetic analysis of the four sequenced Paenibacillus polymyxa genomes reveals a diverse metabolism and conservation of genes relevant to plant-growth promotion and competitiveness[J]. BMC Genomics,2014,15:851.
[20]Liu H,Wang C Q,Li Y H,et al. Complete genome sequence of Paenibacillus polymyxa YC0573,a plant growth-promoting rhizobacterium with antimicrobial activity[J]. Genome Announcements,2017,5(6):e01636-e01616.
[21]Kim J F,Jeong H,Park S Y,et al. Genome sequence of the polymyxin-producing plant-probiotic rhizobacterium Paenibacillus polymyxa E681[J]. J Bacteriol 2010,192(22):6103-6104.
[22]Guo L L,Karpac J,Tran S L,et al. PGRP-SC2 promotes gut immune homeostasis to limit commensal dysbiosis and extend lifespan[J]. Cell,2014,156(1/2):109-122.
[23]陳 浩. 多黏類(lèi)芽孢桿菌X33發(fā)酵條件的優(yōu)化及生物防治效果研究[D]. 哈爾濱:哈爾濱工業(yè)大學(xué),2019
[24]王 波,王 幸,周興根,等. 多黏類(lèi)芽孢桿菌(Paenibacillus polymyxa)XZ-2發(fā)酵條件優(yōu)化的研究[J]. 江西農(nóng)業(yè)學(xué)報(bào),2018,30(11):57-61.
[25]鄭 維,權(quán)春善,趙 晶,等. 芽孢桿菌產(chǎn)環(huán)脂肽類(lèi)化合物結(jié)構(gòu)與生物合成機(jī)制研究進(jìn)展[J]. 山東化工,2016,45(8):51-52,54.
[26]Mousa W K,Raizada M N. Biodiversity of genes encoding anti-microbial traits within plant associated microbes[J]. Frontiers in Plant Science,2015,6:231.
[27]Bionda N,Pitteloud J P,Cudic P. Cyclic lipodepsipeptides:a new class of antibacterial agents in the battle against resistant bacteria[J]. Future Medicinal Chemistry,2013,5(11):1311-1330.
[28]Niu B,Rueckert C,Blom J,et al. The genome of the plant growth-promoting rhizobacterium Paenibacillus polymyxa M-1 contains nine sites dedicated to nonribosomal synthesis of lipopeptides and polyketides[J]. Journal of Bacteriology,2011,193(20):5862-5863.
[29]Wang L Y,Zhang L H,Liu Z Z,et al. A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia coli[J]. PLoS Genetics,2013,9(10):e1003865.
[30]Li Y M,Li Q,Li Y M,et al. Draft genome sequence of Paenibacillus polymyxa KF-1,an excellent producer of microbicides[J]. Genome Announcements,2016,4(4):e00727-e00716.
[31]閆博巍,閆鳳超,趙婷婷,等. 類(lèi)芽孢桿菌源抗病基因在作物病害防治上的應(yīng)用研究進(jìn)展[J]. 現(xiàn)代化農(nóng)業(yè),2019(8):4-8.
[32]Bhattacharya D,Nagpure A,Gupta R K. Bacterial chitinases:properties and potential[J]. Critical Reviews in Biotechnology,2007,27(1):21-28.
[33]Boot R G,Blommaart E F C,Swart E,et al. Identification of a novel acidic mammalian chitinase distinct from chitotriosidase[J]. Journal of Biological Chemistry,2001,276(9):6770-6778.
[34]Kragh K M,Jacobsen S,Mikkelsen J D,et al. Tissue specificity and induction of class Ⅰ,Ⅱ and Ⅲ chitinases in barley (Hordeum vulgare)[J]. Physiologia Plantarum,1993,89(3):490-498.
[35]Shinshi H,Neuhas J M,Ryals J,et al. Structure of a tobacco endochitinase gene:evidence that different chitinase genes can arise by transposition of sequences encoding a cysteine-rich domain[J]. Plant Molecular Biology,1990,14(3):357-368.
[36]Cohen-Kupiec R,Chet I. The molecular biology of chitin digestion[J]. Current Opinion in Biotechnology,1998,9(3):270-277.
[37]Vaidya R,Roy S,Macmil S,et al. Purification and characterization of chitinase from Alcaligenes xylosoxydans[J]. Biotechnology Letters,2003,25(9):715-717.
