摘" " " 要: 硝酸鋰是一種重要的三元鋰電池正極原料,但傳統(tǒng)工藝制備硝酸鋰的方法繁瑣且不環(huán)保。因此,采用電滲析復(fù)分解技術(shù)直接由初級(jí)鋰鹽氯化鋰制備獲得更高價(jià)值的硝酸鋰產(chǎn)品。在2.5 mol·L-1的進(jìn)料濃度下,LiNO3產(chǎn)品的純度高達(dá)96 %,且電流效率也始終保持在90%以上,這種方法有望實(shí)現(xiàn)大規(guī)模生產(chǎn)硝酸鋰產(chǎn)品。
關(guān)" 鍵" 詞:電滲析復(fù)分解;硝酸鋰;鋰電池
中圖分類號(hào):TQ131.11" " "文獻(xiàn)標(biāo)識(shí)碼: A" " "文章編號(hào): 1004-0935(2023)02-0190-04
鋰金屬及其化合物是非常重要的戰(zhàn)略資源,被廣泛應(yīng)用于新一代高科技產(chǎn)品和日常用品生產(chǎn)" "中[1-2],例如鋰化合物在玻璃、陶瓷工業(yè)、潤(rùn)滑脂、醫(yī)藥產(chǎn)品中發(fā)揮了重要的作用[3-4]。鋰化合物在電動(dòng)汽車行業(yè)也發(fā)揮了舉足輕重的作用,LiOH和LiNO3是合成鋰電池不可或缺的鋰源前驅(qū)體[5-6]。目前,市場(chǎng)上所有商業(yè)鋰化合物生產(chǎn)的初級(jí)鋰鹽來(lái)源有兩 種[7-13]:一種是以LiCl形式存在的鹽湖鹵水;另一種為以Li2SO4形式存在的含鋰礦石。但由于兩種化合物的傳統(tǒng)生產(chǎn)過程極其繁瑣復(fù)雜,并不能直接從初級(jí)鋰鹽制備得到,導(dǎo)致生產(chǎn)成本高,且生產(chǎn)過程產(chǎn)生的廢渣廢水會(huì)造成環(huán)境污染。因此,一種清潔經(jīng)濟(jì)的技術(shù)來(lái)一步制得高價(jià)值鋰鹽亟待提出。
由于電滲析復(fù)分解技術(shù)[14]可直接從分別含有相應(yīng)陽(yáng)離子和陰離子的兩種進(jìn)料鹽中生產(chǎn)高附加值的鹽產(chǎn)品[15-21],且具有高電流效率、高產(chǎn)品純度[22]、綠色環(huán)保等優(yōu)點(diǎn),目前被廣泛應(yīng)用在生產(chǎn)生活中。本文主要探究能否借助電滲析復(fù)分解系統(tǒng)實(shí)現(xiàn)高價(jià)值鋰鹽產(chǎn)品的生產(chǎn)。
1" 實(shí)驗(yàn)部分
1.1" 實(shí)驗(yàn)原理
電滲析復(fù)分解實(shí)驗(yàn)(EDM)主要依靠以下兩點(diǎn):離子交換膜的選擇透過性;在電場(chǎng)的作用下,溶液中帶電粒子的定向遷移,陰離子朝陽(yáng)極移動(dòng),陽(yáng)離子向陰極遷移。Li+和Na+在遷移過程中會(huì)受到陰離子交換膜的阻隔而分別滯留在產(chǎn)品室和副產(chǎn)品室中,同理NO3-和Cl-在朝向陽(yáng)極遷移的過程中受到陽(yáng)離子交換膜的阻隔而富集在相應(yīng)的產(chǎn)品室中,最終可制備獲得硝酸鋰的濃溶液。
1.2" 實(shí)驗(yàn)材料
膜堆內(nèi)部含有12張陰離子交換膜、12張陽(yáng)離子交換膜以及1張陽(yáng)極膜。每張膜的有效面積為 60 cm2。實(shí)驗(yàn)中所用到的藥品如表1所示。
樣品溶液中Cl-和NO3-的濃度用離子色譜法(IC,Dionex ICS-600, Thermo FisherScientific,USA)進(jìn)行分析,Na+和Li+的濃度通過電感耦合等離子體發(fā)射光譜儀(ICP-OES,PerkinElmer Optima 8000,USA)進(jìn)行測(cè)定。
電流效率計(jì)算公式如下[23]:
η=Z(CtVt-C0V0)/Q。" " " " (1)
式中:C0—實(shí)驗(yàn)前產(chǎn)品溶液初始濃度,mol·L-1;
