摘 要 壓水堆核電站反應(yīng)堆壓力容器(RPV)輻照脆化問題是制約其長期安全服役的主要因素,現(xiàn)有 的美國ASME和法國RCC?M規(guī)范尚未充分考慮RPV用鋼(鐵素體材料)的熱預(yù)應(yīng)力(WPS)對斷裂評價的有益影響。針對某RPV材料(16 MND 5),采用標準CT試樣進行室溫加載(L)、保持載荷降低測試溫度(C),最后加載直至斷裂(F)的測試方案(LCF的測試過程)。試驗結(jié)果表明,在LCF的最后低溫斷裂階段,RPV材料實際斷裂韌度為基于RCC?M規(guī)范預(yù)測結(jié)果的兩倍左右,也明顯高于主曲線預(yù)測的斷裂失效概率為95%對應(yīng)的材料斷裂韌度。因此,在RPV壽期末的脆性斷裂評價中,考慮WPS效應(yīng)會顯著提高其安全性能評估裕量。
關(guān)鍵詞 壓力容器 核電站反應(yīng)堆 斷裂 WPS LCF 主曲線
中圖分類號 TH49" "文獻標識碼 A" "文章編號 0254?6094(2023)01?0040?05
核電站反應(yīng)堆壓力容器(RPV)是核安全一級部件,其中堆芯筒體輻照脆化問題是影響設(shè)備長期安全服役的關(guān)鍵技術(shù)問題[1,2]。目前,主要采用線彈性斷裂力學方法進行服役壽期末含缺陷RPV的結(jié)構(gòu)完整性評估,如美國ASME規(guī)范Ⅺ卷附錄G[3]和法國RCC?M規(guī)范附錄Z G[4],主要目的是防止RPV材料出現(xiàn)脆性斷裂失效[5,6]。
研究表明,RPV的嚴重事故多由堆芯失去冷卻介質(zhì)引起安注系統(tǒng)啟動導(dǎo)致[7],安注系統(tǒng)低溫冷卻劑會在堆芯內(nèi)表面上形成較大的拉伸應(yīng)力,易使堆芯筒體的裂紋發(fā)生起裂[8~10]。在材料斷裂韌度的上平臺的溫度下,對韌性材料施加預(yù)載荷以提高其低溫斷裂韌性的現(xiàn)象稱為“熱預(yù)應(yīng)力”(WPS)增強韌性效應(yīng),一般認為此效應(yīng)與WPS過程中引入的加工硬化、殘余應(yīng)力及缺口或裂紋尖端形狀的改變等有關(guān)[11]。利用WPS效應(yīng)可提高RPV碳鋼材料的抗輻照脆化斷裂評估的安全性能。在反應(yīng)堆正常運行高溫下(350 ℃左右)承載后,會在裂紋前沿形成預(yù)應(yīng)力(高溫狀態(tài)下RPV材料處于韌性狀態(tài)),隨著冷卻劑的快速注入(系統(tǒng)壓力未降低,熱應(yīng)力則顯著增加),材料的斷裂韌度會提高(WPS效應(yīng))[12]。國外學者對RPV的鐵素體材料進行了大量的試驗和理論研究,如歐洲的BATMAN測試項目[13]。但國內(nèi)鮮有公開文獻針對RPV材料開展WPS效應(yīng)研究。
筆者針對某RPV材料(16 MND 5),采用標準CT試樣進行室溫加載(L)、保持載荷降低測試溫度(C),最后加載直至斷裂(F)的測試方案(LCF的測試過程),分析WPS效應(yīng)對RPV材料斷裂韌度的影響情況。
1 試驗材料
1.1 試驗材料信息
某RPV堆芯筒體的材料為16 MND 5(法國牌號),其化學成分見表1,材料拉伸性能見表2。
初始制造階段,材料韌脆轉(zhuǎn)變溫度(RT)的平均值(周向取樣)為-32.5 ℃,依據(jù)RCC?M規(guī)范預(yù)測材料的斷裂韌度(K),其計算方法如下:
K=40+0.09(T-RT)+20e,T-RT≤60 ℃(1)
式中 T——評估時刻裂紋前沿溫度,℃。
