陳智恒 高博文 桂蓓 施梅姐 蕭煥明 謝玉寶 黎勝 池曉玲
摘要:目的通過(guò)臨床一般資料、血清學(xué)指標(biāo)及肝臟彈性成像無(wú)創(chuàng)檢查手段,基于LASSO及Logistic回歸建立代謝相關(guān)脂肪性肝?。∕AFLD)發(fā)生脂肪性肝炎的診斷模型,并評(píng)估該模型的診斷價(jià)值。方法納入2018年1月—2021年12月于廣東省中醫(yī)院診斷為MAFLD且完善肝病理活檢的患者為研究對(duì)象299例,根據(jù)肝病理NAS評(píng)分將其分為脂肪性肝炎組(n=170)例和無(wú)脂肪性肝炎組(n=129)。先后通過(guò)LASSO回歸及多因素Logistic回歸篩選MAFLD發(fā)生脂肪性肝炎的影響因素,并建立無(wú)創(chuàng)診斷模型,利用列線圖形式可視化,采用加強(qiáng)Bootstrap法進(jìn)行內(nèi)部驗(yàn)證,繪制ROC曲線及Calibration曲線,并在MAFLD+NAFLD和MAFLD+cHBVi兩個(gè)亞組人群中觀察模型的診斷效能,并與其他診斷模型進(jìn)行比較分析。計(jì)數(shù)資料組間比較采用χ2檢驗(yàn);符合正態(tài)分布的計(jì)量資料組間比較采用成組t檢驗(yàn),不符合正態(tài)分布的計(jì)量資料組間比較采用Mann-Whitney U檢驗(yàn)。采用多因素Logistic回歸分析,篩選最佳診斷因素,構(gòu)建列線圖診斷模型,繪制受試者工作特征曲線(ROC曲線),計(jì)算ROC曲線下面積(AUC),并進(jìn)一步采用加強(qiáng)Bootstrap法對(duì)模型進(jìn)行內(nèi)部驗(yàn)證,繪制Calibration曲線顯示校準(zhǔn)度。結(jié)果兩組間BMI、ALT、AST、ADA、ALP、GGT、TBA、TCO2、UA、HbA1c比較差異均有統(tǒng)計(jì)學(xué)意義(P值均<0.05);FibroScan方面,兩組LSM及CAP比較提示差異具有統(tǒng)計(jì)學(xué)意義(P值均<0.001);病理學(xué)方面,兩組的纖維化等級(jí)、脂肪變積分、小葉炎癥積分、氣球樣變積分及NAS總分差異均有統(tǒng)計(jì)學(xué)意義(P值均<0.001)。亞組隊(duì)列方面,MAFLD+NAFLD有、無(wú)脂肪性肝炎組分別為63、48例,MAFLD+cHBVi有、無(wú)脂肪性肝炎組分別為90、71例。通過(guò)LASSO回歸及多因素Logistic回歸篩選出LSM、CAP、BMI、AST是判斷MAFLD患者是否發(fā)生脂肪性肝炎的最佳診斷因素,并以此構(gòu)建LCBA模型。LCBA模型結(jié)果提示,總MAFLD、MAFLD+NAFLD和MAFLD+cHBVi人群的AUC分別為0.816、0.866、0.764(P值均<0.001),ROC曲線對(duì)比顯示均優(yōu)于acNASH、HSI、NFS模型。結(jié)論LCBA模型用于診斷MAFLD患者是否發(fā)生脂肪性肝炎的效能穩(wěn)定,且優(yōu)于acNASH、HSI、NFS,值得臨床推廣。關(guān)鍵詞:非酒精性脂肪性肝??; 代謝相關(guān)脂肪性肝??; 診斷基金項(xiàng)目:國(guó)家“十三五”重大傳染病專(zhuān)項(xiàng)課題(2018ZX10725506-003, 2018ZX10725505-004); 廣東省中醫(yī)院院內(nèi)專(zhuān)項(xiàng)(YN2022DB04, YN10101903); 國(guó)家中醫(yī)藥管理局全國(guó)名老中醫(yī)藥專(zhuān)家池曉玲傳承工作室建設(shè)項(xiàng)目(國(guó)中醫(yī)藥人教函〔2022-75 號(hào)〕); 省部共建中醫(yī)濕證國(guó)家重點(diǎn)實(shí)驗(yàn)室開(kāi)放課題(SZ2021KF08)
Construction and analysis of a noninvasive diagnostic model for steatohepatitis in metabolic associated fatty liver disease
CHEN Zhiheng GAO Bowen GUI Bei SHI Meijie XIAO Huanming XIE Yubao LI Sheng CHI Xiaoling(1. The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; 2. Department of Hepatology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510006, China; 3. The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; 4. State Key Laboratory of Dampness Syndrome of Traditional Chinese Medicine Jointly Built by Province and Ministry, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China)
Corresponding author:CHI Xiaoling, chixiaolingqh@163.com (ORCID:0000-0003-3193-1943)
Abstract:ObjectiveTo establish a diagnostic model for steatohepatitis in metabolic associated fatty liver disease (MAFLD) based on LASSO and logistic regression analyses by using general clinical data, serological parameters, and noninvasive liver elastography, and to evaluate the diagnostic value of this model. MethodsA total of 299 patients who were diagnosed with MAFLD and underwent liver biopsy in Guangdong Provincial Hospital of Traditional Chinese Medicine from January 2018 to December 2021 were enrolled as subjects, and according to NAS score, they were divided into steatohepatitis group with 170 patients and non-steatohepatitis group with 129 patients. The LASSO regression analysis and the multivariate logistic regression analysis were used to identify the influencing factors for steatohepatitis in MAFLD, and a noninvasive diagnostic model was established, visualized in the form of nomogram, and internally validated by the enhanced Bootstrap method. The receiver operating characteristic (ROC) curve and the calibration curve were plotted for the model, and its diagnostic efficacy was observed in the MAFLD+NAFLD and MAFLD+cHBVi subgroups, which was then compared with other diagnostic models. The chi-square test was used for comparison of categorical data between groups; the independent-samples t test was