V0—實(shí)驗(yàn)前產(chǎn)品溶液初始體積,L;
Ct—給定時(shí)間的濃度,mol·L-1;
Vt—給定時(shí)間的體積, L;
Q—累積遷移電量,mol·e。
產(chǎn)品的純度計(jì)算公式如下:
P=Cm/(Cm+Cim)。" " " " " (2)
式中:Cm—主要離子的濃度,mol·L-1;
Cim—雜質(zhì)離子的濃度,mol·L-1。
1.3" 實(shí)驗(yàn)過程
圖2為電滲析系統(tǒng)實(shí)物圖,從左至右5個(gè)夾套燒杯內(nèi)分別裝有2.5 mol·L-1 500 mL的NaNO3、" " 50 mmol·L-1 300 mL的LiNO3、2.5 mol·L-1 500 mL的LiCl、50 mmol·L-1 300 mL的NaCl和1.25 mol·L-1" "500 mL的NaOH溶液。由于陰、陽(yáng)極電解液均為NaOH,因此實(shí)際操作中只使用1個(gè)極室溶液罐用以循環(huán)。
每個(gè)夾套燒杯都放置在一臺(tái)性能良好的攪拌器上,溶液中的磁子始終保持適宜的攪拌速度,避免出現(xiàn)濃差極化;采用恒溫水浴來(lái)控制溶液溫度,使溶液初始溫度保持在25 ℃,避免溶液初始溫度變化對(duì)實(shí)驗(yàn)產(chǎn)生影響。6個(gè)獨(dú)立流道的溶液以并流方式流入左右兩臺(tái)蠕動(dòng)泵,流量控制在400 mL·min-1,同時(shí)每個(gè)夾套燒杯中都配備一臺(tái)pH計(jì)和電導(dǎo)率儀實(shí)時(shí)監(jiān)測(cè)溶液的pH、電導(dǎo)率和溫度,并且設(shè)定等間隔點(diǎn)從進(jìn)料液和產(chǎn)物溶液中取出少量樣品以便后續(xù)離線分析。
2" 結(jié)果與討論
2.1" 在線數(shù)據(jù)
系統(tǒng)運(yùn)行過程中會(huì)有本課題組自制的計(jì)算機(jī)數(shù)字記錄系統(tǒng)進(jìn)行電流、電壓、電量、能耗的實(shí)時(shí)自動(dòng)記錄,數(shù)據(jù)結(jié)果如圖3、圖4所示。
由于實(shí)驗(yàn)采用恒電流模式,因此大部分時(shí)間電流保持在3 A,在實(shí)驗(yàn)最后階段迅速下降。電壓從約16 V降至約11 V,然后保持長(zhǎng)時(shí)間穩(wěn)定后又迅速上升至限定值30 V,然后保持不變。通過電流和電壓的數(shù)值可以計(jì)算得到膜堆電阻的變化曲線,如圖4所示。
實(shí)驗(yàn)過程中電極和離子交換膜幾乎固定不變,因此膜堆的整體電阻隨著溶液的變化而實(shí)時(shí)變化。膜堆通電后,產(chǎn)品室中的離子濃度上升,降低了膜堆的整體電阻,當(dāng)進(jìn)料液和產(chǎn)品溶液都具有較高電導(dǎo)率時(shí),膜堆電阻保持相對(duì)穩(wěn)定(4 Ω),當(dāng)進(jìn)料液的離子濃度和電導(dǎo)率很低時(shí),膜堆的整體電阻又開始急劇上升至約20 Ω。當(dāng)電流固定為3 A,電阻出現(xiàn)這樣的變化情況,造成電壓的曲線隨之改變,詳見圖3。
實(shí)驗(yàn)過程中同樣也對(duì)pH和溫度進(jìn)行了記錄,發(fā)現(xiàn)4個(gè)隔室溶液pH基本都呈現(xiàn)弱堿性,這是由于電解液為NaOH,在實(shí)驗(yàn)過程中,電解液不可避免地輕微泄漏到實(shí)驗(yàn)溶液中。實(shí)驗(yàn)過程始終采用外接水浴控制溫度,因此體系始終保持在24~28 ℃區(qū)間內(nèi)。
2.2" 離線數(shù)據(jù)