[38]Kishimoto K,Nishizawa Y,Tabei Y,et al. Transgenic cucumber expressing an endogenous class Ⅲ chitinase gene has reduced symptoms from Botrytis cinerea[J]. Journal of General Plant Pathology,2004,70(6):314-320.
[39]Gupta R,Saxena R K,Chaturvedi P,et al. Chitinase production by Streptomyces viridificans:its potential in fungal cell wall Lysis[J]. Journal of Applied Bacteriology,1995,78(4):378-383.
[40]Jobin G,Couture G,Goyer C,et al. Streptomycete spores entrapped in chitosan beads as a novel biocontrol tool against common scab of potato[J]. Applied Microbiology and Biotechnology,2005,68(1):104-110.
[41]Vaidya R,Shah I,Vyas P,et al. Production of chitinase and its optimization from a novel isolate Alcaligenes xylosoxydans:potential in antifungal biocontrol[J]. World Journal of Microbiology and Biotechnology,2001,17:691-696.
[42]Yuan W,Crawford D. Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots[J]. Applied and Environmental Microbiology,1995,61:3119-3128.
[43]Ojaghian S,Wang L,Xie G L. Enhanced resistance to white rot in Ipomoea batatas expressing a Trichoderma harzianum chitinase gene[J]. Journal of General Plant Pathology,2020,86(5):412-418.
[44]Distefano G,la Malfa S,Vitale A,et al. Defence-related gene expression in transgenic lemon plants producing an antimicrobial Trichoderma harzianum endochitinase during fungal infection[J]. Transgenic Research,2008,17(5):873-879.
[45]Shah J M,Raghupathy V,Veluthambi K. Enhanced sheath blight resistance in transgenic rice expressing an endochitinase gene from Trichoderma virens[J]. Biotechnology Letters,2009,31(2):239-244.
[46]Xu X J,Zhang L Q,Zhu Y Y,et al. Improving biocontrol effect of Pseudomonas fluorescens P5 on plant diseases by genetic modification with chitinase gene[J]. Chinese Journal of Agricultural Biotechnology,2005,2(1):23-27.
[47]Rattanakit N,Yano S,Plikomol A,et al. Purification of Aspergillus sp. S1-13 chitinases and their role in saccharification of chitin in mash of solid-state culture with shellfish waste[J]. Journal of Bioscience and Bioengineering,2007,103(6):535-541.
[48]Cho K M,Hong S Y,Lee S M,et al. A [WTBX][STBX]cel44C-man26A[WTBZ][STBZ] gene of endophytic Paenibacillus polymyxa GS01 has multi-glycosyl hydrolases in two catalytic domains[J]. Applied Microbiology and Biotechnology,2006,73(3):618-630.
[49]Du N S,Shi L,Yuan Y H,et al. Isolation of a potential biocontrol agent Paenibacillus polymyxa NSY50 from vinegar waste compost and its induction of host defense responses against Fusarium wilt of cucumber[J]. Microbiological Research,2017,202:1-10.
[50]Kavitha S,Senthilkumar S,Gnanamanickam S,et al. Isolation and partial characterization of antifungal protein from Bacillus polymyxa strain VLB16[J]. Process Biochemistry,2005,40(10):3236-3243.
[51]Heyndrickx M,Vandemeulebroecke K,Scheldeman P,et al. Paenibacillus (formerly Bacillus) gordonae (Pichinoty et al. 1986) Ash et al. 1994 is a later subjective synonym of Paenibacillus (formerly Bacillus) validus (Nakamura 1984) Ash et al. 1994:emended description of P.validus[J]. International Journal of Systematic Bacteriology,1995,45(4):661-669.
[52]Heyndrickx M,Vandemeulebroecke K,Hoste B,et al. Reclassification of Paenibacillus (formerly Bacillus) pulvifaciens (Nakamura 1984) Ash et al. 1994,a later subjective synonym of Paenibacillus (formerly Bacillus) larvae (White 1906) Ash et al. 1994,as a sub species of P.larvae,with emended descriptions of P.larvae as P.larvae subsp.larvae and P.larvae subsp. pulvifaciens[J]. International Journal of Systematic Bacteriology,1996,46(1):270-279.
