摘 "要""以油包水乳化液為對(duì)象,闡述了電場(chǎng)-旋流場(chǎng)耦合作用下液滴聚結(jié)和強(qiáng)化分離機(jī)理,介紹了現(xiàn)階段耦合裝置結(jié)構(gòu)的發(fā)展,分析了速度、電壓幅值、頻率及乳化液特性等操作參數(shù)對(duì)液滴聚結(jié)、破碎及油水兩相分離性能的影響。同時(shí)指出了現(xiàn)階段研究的局限,探討了今后的研究方向,為耦合場(chǎng)下液滴聚結(jié)特性和操作參數(shù)的研究提供借鑒。
關(guān)鍵詞""乳化液 "脫水 "電場(chǎng)-旋流場(chǎng)耦合 "聚結(jié) "強(qiáng)化分離
中圖分類號(hào)""TE624.1 """""""""""""文獻(xiàn)標(biāo)識(shí)碼 "A"""""""""""""""文章編號(hào) "0254-6094(2023)01-0000-00
現(xiàn)階段由于技術(shù)手段和使用設(shè)備的影響,石油化工生產(chǎn)過(guò)程中會(huì)產(chǎn)生大量的油包水乳化液,增加了油水兩相分離的難度[1]。水力旋流器是利用流體高速旋轉(zhuǎn)過(guò)程中不同密度的不混溶相產(chǎn)生的離心力不同將油水兩相分離,因具有結(jié)構(gòu)簡(jiǎn)單穩(wěn)定、分離效果好、處理速度快及成本低等優(yōu)勢(shì)在石油化工、工藝制造及廢水廢氣處理等領(lǐng)域廣泛應(yīng)用[2],但由于乳化液的粘度較高且分散相粒徑尺寸普遍在微米級(jí),常規(guī)水力旋流器無(wú)法有效分離[3]。目前,電場(chǎng)-旋流場(chǎng)耦合強(qiáng)化分離技術(shù)已經(jīng)在破乳脫水、食品工業(yè)、除塵及顆粒精細(xì)分級(jí)和沉積等領(lǐng)域展開研究和應(yīng)用,相較于單一的油水分離技術(shù),其旋流分離性能有很大提升[4~6],因此有必要對(duì)此技術(shù)進(jìn)行深入探討。筆者從電場(chǎng)-旋流場(chǎng)耦合強(qiáng)化乳化液脫水機(jī)理、耦合裝置結(jié)構(gòu)和操作參數(shù)3個(gè)方面總結(jié)近年來(lái)電場(chǎng)-旋流場(chǎng)耦合強(qiáng)化乳化液分離技術(shù)的研究進(jìn)展,為今后電場(chǎng)-旋流場(chǎng)耦合強(qiáng)化脫水技術(shù)相關(guān)研究提供借鑒,對(duì)油田建設(shè)和污水處理具有積極意義。
1 "耦合場(chǎng)脫水機(jī)理研究進(jìn)展
1.1""聚結(jié)及分離機(jī)理
關(guān)于電聚結(jié)理論,研究學(xué)者已經(jīng)做了很多研究,目前普遍認(rèn)為,將一定形式的電場(chǎng)作用于油水乳化液中,利用油水電導(dǎo)率差,使液滴產(chǎn)生極化和形態(tài)的改變,液滴在電場(chǎng)力作用下發(fā)生相對(duì)運(yùn)動(dòng),破壞界面的穩(wěn)定性,使液滴間液膜變薄直至破裂,液滴發(fā)生聚結(jié)[7]。無(wú)論液滴是否呈電中性,電場(chǎng)都能使其產(chǎn)生極化和遷移行為,同時(shí)液滴中溶解少量鹽離子可以增強(qiáng)電場(chǎng)對(duì)液滴的作用,促進(jìn)聚結(jié)進(jìn)程[8,9]。除聚結(jié)作用外,高電場(chǎng)也會(huì)增加剪切速率下的剪切應(yīng)力,增大液滴變形和破碎的幾率。
近年來(lái),研究學(xué)者從微觀角度提出液滴聚結(jié)由液滴橋間的壓力和液滴內(nèi)部壓力的相對(duì)關(guān)系決定,并從壓力演化角度解釋了小液滴產(chǎn)生的機(jī)制,用壓力關(guān)系可以解釋液滴在高電壓下發(fā)生聚結(jié),低電壓下發(fā)生極化和成鏈但不發(fā)生聚結(jié),電場(chǎng)關(guān)閉后液滴恢復(fù)到初始隨機(jī)狀態(tài)的行為[10~12]。EOW J S等[13]、倪玲英等[14]通過(guò)實(shí)驗(yàn)研究發(fā)現(xiàn),兩液滴在耦合場(chǎng)下的聚結(jié)過(guò)程分為3個(gè)階段:首先液滴在耦合力場(chǎng)下相互靠近,然后液滴間油膜變薄直至破裂,最后兩液滴聚結(jié),具體聚結(jié)過(guò)程如圖1所示。當(dāng)施加電場(chǎng)過(guò)大時(shí)液滴會(huì)發(fā)生破碎現(xiàn)象,在一定條件下的乳化液體系中存在使液滴破碎的臨界電場(chǎng)強(qiáng)度和最大液滴粒徑[15]。
液滴的碰撞聚結(jié)率由碰撞頻率和聚結(jié)效率決定,聚結(jié)效率指液滴碰撞下的聚結(jié)概率,主要取決于液滴形狀和界面遷移率[16]。低剪切和高剪切條件下都會(huì)發(fā)生湍流誘導(dǎo)的聚結(jié),但由于液滴接觸和聚結(jié)的延遲效應(yīng),單靠湍流產(chǎn)生的聚結(jié)率并不高,特別是對(duì)具有穩(wěn)定界面的乳化液[17]。高電場(chǎng)可以使聚結(jié)的時(shí)間延遲效應(yīng)大幅降低,提高碰撞的聚結(jié)效率。同時(shí)湍流導(dǎo)致液滴之間的高聚集性,可以縮短液滴之間的距離,提高電聚結(jié)率[18]。因此耦合場(chǎng)對(duì)液滴聚結(jié)有雙向促進(jìn)作用,具有快速和高聚結(jié)率的特點(diǎn)。電場(chǎng)-旋流場(chǎng)耦合強(qiáng)化乳化液脫水原理如圖2所示,乳化液進(jìn)入旋流器后,小液滴在高電場(chǎng)作用下迅速聚結(jié)變大,聚結(jié)后的大液滴在離心力作用下向旋流器邊壁運(yùn)動(dòng),實(shí)現(xiàn)相間分離,最后水相由底流口流出,油相由溢流口流出,實(shí)現(xiàn)油水兩相的分離[19]。