實(shí)驗(yàn)過程中根據(jù)遷移電子電量設(shè)定了等距采樣點(diǎn),抽取了少量液體樣品,為后續(xù)充分了解溶液化學(xué)成分的變化做準(zhǔn)備。同時(shí)在采樣點(diǎn)處詳細(xì)記錄了溶液的體積,后續(xù)整理發(fā)現(xiàn)進(jìn)料液和產(chǎn)品溶液體積的變化都具有高度可重復(fù)性,進(jìn)料溶液呈線性下降,而產(chǎn)品溶液呈線性上升,其中硝酸鋰溶液體積從308 mL升至508 mL。同時(shí),詳細(xì)對(duì)硝酸鋰中的各離子進(jìn)行了分析,結(jié)果如圖5所示。
硝酸鋰中主離子增加速率幾乎同步,均上升至約2.3 mol·L-1,而雜質(zhì)離子的含量很少,其中Na+雜質(zhì)更易污染產(chǎn)物溶液,這可能是由于陽(yáng)離子交換膜的選擇性高于陰離子交換膜所致[24]。即便如此,通過濃度和體積等數(shù)據(jù)的整合分析,可以計(jì)算得到以硝酸鋰計(jì)的電流效率始終保持在90%以上,且產(chǎn)物溶液的純度高于96%。
3" 結(jié) 論
本文主要采用電滲析復(fù)分解技術(shù),以初級(jí)鋰鹽氯化鋰和便于獲取的硝酸鈉為原料,直接制備硝酸鋰。事實(shí)證明,使用電滲析復(fù)分解技術(shù)能夠高效制備硝酸鋰,電流效率始終維持在90 %以上,而且制備所得產(chǎn)物溶液的純度高于96 %,產(chǎn)物溶液濃度高達(dá)2.3 mol·L-1。同時(shí),在實(shí)驗(yàn)過程中,并沒有廢水廢渣的排放,整個(gè)生產(chǎn)過程綠色可持續(xù),因此,電滲析復(fù)分解技術(shù)制備硝酸鋰具有光明的前景和巨大的潛力。
參考文獻(xiàn):
[1]" "MARTINA G, RENTSCH L, H?CK M, et al. Lithium market research –global supply, future demand and price development[J]. Energy Storage Mater,2017, 6: 171-179.
[2]" "GAO W J, WEI X L, CHEN J, et al. Recycling Lithium from Waste Lithium Bromide to Produce Lithium Hydroxide[J]. Membranes,2021, 11(10): 759.
[3]" "United States Geological Survey. Mineral Commodity Summaries- Lithium [Z]. MCS,2000.
[4]" "LANG J L, JIN Y, LIU K et al. High-purity electrolytic lithium obtained from low-purity sources using solid electrolyte[J]." Nature sustainability,2020, 3(5): 386-390.
[5]" "LI Z H, KHAJEPOUR A, SONG J C. A comprehensive review of the key technologies for pure electric vehicles[J]. Energy,2019,182: 824-839.
[6]" "HARPER G, SOMMERVILLE R, KENDRICK E, et al. Recycling lithium-ion batteries from electric vehicles[J]. Nature,2019,575(7781): 75-86.
[7]" "SWAIN B. Recovery and recycling of lithium: a review[J]. Separation and Purification Technology,2017, 172: 388-403.
[8]" "VIKSTR?M H, DAVIDSSON S, H??K M. Lithium availability and future production outlooks[J]. Applied Energy,2013, 110: 252-266.
