亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        用Painlevé變換法構(gòu)造廣義Benjamin-Bona-Mahony方程的沖擊波解

        2023-04-29 00:44:03盧霖張超
        關(guān)鍵詞:解和張超沖擊波

        盧霖 張超

        本文利用Painlevé變換法構(gòu)造了廣義Benjamin-Bona-Mahony(BBM)方程的沖擊波解,同時用G′/G-展開法構(gòu)造了方程的沖擊波解和有理解. 兩種方法的比較結(jié)果顯示,用Painlevé變換法直觀簡便.

        Benjamin-Bona-Mahony方程; 沖擊波解; Painlevé變換法; G′/G-展開法

        O175.29A2023.011005

        收稿日期: 2022-04-24

        基金項目: 湖南省教育廳青年項目(22B0886); 湖南省自然科學(xué)基金(2017JJ3044);? 湖南省自然科學(xué)基金(2018JJ2073); 湖南省教育廳重點項目(21A0576)

        作者簡介: 盧霖(1987-), 男, 安徽阜南人, 博士, 主要研究方向為微分方程與動力系統(tǒng).

        通訊作者: 張超.E-mail: flyheartzc@21cn.com

        Kink solutions for the generalized Benjamin-Bona-Mahony equation constructed by Painlevés transformation method

        LU Lin1,? ZHANG Chao2

        (1. School of Mathematics and Statistics, Hunan First Normal University, Changsha 410205, China;

        2. Provincial Key Laboratory of Geotechnical Engineering for Stability Control and Health Monitoring, Hunan University of Science and Technology, Xiangtan 411201, China)

        By using the Painlevés transformation method, we construct the kink solutions for the generalized Benjamin-Bona-Mahony (BBM) equation. Meanwhile, by using the G′/G-expansion method, we construct the kink solution and rational solution for the equation. The cornparison of the two methods shows that the Painlevés transformation method is intuitive and effective.

        Benjamin-Bona-Mahony equation; Kink solution; Painlevés transformation method; G′/G-expansion method

        (2010 MSC 35R11, 83C15)

        1 引 言

        Benjamin-Bona-Mahony (BBM)方程

        ut+ux+uux-uxxt=0

        常被用來近似地描述某些非線性色散系統(tǒng)中長波的單向傳播. BBM方程存在孤波解,孤子或孤波是色散和非線性之間微妙平衡的結(jié)果.BBM方程的精確解在數(shù)學(xué)、物理及工程應(yīng)用等領(lǐng)域有重要應(yīng)用. 已有許多方法可以構(gòu)造其精確解,如首次積分法,F(xiàn)-展開法,改進的擴展tanh函數(shù)法,雅可比橢圓函數(shù)法,修正的簡單方程法,李對稱法,Painlevé展開法,He半逆變分法,同倫擾動法,tanh函數(shù)法,正余弦法,指數(shù)函數(shù)法,sine-Gordon展開法,Hirota雙線性變換法等[1-28].

        本文考慮廣義BBM方程

        5 結(jié) 論

        本文利用Painlevé變換方法構(gòu)造了廣義BBM方程(1)的沖擊波解. 利用G′/G-展開方法,本文也構(gòu)造了方程的沖擊波解和有理解. 由于G′/G-展開方法等價于擴展的tanh-函數(shù)方法[28],該沖擊波解也可以用擴展的tanh-函數(shù)方法構(gòu)造. 結(jié)果表明,利用Painlevé變換法獲得沖擊波解簡便有效.

        參考文獻:

        [1] Sahadevan R. Painlevé expansion and exact solution for nonlinear evolution equations [J]. Theor Math Phys, 1994, 99: 776.

        [2] Martel Y, Merle F, Mizumachi T. Description of the inelastic collision of two solitary waves for the BBM equation [J]. Arch Ration Mech An, 2010, 196: 517

        [3] Tao Z L. A note on thevariational approach to the Benjamin-Bona-Mahony equation using He′s semi-inverse method [J]. Int J Comput Math, 2010, 87: 1752.

        [4] Abbasbandy S, Shirzadi A. The first integral method for modified Benjamin-Bona-Mahony equation [J]. Commun Nonlinear Sci, 2010, 15: 1759.

        [5] Da I, Korkmaz A, Saka B. Cosine expansion-based differential quadrature algorithm for numerical solution of the RLW equation [J]. Numer Meth Part D E, 2010, 26: 544.

        [6] Cesar A, Gómez S, Salas A H, et al. New periodic and soliton solutions for the generalized BBM and Burgers-BBM equations [J]. Appl Math Comput, 2010, 217: 1430.

        [7] Wazwaz A M, Helal M A. Nonlinear variants of the BBM equation with compact and non-compact physical structures [J]. Chaos Soliton Fract, 2005, 26: 767.

        [8] Johnpillai A G, Kara A H, Biswas A. Symmetry reduction, exactgroup-invariant solutions and conservation laws of the Benjamin-Bona-Mahoney equation [J]. Appl Math Lett, 2013, 26: 376.

        [9] Yokus A, Sulaiman T A, Bulut H. On the analytical and numerical solutions of the Benjamin-Bona-Mahony equation [J]. Opt Quant Electron, 2018, 50: 31.

        [10] Biswas A. 1-soliton solution of Benjamin-Bona-Mahoney equation with dual-power law non-linearity [J]. Commun Nonlinear Sci, 2010, 15: 2744.