1.2""電場(chǎng)形式
葉學(xué)民等對(duì)電場(chǎng)下液滴界面張力和動(dòng)力學(xué)特征進(jìn)行綜述,指出施加電場(chǎng)可以改變液滴的界面張力、形態(tài)和運(yùn)動(dòng)行為,不同類型的電場(chǎng)會(huì)對(duì)液滴有不同的作用形式[20]。RODIONOVA G等通過(guò)實(shí)驗(yàn)研究了交流電場(chǎng)-流場(chǎng)下液滴的聚結(jié)特性,結(jié)果表明液滴的聚結(jié)是流態(tài)和電壓共同作用的結(jié)果,其中電場(chǎng)形式?jīng)Q定液滴的聚結(jié)機(jī)制,不同性質(zhì)的乳化需要不同形式的電場(chǎng)進(jìn)行處理[21]。O/W乳化液的水相導(dǎo)電性強(qiáng),誘導(dǎo)成鏈所需的電流密度要比W/O乳化液大得多,故很難用電場(chǎng)進(jìn)行分離,而脈沖電場(chǎng)產(chǎn)生的電流非常小,幾乎不會(huì)引起短路和水電解,目前已經(jīng)證實(shí)對(duì)于處理O/W乳化液具有可行性[22]。表1為不同電場(chǎng)形式下液滴的主要聚結(jié)機(jī)制和特點(diǎn)[23,24]。
1.3""數(shù)值模型
電場(chǎng)-旋流場(chǎng)耦合脫水技術(shù)是利用液滴在高電場(chǎng)下的快速聚結(jié)和旋流器的高效分離特性,對(duì)乳化液進(jìn)行油水兩相的分離。電場(chǎng)和流場(chǎng)耦合時(shí),要綜合考慮電場(chǎng)和流場(chǎng)對(duì)液滴的運(yùn)動(dòng)和聚結(jié)作用影響,目前大多采用電聚結(jié)模型和湍流模型進(jìn)行疊加計(jì)算,用以表示耦合場(chǎng)下液滴聚結(jié)及分離過(guò)程。近年來(lái),為了描述耦合作用下液滴的運(yùn)動(dòng)、聚結(jié)及相分離等過(guò)程,研究學(xué)者提出了一些理論模型,如通過(guò)相場(chǎng)法、停留時(shí)間模型、偶極聚結(jié)模型等結(jié)合湍流模型建立電場(chǎng)和流場(chǎng)的耦合模型。HONG W P等通過(guò)相場(chǎng)法耦合電場(chǎng)和流場(chǎng)建立耦合場(chǎng)下單液滴模型,模擬運(yùn)動(dòng)液滴在連續(xù)相下的變形,結(jié)果表明液滴變形取決于電場(chǎng)和流場(chǎng)的耦合作用,包括流速、電場(chǎng)強(qiáng)度、液滴直徑及界面張力等[25]。PODGóRSKA W和MARCHISIO D L結(jié)合多重分形破碎模型和PBE聚結(jié)模型(基于膜的排水和聚結(jié)效應(yīng))提出了湍流-靜電耦合模型,研究了離子表面活性劑對(duì)液滴粒徑分布的影響,表明添加少量鹽可以降低界面張力,增加液滴的破碎率[26]。MELHEIM J A和CHIESA M用偶極力和膜變薄力表示電場(chǎng)的作用力,并結(jié)合離散相(DPM)模型研究了二維湍流和電場(chǎng)力耦合下液滴的聚結(jié)現(xiàn)象[27]。
不同分散相含量的體系一般采用不同的電聚結(jié)模型描述,對(duì)于旋流器處理的含大量分散相液滴的乳化液系統(tǒng),用偶極聚結(jié)模型(DID)可以對(duì)其液滴的相互作用進(jìn)行較準(zhǔn)確的描述[28,29]。GONG H F等用偶極聚結(jié)率描述液滴在電場(chǎng)下的聚結(jié)行為,結(jié)合湍流系統(tǒng)中液滴的破碎函數(shù)構(gòu)建耦合模型,研究裝置內(nèi)液滴的動(dòng)態(tài)特性和分離效率,結(jié)果表明此模型能較準(zhǔn)確地預(yù)測(cè)液滴動(dòng)態(tài)過(guò)程和油水分離效率[19]。目前,研究學(xué)者主要以低強(qiáng)度的流動(dòng)為研究對(duì)象,缺乏對(duì)高強(qiáng)湍流下電聚結(jié)過(guò)程的理論研究和數(shù)值分析,同時(shí)缺乏耦合場(chǎng)下動(dòng)態(tài)測(cè)量的實(shí)驗(yàn)驗(yàn)證。
2 "耦合裝置結(jié)構(gòu)研究進(jìn)展
將電場(chǎng)-旋流場(chǎng)相結(jié)合處理乳化液是通過(guò)施加外力和場(chǎng)能的方式實(shí)現(xiàn)的,其結(jié)構(gòu)主要包括串聯(lián)結(jié)構(gòu)和耦合結(jié)構(gòu)。串聯(lián)結(jié)構(gòu)是在乳化液進(jìn)入旋流器之前施加電場(chǎng)的作用,液滴經(jīng)電場(chǎng)聚結(jié)后進(jìn)入旋流器進(jìn)行分離,耦合結(jié)構(gòu)是在旋流器內(nèi)部施加電場(chǎng),乳化液進(jìn)入旋流器后同時(shí)進(jìn)行電聚結(jié)和離心分離過(guò)程。串聯(lián)結(jié)構(gòu)可以讓液滴聚結(jié)為最大尺寸后再進(jìn)行離心分離,分離效率更高,而耦合結(jié)構(gòu)則聚結(jié)速度快、處理效率高、體積小、能有效防止電擊穿[30]。
2.1""電極結(jié)構(gòu)
HADIDI H等研究了不同結(jié)構(gòu)電極對(duì)液滴聚結(jié)行為的影響,發(fā)現(xiàn)電極結(jié)構(gòu)對(duì)液滴電聚結(jié)效率以及防止電分散有很大影響[31]。LUO S等模擬了3種不同結(jié)構(gòu)電極電場(chǎng),發(fā)現(xiàn)同軸圓柱電極相比其他兩個(gè)可以提供中等模式的非均勻電場(chǎng),同時(shí)指出場(chǎng)的不均勻性可以有效促進(jìn)液滴的聚結(jié)[32]。丁藝和陳家慶指出在同軸圓柱電場(chǎng)中,非均勻系數(shù)增大會(huì)促進(jìn)相分離過(guò)程,但過(guò)大的非均勻系數(shù)易產(chǎn)生電分散,降低分離效率,因此在設(shè)計(jì)電極結(jié)構(gòu)時(shí),應(yīng)考慮非均勻系數(shù)的影響[33]。