RPV的鐵素體碳鋼材料脆性斷裂韌度與其微觀組織和缺陷密切相關(guān),導(dǎo)致測試的材料斷裂韌度數(shù)據(jù)具有較大的分散性。大量的測試研究表明,鐵素體碳鋼材料的脆性斷裂韌度服從一定的統(tǒng)計規(guī)律。1984年Wallin首先提出了用主曲線(Master Curve)來描述材料斷裂韌度與溫度之間的關(guān)系,其統(tǒng)計關(guān)系如下[14]:
P=1-e(2)
式中 b——形狀參數(shù)(也稱為概率圖中的斜率),標準取值為4;
K——尺寸參數(shù),MPa·;
K——韌脆轉(zhuǎn)化區(qū)的斷裂韌度,MPa·;
K——統(tǒng)計分布參數(shù),標準取值20 MPa·;
P——試驗測試獲得的累計不發(fā)生失效的概率。
主曲線的材料斷裂韌度的中間預(yù)測值(50%置信度)的曲線方程如下:
K=30+70e(3)
式中 K——50%置信度下的材料斷裂韌度,MPa·;
T——參考溫度,℃。
ASTM經(jīng)過多年的經(jīng)驗積累與技術(shù)研究,在1997年形成了弱連接理論(Weakest Link Theory)的鐵素體碳鋼材料的主曲線測試標準ASTM E1921?97[15]。采用此標準時,可用小試樣預(yù)制裂紋夏比實驗代替落錘實驗和傳統(tǒng)夏比沖擊實驗直接獲得材料的參考溫度[16]。ASTM E1921?97中,材料參考溫度T與傳統(tǒng)的材料韌脆轉(zhuǎn)變溫度
RT之間的關(guān)系如下:
RT(RT)=T+35 ℉
T=RT-35 ℉(4)
由式(4)計算得T=-51.9 ℃。
1.2 試樣測試信息
如圖1所示,試驗中標準緊湊拉伸試樣(CT試樣)規(guī)格為125 mm×120 mm×20 mm,即試樣凈寬度W=100 mm,試樣厚度B與試樣凈截面厚度B相等,為20 mm,初始裂紋長度a=25 mm。采用標準CT試樣進行WPS效應(yīng)測試,相關(guān)試驗在MTS 500 kN液伺服疲勞試驗機上完成,采用引伸計測量CT試樣的裂紋嘴張開位移。CT試樣的疲勞裂紋預(yù)制根據(jù)初始裂紋的擴展速率逐級降載的方式實現(xiàn),預(yù)制裂紋增量0.5~1.0 mm;在MTS標準斷裂軟件中,依據(jù)降應(yīng)力強度因子方式實現(xiàn)CT試樣的疲勞裂紋預(yù)制,預(yù)制裂紋增量約2 mm。依據(jù)ASTM E1921?97標準進行斷裂韌度測試。
依據(jù)ISO 12135—2002《金屬材料" 準靜態(tài)斷裂韌度測定的統(tǒng)一試驗方法》[17]計算CT試樣Ⅰ型裂紋前沿的應(yīng)力強度因子(K),具體方法如下:
K=[F/(BBW)]g()(5)
式中 a——裂紋深度;
F——試驗拉伸載荷,N;
W——試樣凈寬度,mm。
2 試驗過程及結(jié)果分析
如圖2所示,采用標準CT試樣進行LCF過程的WPS效應(yīng)測試,兩次獨立的試驗過程控制說明如下:
a. 室溫條件(20 ℃)下,對CT試樣進行加載,拉伸載荷p由0增加至52 kN;
b. 保持拉伸載荷p不變,持續(xù)降溫至-100 ℃;
c. 在-100 ℃的條件下,增加拉伸載荷至CT試樣發(fā)生斷裂失效,記錄此時的拉伸載荷為p,試驗過程中某一試樣的載荷-位移如圖2所示。
如圖3所示,對測試后的某一CT試樣進行斷口分析,CT試樣斷口平齊,未見明顯的宏觀塑性變形特性,表明為典型的脆性斷裂。CT試樣測試過程信息見表3。
數(shù)據(jù)分析結(jié)果表明:
a. 在加載至52 kN時,依據(jù)式(5)計算裂紋前沿的K=90.00 MPa·,小于材料的預(yù)測斷裂韌度。
b. 在降溫至-100 ℃過程中,裂紋前沿的K保持90.00 MPa·不變;如圖4所示,此時CT試樣未發(fā)生斷裂失效,而裂紋前沿的K已大于基于式(1)預(yù)測的材料斷裂韌度;同時如圖5所示,裂紋前沿的K也大于基于主曲線預(yù)測的斷裂失效概率為95%對應(yīng)的材料斷裂韌度。