[9]" "MESHRAM P, PANDEY B D, MANKHAND T R. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: a comprehensive review[J]. Hydrometallurgy,2014,150: 192-208.
[10] ZHOU Y M, WANG X L, XU T W, et al. Electrodialytic concentrating lithium salt from primary resource[J]. Desalination, 2018,425: 30-36.
[11] ZHAO Y J, WANG H Y, LI Y, et al. An integrated membrane process for preparation of lithium hydroxide from high Mg/Li ratio salt lake brine[J]. Desalination,2020,493: 114620.
[12] Khalil A, Mohammed S, Hashaikeh R, et al. Lithium recovery from brine: Recent developments and challenges[J]. Desalination. 2022; 528: 115611.
[13] SOMRANI A, HAMZAOUI A H, PONTIE M. Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO)[J]." Desalination,2013,317: 184-192.
[14] LI P F, CHEN Q B, XU T W. Converting softening nanofiltration brine into high-solubility liquid salts (HSLS) via electrodialysis metathesis: effect of membrane type[J]. Separation and Purification Technology, 2021,267: 118619.
[15] ZHANG X, HAN X Z, YAN X, et al. Continuous synthesis of high purity KNO3 through electrodialysis metathesis[J]. Separation and Purification Technology,2019,222: 85-91.
[16] GAO W J, ZHAO H," WEI X L, et al. A green and economical method for preparing potassium glutamate through electrodialysis metathesis[J]. Industrial amp; Engineering Chemistry Research,2022,61(3): 1486-1493.
[17] WANG B R, LIN M, PENG X X, et al. Hierarchical TS-1 synthesized effectively by post-modification with TPAOH and ammonium hydroxide[J]. RSC Advances,2016, 6(51): 44963-44971.
[18] SHARMA P P, GAHLOT S, RAJPUT A, et al. Efficient and cost effective way for the conversion of potassium nitrate from potassium chloride using electrodialysis[J]. ACS sustainable Chemistry amp; Engineering,2016, 4(6): 3220-3227.
[19] WANG X, DU Y W, LIU J, et al. Modeling and simulation of continuous electrodialysis metathesis process for conversion of Na2SO4 to K2SO4[J]. Desalination,2022, 528: 115605.
[20] CHEN Q B, REN H, TIAN Z H, et al. Conversion and pre-concentration of SWRO reject brine into high solubility liquid salts (HSLS) by using electrodialysis metathesis[J]." Separation and Purification Technology,2019, 213: 587-598.
[21] LI P F, CHEN Q B, WANG J Y, et al. Developing a reclamation strategy for softening nanofiltration brine: a scaling-free conversion approach via continuous two-stage electrodialysis metathesis[J]. Science of The Total Environment,2022, 807: 150374.
[22] JAROSZEK H, LIS A, DYDO P. Transport of impurities and water during potassium nitrate synthesis by electrodialysis metathesis[J]. Separation and Purification Technology,2016, 158: 87-93.
[23] 盧京敏,陳慶. 擴(kuò)散滲析應(yīng)用于石墨純化廢酸回收的研究[J].遼寧化工,2021,50(11):1626-1629.
[24] ROTTIERS T, PINOY L, MARCHE G, et al. Co-ion fluxes of simple inorganic ions in electrodialysis metathesis and conventional electrodialysis[J]. Journal of Membrane Science,2015,492: 263-270.
Study on the Appreciation of Inorganic Lithium
Salts by Electrodialysis Metathesis
CAO Wen-jing, WEN Wei-fen, CHEN Qing
(College of Chemistry and Material Engineering, Wenzhou University, Wenzhou Zhejiang 325035, China)
Abstract:" Lithium nitrate is an important precursor of LiNi1-y-zMnyCozO2 (NMC), but the traditional preparation process of lithium nitrate is complicated and not environmentally friendly. In this paper, electrodialysis metathesis technology was used to directly prepare lithium nitrate from primary lithium salt (LiCl). The purity of LiNO3 was as high as 96%, and the current efficiency was always above 90%. This process is expected to become a new method for large-scale production of LiNO3.
Key words:" Electrodialysis metathesis; Lithium nitrate; Lithium battery