同軸圓柱電極存在的主要問(wèn)題是接地一側(cè)電場(chǎng)作用太弱,無(wú)法對(duì)遠(yuǎn)離中心電極的液滴進(jìn)行有效聚結(jié),可以通過(guò)對(duì)電極結(jié)構(gòu)的改進(jìn)使其具有更好的聚結(jié)效果。圖3為近年來(lái)研究學(xué)者提出的電極結(jié)構(gòu),其中圖3a為圓環(huán)電極[34],其優(yōu)勢(shì)為將溢流管充當(dāng)電極,避免了電極結(jié)構(gòu)對(duì)流場(chǎng)的影響;圖3b為圓柱電極[35],其優(yōu)勢(shì)為可以方便調(diào)節(jié)極間間距,使液滴可以更充分地受到高電場(chǎng)的作用;圖3c為螺旋葉片電極[36],相較于前兩者,它在聚結(jié)方面更有優(yōu)勢(shì)。筆者認(rèn)為可以結(jié)合螺旋流道旋流器結(jié)構(gòu)進(jìn)行多組葉片設(shè)計(jì),組成成對(duì)電極-螺旋流道,提高聚結(jié)效果。
電極選材時(shí)主要考慮其導(dǎo)電性、導(dǎo)熱性、耐腐蝕性、強(qiáng)度及韌度等,通常選用銅、鋼、石墨及鋁合金等。乳化液含水率高時(shí),裸電極易引發(fā)短路或電弧,在電極外圍添加絕緣層可以有效防止,保證電場(chǎng)的穩(wěn)定性[37]。由于電極放熱和流動(dòng)沖蝕,絕緣材料需要有絕緣、耐高溫、耐磨等特點(diǎn),適合做絕緣材料的有聚四氟乙烯、環(huán)氧樹脂、乙烯-丙烯氟化聚合物及有機(jī)玻璃等[38]。但是絕緣層會(huì)削弱電場(chǎng)強(qiáng)度,一般情況下涂層越薄,電場(chǎng)越強(qiáng),在保證電場(chǎng)穩(wěn)定性的前提下,應(yīng)選擇較小厚度的絕緣層[39]。
2.2""裝置結(jié)構(gòu)
耦合裝置根據(jù)有無(wú)運(yùn)動(dòng)部件可分為旋轉(zhuǎn)式和靜止式兩種。旋轉(zhuǎn)式結(jié)構(gòu)可以主動(dòng)調(diào)速、分離因數(shù)大、處理范圍寬,靜止式結(jié)構(gòu)簡(jiǎn)單緊湊、成本低、易操作,更適合狹小空間。王永偉等設(shè)計(jì)的旋轉(zhuǎn)式耦合裝置如圖4a所示[30],圓柱電極和轉(zhuǎn)鼓之間形成環(huán)形電場(chǎng),旋流場(chǎng)靠軸轉(zhuǎn)動(dòng)產(chǎn)生,液滴在高壓電場(chǎng)與旋流場(chǎng)的共同作用下發(fā)生聚結(jié)和相分離。圖4b為KWON W T等設(shè)計(jì)的靜止式耦合裝置,錐形結(jié)構(gòu)為電源正極,中心銅棒和外側(cè)筒壁接地,形成兩個(gè)高壓電場(chǎng)區(qū)域,乳化液從入口進(jìn)入后,在電場(chǎng)和旋流場(chǎng)下產(chǎn)生了初次分離,大部分的水相從下方出口流出,含少量水的油相會(huì)沿錐形電極內(nèi)壁向上運(yùn)動(dòng),在電場(chǎng)和旋流場(chǎng)下產(chǎn)生二次分離[40]。近期有研究學(xué)者將微通道技術(shù)應(yīng)用到電場(chǎng)-旋流場(chǎng)中,結(jié)合電場(chǎng)和微通道技術(shù),對(duì)油包水乳化液進(jìn)行了快速高效破乳[41]。
為了避免電極結(jié)構(gòu)對(duì)旋流器流場(chǎng)產(chǎn)生影響,有學(xué)者將旋流器部分本體充當(dāng)電極結(jié)構(gòu)。圖5a為GONG H F等設(shè)計(jì)的耦合結(jié)構(gòu),溢流管外壁充當(dāng)電源正極,旋流腔內(nèi)壁充當(dāng)負(fù)極,乳化液由兩個(gè)切向入口流入耦合裝置內(nèi)部,在溢流管壁段完成電聚結(jié),在錐段進(jìn)行油水兩相分離,隨后油相由左側(cè)溢流口流出,水相由右側(cè)底流口流出[34]。圖5b為NO?K C等設(shè)計(jì)的耦合結(jié)構(gòu),兩個(gè)同心的圓柱筒壁作為電極,乳化液從切向入口進(jìn)入裝置,在電場(chǎng)和旋流場(chǎng)共同作用下水相向邊壁運(yùn)動(dòng),最終油相從左側(cè)出口流出,水相和少部分油從右側(cè)出口流出,實(shí)現(xiàn)兩相分離[42]。
3 "操作參數(shù)研究進(jìn)展
3.1""電壓幅值
電壓幅值很大程度上決定了液滴是否聚結(jié)以及聚結(jié)的程度。HUANG X等指出在一定電壓下液滴存在3種聚結(jié)模式:聚結(jié)、部分聚結(jié)和非聚結(jié),隨著電壓幅值的增加,兩液滴從聚結(jié)向部分聚結(jié)轉(zhuǎn)變,再向非聚結(jié)轉(zhuǎn)變,因此電聚結(jié)過(guò)程存在一個(gè)最佳電場(chǎng)范圍,在此范圍內(nèi)聚結(jié)效率才較高[43]。在最大臨界電壓范圍內(nèi),電壓幅值越大,液滴靠近速度越快,液滴聚結(jié)時(shí)間越短。ZHANG J的研究表明,增加電壓幅值比延長(zhǎng)電場(chǎng)作用時(shí)間更能有效提高聚結(jié)率,縮短旋流器內(nèi)液滴停留時(shí)間,因此高電壓是促進(jìn)聚結(jié)的最重要因素[44]。電壓作用下液滴成鏈,低電壓下成鏈不聚結(jié),當(dāng)高于一定值后才發(fā)生聚結(jié)。圖6為不同場(chǎng)強(qiáng)下液滴聚結(jié)圖像(其中,例3對(duì)應(yīng)的平均電場(chǎng)強(qiáng)度為134 kV/m,例4對(duì)應(yīng)的平均電場(chǎng)強(qiáng)度為335 kV/m,圖6c對(duì)應(yīng)的平均電場(chǎng)強(qiáng)度為467 kV/m),可以看到,低電壓下液滴成鏈不聚結(jié),電壓幅值高于一定值后發(fā)生聚結(jié),電壓過(guò)高時(shí)則會(huì)引起局部放電,液滴破碎[45,46]。