[53]Hertlein G,Müller S,Garcia-Gonzalez E,et al. Production of the catechol type siderophore bacillibactin by the honey bee pathogen Paenibacillus larvae[J]. PLoS One,2014,9(9):e108272.
[54]Raza W,Shen Q R. Growth,F(xiàn)e3+ reductase activity,and siderophore production by Paenibacillus polymyxa SQR-21 under differential iron conditions[J]. Current Microbiology,2010,61(5):390-395.
[55]Eastman A W,Heinrichs D E,Yuan Z C. Comparative and genetic analysis of the four sequenced Paenibacillus polymyxa genomes reveals a diverse metabolism and conservation of genes relevant to plant-growth promotion and competitiveness[J]. BMC Genomics,2014,15:851.
[56]Wen Y P,Wu X C,Teng Y,et al. Identification and analysis of the gene cluster involved in biosynthesis of paenibactin,a catecholate siderophore produced by Paenibacillus elgii B69[J]. Environmental Microbiology,2011,13(10):2726-2737.
[57]Zhou C,Guo J S,Zhu L,et al. Paenibacillus polymyxa BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition mechanisms[J]. Plant Physiology and Biochemistry,2016,105:162-173.
[58]Pieterse C M J,Zamioudis C,Berendsen R L,et al. Induced systemic resistance by beneficial microbes[J]. Annual Review of Phytopathology,2014,52:347-375.
[59]Farag M A,Zhang H M,Ryu C M. Dynamic chemical communication between plants and bacteria through airborne signals:induced resistance by bacterial volatiles[J]. Journal of Chemical Ecology,2013,39(7):1007-1018.
[60][JP2]楊得強(qiáng),周春發(fā),黃龍偉,等. 內(nèi)生芽孢桿菌對(duì)植物生長(zhǎng)發(fā)育及病害防治的研究進(jìn)展[J]. 安徽農(nóng)業(yè)科學(xué),2020,48(4):11-14.
[61]胡 瓊,任國(guó)平. 多黏類(lèi)芽孢桿菌在植物生產(chǎn)中的應(yīng)用及作用機(jī)制[J]. 北方園藝,2020(24):137-144.
[62]Lee B,F(xiàn)arag M A,Park H B,et al. Induced resistance by a long-chain bacterial volatile:elicitation of plant systemic defense by a C13 volatile produced by Paenibacillus polymyxa[J]. PLoS One,2012,7(11):e48744.
[63]Du N S,Shi L,Yuan Y H,et al. Isolation of a potential biocontrol agent Paenibacillus polymyxa NSY50 from vinegar waste compost and its induction of host defense responses against Fusarium wilt of cucumber[J]. Microbiological Research,2017,202:1-10.
[64]Luo Y C,Cheng Y J,Yi J C,et al. Complete genome sequence of industrial biocontrol strain Paenibacillus polymyxa HY96-2 and further analysis of its biocontrol mechanism[J]. Frontiers in Microbiology,2018,9:1520.
[65]Park K Y,Seo S Y,Oh B R,et al. 2,3-butanediol induces systemic acquired resistance in the plant immune response[J]. Journal of Plant Biology,2018,61(6):424-434.
[66]Jeong H,Choi S K,Ryu C M,et al. Chronicle of a soil bacterium:Paenibacillus polymyxa E681 as a tiny guardian of plant and human health[J]. Frontiers in Microbiology,2019,10:467.
[67]Cheng W L,Yang J Y,Nie Q Y,et al. Volatile organic compounds from Paenibacillus polymyxa KM2501-1 control Meloidogyne incognita by multiple strategies[J]. Scientific Reports,2017,7:16213.
[68]Morath S U,Hung R,Bennett J W. Fungal volatile organic compounds:a review with emphasis on their biotechnological potential[J]. Fungal Biology Reviews,2012,26(2/3):73-83.
[69]Garbeva P,Hordijk C,Gerards S,et al. Volatile-mediated interactions between phylogenetically different soil bacteria[J]. Frontiers in Microbiology,2014,5:289.
[70]Raza W,Yuan J,Ling N,et al. Production of volatile organic compounds by an antagonistic strain Paenibacillus polymyxa WR-2 in the presence of root exudates and organic fertilizer and their antifungal activity against Fusarium oxysporum f.sp. niveum[J]. Biological Control,2015,80:89-95.