c. 在-100 ℃條件下,增加拉伸載荷至斷裂時裂紋前沿的K為110.36 MPa·(試樣1),該值是基于RCC?M規(guī)范預(yù)測結(jié)果(35.46" MPa·)的2.11倍,也是基于主曲線預(yù)測的斷裂失效概率為95%對應(yīng)的材料斷裂韌度(64.40 MPa·)的1.71倍。因此,在RPV壽期末的脆性斷裂評價中,考慮WPS效應(yīng)會顯著提高其安全性能評估裕量。
3 結(jié)束語
針對壓水堆核電站反應(yīng)堆壓力容器RPV的16 MND 5材料,采用標準CT試樣進行加載、冷卻再斷裂過程的WPS效應(yīng)測試過程。研究結(jié)果表明,考慮WPS效應(yīng)時材料實際斷裂韌度可以達到基于RCC?M規(guī)范預(yù)測結(jié)果的兩倍左右,也明顯高于主曲線預(yù)測的斷裂失效概率為95%對應(yīng)的材料斷裂韌度。因此,在核電廠長周期運行過程中,深入研究應(yīng)用WPS效應(yīng)會顯著提高RPV的斷裂安全性能評估裕量。
參 考 文 獻
[1]" "US NRC.Standard Review Plan for Review of License Renewal Applications for Nuclear Power Plants[R].Washington DC:United States Nuclear Regulation Commission,2010:2-129.
[2]" "CHEN M Y,LU F,WANG R S,et al.Structural integrity assessment of the reactor pressure vessel under the pressurized thermal shock loading[J].Nuclear Engineering and Design,2014,272:84-91.
[3]" "ASME. Protection against non?ductile failure: ASME boiler and pressure vessel code Sec.Ⅺ Appendix G[S].New York:The American Society of Mechanical Engineers,2007.
[4]" "RCC?M. Criteria prevention of damages in mechanical components:Section ⅠNuclear island components[S].Paris:AFCEN,2017.
[5]" "IAEA.Safety Aspects of Long Term Operation of Water Moderated Reactors: Recommendations on the Scope and Content of Programmers for Safe Long Term Operation[R].Vienna:IAEA?EBP?SALTO,2007:63-253.
[6]" "CHEN M Y,LU F,WANG R S,et al.The deterministic structural integrity assessment of reactor pressure vessels under pressurized thermal shock loading[J].Nuclear Engineering and Design,2015,288:130-140.
[7]" "王春輝,高紅波,陳明亞,等.基于流固耦合的壓水堆主管道上充管嘴熱疲勞研究[J].化工機械,2021,48(4):561-566;570.