LESS S等通過(guò)流變儀測(cè)試了不同條件下的臨界場(chǎng)強(qiáng),發(fā)現(xiàn)其他參數(shù)不變時(shí),高剪切下的臨界場(chǎng)強(qiáng)高于低剪切的,高含水率下的臨界場(chǎng)強(qiáng)低于低含水率下的,高乳化率下的臨界場(chǎng)強(qiáng)高于低乳化率的[47]。BRASIL T A等通過(guò)實(shí)驗(yàn)發(fā)現(xiàn),當(dāng)外加電場(chǎng)在臨界場(chǎng)強(qiáng)以下時(shí),分離效率隨外加電場(chǎng)強(qiáng)度的增大而增大,超過(guò)臨界場(chǎng)強(qiáng)液滴會(huì)發(fā)生破碎,影響油水分離效果[48]。
3.2""頻率
頻率的變化會(huì)引起液滴振幅和頻率的變化,對(duì)聚結(jié)有重要影響。SUN Z等模擬了半正弦波電場(chǎng)條件下電場(chǎng)頻率等因素對(duì)液滴變形的影響,結(jié)果表明,在一定范圍內(nèi)液滴的振動(dòng)頻率與所施加的頻率大致成線性關(guān)系,且頻率對(duì)變形的影響弱于電壓和液滴初始直徑[49]。當(dāng)電場(chǎng)頻率持續(xù)增加時(shí),電場(chǎng)變化時(shí)間小于液滴極化的弛豫時(shí)間,頻率對(duì)液滴變形的影響開始減小,甚至抑制液滴的振蕩變形。YIN S等發(fā)現(xiàn),隨著頻率的改變,乳化液分散相電流和電勢(shì)也會(huì)相應(yīng)改變,認(rèn)為頻率通過(guò)影響液滴內(nèi)部電勢(shì)來(lái)影響聚結(jié)進(jìn)程[50]。RODIONOVA G等通過(guò)測(cè)試不同頻率下的乳化液粘度發(fā)現(xiàn),隨著頻率的增加乳化液粘度降低,直到達(dá)到一個(gè)最小值,當(dāng)頻率高于一定值后,粘度變化很小[21]。
分離效率最高時(shí)對(duì)應(yīng)的最佳頻率,由實(shí)驗(yàn)設(shè)備和介質(zhì)條件決定,如果電極沒有絕緣層,則只有連續(xù)相決定最佳頻率,對(duì)于絕緣電極,絕緣層材料和厚度也影響最佳頻率,一般涂層越薄,最佳頻率越低[7]。張建等從力學(xué)的角度出發(fā)分析推導(dǎo)出了最佳頻率的計(jì)算公式,并通過(guò)實(shí)驗(yàn)證明了模型的準(zhǔn)確性[51]。YANG D H等發(fā)現(xiàn),在低頻和高頻范圍內(nèi)存在兩個(gè)最佳頻率,都有較高的聚結(jié)率,這可能與聚結(jié)機(jī)制的改變有關(guān)[23]。
3.3""速度
FERNáNDEZ A研究發(fā)現(xiàn),速度會(huì)影響液滴的形變,低剪切速度下液滴的變形主要由電場(chǎng)力決定,高剪切速度下主要由粘性力決定[52]。LESS S等測(cè)試了不同速度下液滴的電聚結(jié),揭示了低剪切和高剪切速度下液滴的形成過(guò)程[47],如圖7所示(HES、MES、LES分別表示高、中、低乳化率),可以看出,低剪切時(shí)先發(fā)生絮凝的累積,導(dǎo)致粘度增大隨后聚結(jié),高剪切環(huán)境不發(fā)生絮凝,只出現(xiàn)聚結(jié)現(xiàn)象。BHARDWAJ A和HARTLAND S測(cè)試了不同速度下液滴電聚結(jié)效果發(fā)現(xiàn),低速時(shí)液滴尺寸增長(zhǎng)很快,隨著速度的增大液滴尺寸迅速降低,說(shuō)明速度的增加會(huì)使液滴在旋流器內(nèi)停留時(shí)間減少,降低電聚結(jié)效果[53]。對(duì)于耦合場(chǎng),增大速度會(huì)降低液滴在電場(chǎng)中的停留時(shí)間,影響電聚結(jié)效果,同時(shí)也會(huì)增加液滴的破碎率,在離心力增益和電聚結(jié)降低之間存在一個(gè)分離效率的最佳值[19]。
3.4""乳化液特性
乳化液性質(zhì)是進(jìn)行油水兩相分離首先要考慮的,合理控制乳化液的物性條件可以有效促進(jìn)分散相液滴的聚結(jié),主要影響參數(shù)有液滴粒徑、乳化液含水率、粘度及溫度等,表2為近年來(lái)耦合場(chǎng)下油水分離實(shí)驗(yàn)的相關(guān)參數(shù)。
EOW J S等指出對(duì)于電場(chǎng)-旋流耦合裝置,液滴尺寸大于一定值后才有明顯的分離效果,但是過(guò)高時(shí)易引發(fā)裝置短路[57]。在一定電場(chǎng)強(qiáng)度下,聚結(jié)存在一個(gè)液滴尺寸和間距的閾值,低于閾值液滴不發(fā)生聚結(jié),液滴達(dá)到聚結(jié)閾值后發(fā)生聚結(jié),但也只有當(dāng)粒徑大于一定值后才會(huì)顯著提高旋流器分離性能[58]。SINAISKI E G和LAPIGA E J測(cè)試了不同粒徑液滴在一定條件下的聚結(jié)程度,結(jié)果如圖8所示,可以看出液滴的聚結(jié)率隨液滴相對(duì)粒徑的增大而增大,相同大小的液滴具有最大的聚結(jié)率[59]。液滴尺寸不均勻度的增加可以提高液滴聚結(jié)的速率,這對(duì)提高旋流器的分離性能也是十分必要的[49]。