        [11] Painlevé P. Sur les equations differentielles du second ordre et d′ordre superieur dont l′integrale generale est uniforme [J]. Acta Math, 1902, 25: 1.

        [12] Wang M, Li X, Zhang J. The G′/G-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics [J]. Phys Lett A, 2008, 372: 417.

        [13] Ayhan B, Bekir A. The G′/G-expansion method for the nonlinear lattice equations [J]. Commun Nonlinear Sci, 2012, 17: 3490.

        [14] Biswas A, Sonmezoglu A, Ekici M, et al. Optical soliton perturbation with fractional temporal evolution by extended G′/G-expansion method [J]. Optik, 2018, 161: 301.

        [15] Ebadi G, Biswas A. The G′/G method and topological soliton solution of the K(m,n) equation [J]. Commun Nonlinear Sci, 2011, 16: 2377.

        [16] Abdou M A. The extended F-expansion method and its application for a class of nonlinear evolution equations [J]. Chaos Soliton Fract, 2007, 31: 95.

        [17] Ali A H A. The modified extended tanh-function method for solving coupled MKdV and coupled Hirota-Satsuma coupled KdV equations [J]. Phys Lett A, 2007, 363: 420.

        [18] Bona J, Dai M. Norm-inflation results for the BBM equation [J]. J Math Anal Appl, 2017, 446: 879.

        [19] Benjamin T B, Bona J L, Mahony J J. Model equations for long waves in nonlinear dispersive systems [J]. Philos T R Soc A, 1972, 272: 47.

        [20] Bhrawy A H, Abdelkawy M A, Biswas A. Cnoidal and snoidal wave solutions to coupled nonlinear wave equations by the extended Jacobi′s elliptic function method [J]. Commun Nonlinear Sci, 2013, 18: 915.

        [21] Jawad A J M, Petkovic M D, Biswas A. Modified simple equation method for nonlinear evolution equations [J]. Appl Math Comput, 2010, 217: 869.

        [22] Kirchgássner K. Nonlinearly resonant surface waves and homoclinic bifurcation [J]. Adv Appl Mech, 1988, 26: 135.

        [23] 康麗, 孫峪懷, 廖紅梅, 等.空時分數(shù)階mBBM方程的新精確解[J]. 四川大學(xué)學(xué)報: 自然科學(xué)版, 2018, 55: 673.

        [24] Wang F, Li W, Zhang H. A new extended homotopy perturbation method for nonlinear differential equations [J]. Math Comput Model, 2012, 55: 1471.

        [25] Wang D S,Yin Y. Symmetry analysis and reductions of the two-dimensional generalized Benney system via geometric approach [J]. Comput Math Appl, 2016, 71: 748.

        [26] Wu X H, He J H. Solitary solutions, periodic solutions and compacton-like solutions using the exp-function method [J]. Comput Math Appl, 2007, 54: 966.

        [27] Zhang J. Using the simplified Hirota′s method to investigate multi-soliton solutions of the fifth-order KdV equation [J]. Int Math Forum, 2012, 7: 917.

        [28] El-Wakil S A, Abdou M A, El-Shewy E K, et al. (G′/G)-expansion method equivalent to the extended tanh-function method [J]. Phys Scripta, 2010, 81: 035011.

        猜你喜歡
        解和張超沖擊波
        約化的(3+1)維Hirota方程的呼吸波解、lump解和半有理解
        張超個人簡介
        散文百家(2021年11期)2021-11-12 03:06:38
        My New Invention
        How to Protect Us from Infectious Diseases
        張超個人簡介
        散文百家(2021年4期)2021-04-30 03:15:20
        武漢沖擊波
        中國公路(2019年10期)2019-06-28 03:05:08
        能源物聯(lián)網(wǎng)沖擊波
        能源(2018年10期)2018-12-08 08:02:34
        具異號非線性源項的熱方程淬火解和仿真
        圓柱散射場RCS的解析解和MoM數(shù)值解
        醫(yī)生集團沖擊波
        日韩av他人妻中文字幕| 精品国产乱码久久久软件下载| 在线看片无码永久免费aⅴ| 无码专区无码专区视频网址| 加勒比av在线一区二区| 亚洲av激情久久精品人| 亚洲国产精品日韩av专区| 无码人妻一区二区三区免费看| 男受被做哭激烈娇喘gv视频| 91情侣视频| 一区二区三区精品亚洲视频| 中文字幕久久波多野结衣av不卡| 国产一区二区波多野结衣| 久久久伊人影院| 久久婷婷色香五月综合激激情| 变态另类人妖一区二区三区| 桃花影院理论片在线| 久久99国产伦精品免费| 午夜亚洲精品视频网站| 亚洲视频网站大全免费看| 国产一卡2卡3卡四卡国色天香 | 十八岁以下禁止观看黄下载链接| 国产成人av综合色| 亚洲国产人成综合网站| 山外人精品影院| 国产黑丝在线| 一区二区三区国产亚洲网站 | 日日摸天天摸97狠狠婷婷| 免费无码成人av在线播| 麻豆成年视频在线观看| 麻豆69视频在线观看| 国产成人亚洲综合色婷婷| 91久久国产精品视频| 国产大片在线观看91| 特黄 做受又硬又粗又大视频| 国产性一交一乱一伦一色一情| 91福利国产在线观看网站| 久久熟女精品—区二区蜜臀| 国产精品无码翘臀在线观看 | 婷婷四虎东京热无码群交双飞视频 | 蜜桃a人妻精品一区二区三区|