[8]" "CHEN M Y,YU W W,QIAN G,et al.Crack initiation,arrest and tearing assessments of a RPV subjected to PTS events[J].Annals of Nuclear Energy,2018,116:143-151.
[9]" "CHEN M Y,WANG R S,YU W W.Application of the French Codes to the PTS Assessment[J].Nuclear Engineering and Technology,2016,48(6):1423-1432.
[10]" "CHEN M Y,LU F,WANG R S.Use of the Failure Assessment Diagram to Evaluate the Safety of the Reactor Pressure Vessel[J].Journal of Pressure Vessel Technology Journal,2015,137(5):051203.
[11]" "王國珍,陳劍虹,董志強.合金鋼缺口試樣熱預(yù)應(yīng)力增韌機理的研究[J].甘肅工業(yè)大學學報,2001,27(2):1-4.
[12]" "MOINEREAU D.A European Ramp;D Program for the Inclusion of Warm Pre?Stress in RPV Assessment [C]//Vancouver:ASME PVP committee,2005.
[13]" "YURITZINN T,F(xiàn)ERRY L,YURITZINN T,et al.Illu?
stration of the WPS benefit through BATMAN test series: tests on large specimens under WPS loading configurations[J]. Engng Fract Mech,2008,75(8):2191-2207.
[14]" "JOYCE J.On the Utilization of High Rate Charpy Test Results and the Muster Curve to Obtain Accurate Lower Bound Toughness Predictions in the Ductile?to?Brittle Transition[R].NewYork:ASTM STP 1329,1998:253-273.
[15]" ASTM.Standard Test Method for Determination of Reference Temperature,T0,for Ferritic Steels in the Transition Range:ASTM E 1921?97[S].NewYork:American Society of Mechanical Engineers,1998.
[16]" YOON K K.Effect of Loading Rate on Fracture Toughness of Pressure Vessel Steels[J].Journal of Pressure Vessel Technology,2000,122:125-129.
[17]" "International Organization for Standardization.金屬材料.準靜態(tài)斷裂韌性測定的統(tǒng)一試驗方法:ISO 12135—2002[S].北京:ISO copyright office,2002.
(收稿日期:2022-03-29,修回日期:2023-01-09)
Research on Thermal Pre?strain Effect on the Fracture
Behavior of Reactor Pressure Vessel Materials
CHEN Ming?ya1, YU Min1, LIU Han2, KONG Zi?chen2, GAO Hong?bo1,
QI Shuang1, ZHOU Shuai1, LIN Lei1, PENG Qun?jia1
(1. Suzhou Nuclear Research Institute; 2. EDF China Ramp;D Center)
Abstract" " The reactor pressure vessel’s (RPV) irradiation embrittlement in pressurized?water reactor nuclear power plant troubles its safe and long?term service. The existing ASME and French RCC?M codes fails to take into account the effect of RPV steel’s (ferrite material) thermal pre?stressing (WPS) on the fracture evaluation. For a certain RPV material (16 MND 5), the standard CT specimen were loaded at room temperature (L), and then the load was kept and test temperature(C) was reduced, and finally the specimen was loaded until it fractured (F) (LCF test process). The experimental results show that, the actual fracture toughness of the RPV material at the LCF’s last low?temperature fracture stage is about twice that predicted by the RCC?M specification, and it is significantly higher than that of the material with 95% fracture probability predicted by the main curve. Therefore, taking into account the effect of WPS in the evaluation of brittle fracture of RPV at the end of life can significantly improve safety performance’s evaluation margin.
Key words" " pressure vessel, reactor of nuclear power plant, fracture, WPS, LCF, main curve
作者簡介:陳明亞(1985-),高級工程師,從事結(jié)構(gòu)完整性評價工作,chenmingya200852@163.com。
引用本文:陳明亞,於旻,劉晗,等.熱預(yù)應(yīng)變對反應(yīng)堆壓力容器材料斷裂行為影響研究[J].化工機械,2023,50(1):40-44.