KANG W等采用自行設(shè)計(jì)的微觀可視化模型研究了油包水乳液中液滴在交流脈沖電場(chǎng)作用下的聚結(jié)機(jī)理,實(shí)驗(yàn)表明含水率較高時(shí)(超過(guò)30%),在相同電場(chǎng)強(qiáng)度下液滴聚結(jié)時(shí)間短,聚結(jié)率高[60]。ZHANG Y等指出,含水率的提高會(huì)增加連續(xù)相與分散相之間的界面面積,降低乳化劑的濃度,利于乳化液的失穩(wěn)[61]。但是當(dāng)含水率過(guò)高時(shí),電極之間更容易形成鏈狀結(jié)構(gòu)發(fā)生局部短路。由于水的高介電常數(shù)和導(dǎo)電性,高含水率乳化液比低含水率乳化液具有更高的介電常數(shù),在相同的初始條件下,高介電常數(shù)導(dǎo)致液滴的強(qiáng)迫振動(dòng)越強(qiáng)烈,聚結(jié)效應(yīng)越明顯。
TAYLOR S E指出,電場(chǎng)作用下液滴的聚結(jié)行為與界面膜的性質(zhì)有很大關(guān)系[62]。WASAN D通過(guò)實(shí)驗(yàn)研究了破乳劑對(duì)聚結(jié)進(jìn)程的影響,結(jié)果表明破乳劑可以吸附在膜表面,提高傳質(zhì)速率,抑制界面張力和提高界面的動(dòng)態(tài)活性,有利于破乳過(guò)程[63]。破乳劑通常要有低界面粘度以及高界面濃度和活性,才能有好的破乳效果。BAREGA E等發(fā)現(xiàn),升高溫度會(huì)降低分散相與連續(xù)相之間的界面張力,影響液滴的尺寸和形態(tài),降低乳化液體系的穩(wěn)定性,有利于聚結(jié)進(jìn)程[64]。也有研究學(xué)者從溫度對(duì)水的導(dǎo)電性和熱運(yùn)動(dòng)的影響,解釋了增加溫度對(duì)聚結(jié)效率和聚結(jié)速率的促進(jìn)作用[65]。
4 "結(jié)論與展望
石油化工等行業(yè)在生產(chǎn)和運(yùn)行過(guò)程中會(huì)產(chǎn)生大量油水乳化液,無(wú)論從經(jīng)濟(jì)效益還是環(huán)保要求出發(fā),油水乳化液的相分離都是需要迫切解決的問(wèn)題,因此電場(chǎng)-旋流場(chǎng)耦合強(qiáng)化脫水技術(shù)有很大的研究?jī)r(jià)值和應(yīng)用空間。筆者主要對(duì)電場(chǎng)-旋流場(chǎng)耦合強(qiáng)化脫水機(jī)理、耦合裝置結(jié)構(gòu)和操作參數(shù)的研究現(xiàn)狀進(jìn)行闡述和分析:
a. 研究學(xué)者進(jìn)行了耦合場(chǎng)下乳化液相分離實(shí)驗(yàn),證明了電場(chǎng)-旋流耦合技術(shù)可以對(duì)乳化液進(jìn)行有效分離。在旋流器內(nèi)部施加一定電場(chǎng)后,液滴在一定的聚結(jié)形式下進(jìn)行聚結(jié)和分離。旋流場(chǎng)產(chǎn)生的離心力可以使液滴間距變小,改善聚結(jié)效果,同時(shí)也能大幅降低電擊穿的風(fēng)險(xiǎn),電場(chǎng)也能降低液滴碰撞聚結(jié)的停留時(shí)間,雙向促進(jìn)聚結(jié)。為實(shí)現(xiàn)耦合場(chǎng)下液滴聚結(jié)和分離效果的模擬,研究學(xué)者提出了一些基于電場(chǎng)和流場(chǎng)的耦合模型,但缺乏高強(qiáng)湍流下電聚結(jié)模型的適應(yīng)性分析和耦合場(chǎng)下液滴運(yùn)動(dòng)、聚結(jié)等動(dòng)態(tài)特性的微觀測(cè)量。
b. 基于近期提出的幾種典型的耦合結(jié)構(gòu),指出了設(shè)計(jì)和優(yōu)化耦合結(jié)構(gòu)時(shí)要對(duì)電極結(jié)構(gòu)和旋流器本體進(jìn)行多因素分析,綜合考慮電場(chǎng)和流場(chǎng)對(duì)液滴聚結(jié)和相分離的影響。同時(shí)分析了耦合場(chǎng)下不同操作參數(shù)的研究進(jìn)展,闡述了不同參數(shù)對(duì)聚結(jié)和相分離的影響機(jī)理。
c. 近年來(lái),脈沖電場(chǎng)成為研究乳化液破乳的熱點(diǎn),不僅因?yàn)橄鄬?duì)于直流和交流電場(chǎng)具有高效、快速破乳聚結(jié)及防止短路等特點(diǎn),還因?yàn)槊}沖電場(chǎng)可以有效處理高含水O/W乳化液,打破了電聚結(jié)裝置難以處理高含水乳化液的局限,近期研究表明,脈沖電場(chǎng)處理高含水率乳化液具有可行性,為耦合場(chǎng)處理O/W乳化液提供了依據(jù),也是未來(lái)的研究方向。
參""考""文""獻(xiàn)
[1] UMAR A A,SAAID I B M,SULAIMON A A,et al.A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids[J].Journal of Petroleum Science and Engineering,2018(165):673-690.
[2] WANG D,ZHAO Z Q,QIAO C Y,et al.Techniques for treating slop oil in oil and gas industry:A short review[J].Fuel,2020,279:118482.
[3] 陳家慶,王強(qiáng)強(qiáng),肖建洪,等.高含水油井采出液預(yù)分水技術(shù)發(fā)展現(xiàn)狀與展望[J].石油學(xué)報(bào),2020,41(11):1434-1444.
[4] AMAMI E,F(xiàn)ERSI A,KHEZAMI L,et al.Centrifugal osmotic dehydration and rehydration of carrot tissue pre-treated by pulsed electric field[J].LWT-Food Science and Technology,2007,40(7):1156-1166.
[5] ZHANG J P,ZHA Z T,CHE P,et al.Theoretical study on submicron particle escape reduced by magnetic confinement effect in low inlet speed electrostatic cyclone precipitators[J].Powder Technology,2018,339:1005-1011.
[6] TUE NENU R K,HAYASE Y,YOSHIDA H,et al.Influence of inlet flow rate,pH,and beads mill operating condition on separation performance of sub-micron particles by electrical hydrocyclone[J].Advanced Powder Technology,2010,21(3):246-255.
[7] BAILES P J.Electrically augmented settlers and coalescers for solvent extraction[J].Hydrometallurgy,1992,30(1-3):417-430.
[8] TOBIN T,RAMKRISHNA D.Modeling the effect of drop charge on coalescence in turbulent liquid-liquid dispersions[J].The"Canadian Journal of Chemical Engineering,1999,77(6):1090-1104.
[9] GUO C H,HE L M.Coalescence behaviour of two large water-drops in viscous oil under a DC electric field[J].Journal of Electrostatics,2014,72(6):470-476.
[10] SONG F H,NIU H,F(xiàn)AN J,et al.Molecular dynamics study on the coalescence and break-up behaviors of ionic droplets under DC electric field[J].Journal of Molecular Liquids,2020,312:113195.
[11] F?RDEDAL H,SCHILDBERG Y,SJ?BLOM J,et al.Crude oil emulsions in high electric fields as studied by dielectric spectroscopy.Influence of interaction between commercial and indigenous surfactants[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,1996,106(1):33-47.
[12] HE X,WANG S L,YANG Y R,et al.Electro-coalescence of two charged droplets under pulsed direct current electric fields with various waveforms:A molecular dynamics study[J].Journal of Molecular Liquids,2020,312:113429.
[13] EOW J S,GHADIRI M,SHARIF A O,et al.Electrostatic enhancement of coalescence of water droplets in oil:A review of the current understanding[J].Chemical Engineering Journal,2001,84(3):173-192.
[14] 倪玲英,白莉,郭長(zhǎng)會(huì),等.高頻電場(chǎng)離心場(chǎng)作用下的乳狀液液滴聚合[C]//第十三屆全國(guó)水動(dòng)力學(xué)學(xué)術(shù)會(huì)議暨第二十六屆全國(guó)水動(dòng)力學(xué)研討會(huì)論文集—B水動(dòng)力學(xué)基礎(chǔ).2014.
[15] TAYLOR S E.Theory and practice of electrically-enhanced phase separation of water-in-oil emulsions[J].Chemical Engineering Research and Design,1996,74:526-540.
[16] MOHAMMADI M,SHAHHOSSEINI S,BAYAT M,et al.Numerical study of the collision and coalescence of water droplets in an electric field[J].Chemical Engineering amp; Technology,2014,37(1):27-35.
[17] ATTEN P.Electrocoalescence of water droplets in an insulating liquid[J].Journal of Electrostatics,1993,30:259-269.
[18] PENSINI E,HARBOTTLE D,YANG F,et al.Demulsification mechanism of asphaltene-stabilized water-in-oil emulsions by a polymeric ethylene oxide-propylene oxide demulsifier[J].Energy amp; Fuels,2014,28(11):6760-6771.
[19] GONG H F,LI W,ZHANG X M,et al.Effects of droplet dynamic characteristics on the separation performance of a demulsification and dewatering device coupling electric and centrifugal fields[J].Separation and Purification Technology,2021,257:117905.
[20] 葉學(xué)民,戴宇晴,李春曦.電場(chǎng)對(duì)液滴界面張力及動(dòng)力學(xué)特征影響的研究進(jìn)展[J].化工進(jìn)展,2016,35(9):2647-2655.
[21] RODIONOVA G,KELE?O?LU S,SJ?BLOM J.AC field induced destabilization of water-in-oil emulsions based on North Sea acidic crude oil[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2014,448:60-66.
[22] REN B,KANG Y.Aggregation of oil droplets and demulsification performance of oil-in-water emulsion in bidirectional pulsed electric field[J].Separation and Purification Technology,2019,211:958-965.
[23] YANG D H,XU M H,HE L M,et al.The influence and optimisation of electrical parameters for enhanced coalescence under pulsed DC electric field in a cylindrical electrostatic coalescer[J].Chemical Engineering Science,2015,138:71-85.
[24] HU J L,CHEN J Q,ZHANG X,et al.Dynamic demulsification of oil-in-water emulsions with electrocoalescence:Diameter distribution of oil droplets[J].Separation and Purification Technology,2020,254:117631.
[25] HONG W P,YE X Y,XUE R.Numerical simulation of deformation behavior of droplet in gas under the electric field and flow field coupling[J].Journal of Dispersion Science and Technology,2017,39(1):26-32.
[26] PODGóRSKA W,MARCHISIO D L.Modeling of turbulent drop coalescence in the presence of electrostatic forces[J].Chemical Engineering Research and Design,2016,108:30-41.
[27] MELHEIM J A,CHIESA M.Simulation of turbulent electrocoalescence[J].Chemical Engineering Science,2006,61(14):4540-4549.
[28] TOMAR G,GERLACH D,BISWAS G,et al.Two-phase electrohydrodynamic simulations using a volume-of-fluid approach[J].Journal of Computational Physics,2007,227(2):1267-1285.
[29] RAHMAT A,YILDIZ M.A multiphase ISPH method for simulation of droplet coalescence and electro-coalescence[J].International Journal of Multiphase Flow,2018,105:32-44.
[30] 王永偉,張楊,王奎升,等.新型離心-脈沖電場(chǎng)聯(lián)合破乳裝置的設(shè)計(jì)[J].流體機(jī)械,2009,37(11):15-18.
[31] HADIDI H,KAMALI R,DEHGHAN M K.Numerical simulation of a novel non-uniform electric field design to enhance the electrocoalescence of droplets[J].European Journal of Mechanics-B Fluids,2020,80:206-215.
[32] LUO S,SCHIFFBAUER J,LUO T.Effect of electric field non-uniformity on droplets coalescence[J].Physical"Chemistry"Chemical"Physics,2016,18(43):29786-29796.
[33] 丁藝,陳家慶.高壓脈沖DC電場(chǎng)破乳技術(shù)研究[J].北京石油化工學(xué)院學(xué)報(bào),2010,18(2):27-34.
[34] GONG H F,YU B,DAI F,et al.Influence of electric field on water-droplet separated from emulsified oil in a double-field coupling device[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2018,550:27-36.
[35] 胡康.旋流電聚結(jié)器的研制與聚結(jié)特性研究[D].青島:中國(guó)石油大學(xué)(華東),2017.
[36] TIENHAARAA M,LAMMERS F A.Electrostatic coalescer and method for electrostatic coalescence:US9751092B2[P].2008-08-14.
[37] FJELDLY T A,HANSEN E B,NILSEN P J.Novel coalescer technology in first-stage separator enables one-stage separation and heavy-oil separation[C]//Offshore Technology Conference.2006:1-5.
[38] 劉家國(guó),吳奇霖.絕緣電極電脫水技術(shù)的研究進(jìn)展[J].石油化工腐蝕與防護(hù),2015,32(3):1-5.
[39] 閻軍,毛宗強(qiáng),何向明.靜電場(chǎng)和離心力場(chǎng)聯(lián)合分離水/油型乳狀液[J].化工學(xué)報(bào),1998,49(1):17-27.
[40] KWON W T,PARK K,HAN S D,et al.Investigation of water separation from water-in-oil emulsion using electric field[J].Journal of Industrial amp; Engineering Chemistry,2010,16(5):684-687.
[41] MA Z D,PU Y D,HAMITI D,et al.Elaboration of the demulsification process of W/O emulsion with three-dimensional electric spiral plate-type microchannel[J].Micromachihines,2019,10:751-764.
[42] NO?K C,TRAPY J,MOURET A,et al.Design of a Crude Oil Dehydration Unit[C]//SPE Annual Technical Conference and Exhibition.2002.
[43] HUANG X,HE L M,LUO X M,et al.Coalescence,partial coalescence and non-coalescence of two free droplets suspended in low-viscosity oil under DC electric field[J].The Journal of Physical Chemistry B,2020,124:7508-7517.
[44] ZHANG J.Movement of dispersed droplets of W/O emulsion in a uniform DC electrostatic field:Simulation on droplet coalescence[J].Chinese Journal of Chemical Engineering,2015,23(9):1453-1459.
[45] VIVACQUA V,MHATRE S,GHADIRI M,et al.Electrocoalescence of water drop trains in oil under constant and pulsatile electric fields[J].Chemical Engineering Research and Design,2015,104:658-668.
[46] GUO C,HE L,XIN Y.Deformation and breakup of aqueous drops in viscous oil under a uniform AC electric field[J].Journal of Electrostatics,2015,77:27-34.
[47] LESS S,HANNISDAL A,BJ?RKLUND E,et al.Electrostatic destabilization of water-in-crude oil emulsions:Application to a real case and evaluation of the Aibel VIEC technology[J].Fuel,2008,87(12):2572-2581.
[48] BRASIL T A,WATANABE E H,ASSENHEIMER T,et al.Microscope analysis and evaluation of the destabilization process of water-in-oil emulsions under application of electric field[J].IEEE Transactions on Dielectrics and Electrical Insulation,2020,27(3):873-881.
[49] SUN Z,JIANG Y,REN R,et al.Numerical simulation of droplet deformation in low frequency half-sinusoidal electric field[J].Journal of Dispersion Science and Technology,2021,42(4):595-604.
[50] YIN S,HUANG Y,WONG T N,et al.Dynamics of droplet in flow-focusing microchannel under AC electric fields[J].International Journal of Multiphase Flow,2020,125:103212.
[51] 張建,董守平,甘琴容.高頻脈沖電場(chǎng)作用下乳狀液液滴動(dòng)力學(xué)模型[J].化工學(xué)報(bào),2007,58(4):875-880.
[52] FERNáNDEZ A.Shear flow of an emulsion of drops less conductive than the suspending fluid immersed in an electric field by numerical simulation[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2009,338(1-3):68-79.
[53] BHARDWAJ A,HARTLAND S.Dynamics of emulsification and demulsification of water in crude oil emulsions[J].Industrial amp; Engineering Chemistry Research,1994,33(5):1271-1279.
[54] 王文才,蔡嗣經(jīng),黃萬(wàn)撫.液膜乳化液的離心-脈沖電場(chǎng)連續(xù)破乳[J].北京科技大學(xué)學(xué)報(bào),2005,27(5):524-527.
[55] 李青.高頻脈沖離心裝置油水乳狀液破乳分離的理論和實(shí)驗(yàn)研究[D].北京:北京化工大學(xué),2015.
[56] YE P,YU B,ZHANG X M,et al.Numerical simulation on the effect of combining centrifugation,electric field and temperature on two-phase separation[J].Chemical Engineering and Processing-Process Intensification,2020,148:107803.
[57] EOW J S,GHADIRI M,SHARIF A O.Electro-hydrodynamic separation of aqueous drops from flowing viscous oil[J].Journal of Petroleum Science and Engineering,2007,55(1-2):146-155.
[58] MIZOGUCHI Y,MUTO A.Demulsification of oil-in-water emulsions by application of an electric field:Relationship between droplet size distribution and demulsification efficiency[J].Journal of Chemical Engineering of Japan,2019,52(10):799-804.
[59] SINAISKI E G,LAPIGA E J.Separation of Multiphase,Multicomponent Systems:Chapter 13 Coalescence of Drops[M].2007:393-462.
[60] KANG W,LI M,YANG H,et al.Coalescence behavior of aqueous drops in water-in-oil emulsions under high-frequency pulsed AC fields[J].Journal of Industrial and Engineering Chemistry,2021,93:415-422.
[61] ZHANG Y,LIU Y,JI R,et al.Dehydration efficiency of water-in-model oil emulsions in high frequency pulsed DC electrical field:Effect of physical and chemical properties of the emulsions[J].Journal of Dispersion Science and Technology,2012,33(11):1574-1581.
[62] TAYLOR S E.Investigations into the electrical and coalescence behaviour of water-in-crude oil emulsions in high voltage gradients[J].Colloids amp; Surfaces,1988,29(1):29-51.
[63] WASAN D.Destabilization of water-in-oil emulsions[J].Springer Netherlands,1992:283-295.
[64] BAREGA E,ZONDERVAN E,HAAN A D,et al.Entrainment reduction in a static-mixer settler setup by electric field enhanced coalescence[J].Separation Science amp; Technology,2014,49(2):186-196.
[65] YE F,MI Y,LIU H,et al.Demulsification of water-in-crude oil emulsion using natural lotus leaf treated via a simple hydrothermal process[J].Fuel,2021,295(1-3):120596.
(收稿日期:2022-04-01,修回日期:2022-12-23)
Research Progress in Electric?Swirl Field Coupling Enhanced Emulsion
Dehydration Technology
GAO Bo1, JIANG Ming?hu1,2, ZHAO Li?xin1,2, ZHOU Long?da1, XU Bao?rui1,2
(1. School of Mechanical Science and Engineering, Northeast Petroleum University; 2. Heilongjiang Key Laboratory of Petroleum and Petrochemical Multiphase Treatment and Pollution Prevention)
Abstract" "Taking the water in oil emulsion as the object, the mechanism of droplet coalescence and enhanced separation under coupling action of electric field and swirl field was expounded, including development of coupling device structures at the present stage; in addition, the effects of velocity, voltage amplitude, frequency and emulsion characteristics on the droplet coalescence, fragmentation and phase separation were analyzed; the limitations of the current research were pointed out and the future research direction was discussed to provide a reference for the study of droplet coalescence characteristics and operating parameters at the coupled field.
Key words" " emulsion, dehydration, electric?swirl field coupling, coalescence, enhanced separation
基金項(xiàng)目:黑龍江省自然科學(xué)基金(重點(diǎn))項(xiàng)目(ZD2020E001);東北石油大學(xué)“龍江學(xué)者”配套科研經(jīng)費(fèi)資助項(xiàng)目(lj201803)。
作者簡(jiǎn)介:高波(1996-),碩士研究生,從事流體機(jī)械與工程的研究。
通訊作者:趙立新(1972-),教授,從事流體機(jī)械與工程的研究,lx_zhao@126.com。
引用本文:高波,蔣明虎,趙立新,等.電場(chǎng)-旋流場(chǎng)耦合強(qiáng)化乳化液脫水技術(shù)研究進(jìn)展[J].化工機(jī)械,2023,50(1):000-000.