used for comparison of normally distributed continuous data between groups, and the Mann-Whitney U test was used for comparison of non-normally distributed continuous data between groups. A multivariate logistic regression analysis was used to determine optimal diagnostic factors, and a nomogram diagnostic model was established; the ROC curve was plotted, and the area under the ROC curve (AUC) was calculated; the enhanced Bootstrap method was used for internal validation of the model, and the calibration curve was plotted to show the level of calibration. ResultsThere were significant differences between the two groups in body mass index (BMI), alanine aminotransferase, aspartate aminotransferase (AST), adenosine deaminase, alkaline phosphatase, gamma-glutamyl transpeptidase, total bile acid, total carbon dioxide concentration, uric acid, HbA1c (all P<0.05). As for FibroScan, there were significant differences between the two groups in liver stiffness measurement (LSM) and controlled attenuation parameter (CAP) (both P<0.001); as for pathology, there were significant differences between the two groups in fibrosis degree, steatosis score, lobular inflammation score, ballooning degeneration score, and total NAS score (all P<0.001). In the subgroup analysis, there were 63 patients with steatohepatitis and 48 patients without steatohepatitis in the MAFLD+NAFLD group, and there were 90 patients with steatohepatitis and 71 patients without steatohepatitis in the MAFLD+cHBVi group. The LASSO regression analysis showed that LSM, CAP, BMI, and AST were the best diagnostic factors for the presence or absence of steatohepatitis in MAFLD patients, and the LCBA model was established based on these indices. The LCBA model showed an AUC of 0.816 in the total MAFLD population, 0.866 in the MAFLD+NAFLD population, and 0.764 in the MAFLD+cHBVi population (all P<0.001), and comparisons based on the ROC curve showed that they were superior to the acNASH, HSI, and NFS models. ConclusionThe LCBA model has a stable performance in the diagnosis of steatohepatitis in patients with MAFLD and is superior to acNASH, HSI, and NFS. Therefore, it holds promise for clinical application.
Key words:Non-alcoholic Fatty Liver Disease; Metabolic Associated Fatty Liver Disease; Diagnosis
Research funding:The Thirteenth Five-Year Plan for Major and Special Programs of the National Science and Technology of China (2018ZX10725506-003, 2018ZX10725505-004); The Specific Research Fund for TCM Science and Technology of Guangdong Provincial Hospital of Chinese Medicine (YN2022DB04,YN10101903); Chi Xiaoling National Famous Traditional Chinese Medicine Expert Inheritance Studio (Teaching Letter from State Traditional Chinese Medicine Office (2022-75)); Open Project of State Key Laboratory of Dampness Syndrome of Chinese Medicine(SZ2021KF08)
代謝相關(guān)脂肪性肝?。∕AFLD)是于2020年經(jīng)國(guó)際專(zhuān)家組共識(shí)聲明,由非酒精性脂肪性肝病(NAFLD)更名而來(lái)[1],更加強(qiáng)調(diào)了MAFLD可能伴隨的糖脂代謝紊亂、胰島素抵抗、血壓升高、肥胖等代謝異常特征。脂肪性肝炎(NASH)是介導(dǎo)MAFLD疾病進(jìn)展的主要途徑,將進(jìn)一步導(dǎo)致肝纖維化、肝硬化甚至肝衰竭、肝癌[2-3]。而抑制脂肪性肝炎是阻止纖維化進(jìn)展的有力治療手段[5],所以及早識(shí)別脂肪性肝炎是臨床聚焦的重要領(lǐng)域[4]。目前識(shí)別評(píng)估脂肪性肝炎的“金標(biāo)準(zhǔn)”仍是肝穿刺病理活檢,但因存在費(fèi)用成本高、并發(fā)癥風(fēng)險(xiǎn)高、重復(fù)評(píng)估難等缺點(diǎn),不適合定期監(jiān)測(cè)。所以開(kāi)發(fā)MAFLD的脂肪性肝炎無(wú)創(chuàng)診斷模型是臨床迫切所需。然而現(xiàn)有的大部分無(wú)創(chuàng)脂肪性肝炎診斷模型,如CA index、NAFIC score、G-NASH model、ClinLipMet score、Index of NASH等,大都依托于特殊的血清學(xué)檢測(cè),臨床推廣性差;而一些本用于診斷NAFLD或判別NAFLD纖維化程度的無(wú)創(chuàng)模型,用于脂肪性肝炎時(shí),診斷效能明顯下降[6-7]。且目前脂肪性肝炎的診斷模型,多是依據(jù)NAFLD診斷標(biāo)準(zhǔn)構(gòu)建,對(duì)MAFLD的診斷效能尚未可知。因此,本研究將基于臨床常用指標(biāo),構(gòu)建準(zhǔn)確性強(qiáng)、可重復(fù)性高的無(wú)創(chuàng)診斷模型,用于MAFLD患者預(yù)測(cè)發(fā)生脂肪性肝炎的風(fēng)險(xiǎn),對(duì)臨床有重要意義。
1資料與方法
1.1研究對(duì)象選取2018年1月—2021年12月于廣東省中醫(yī)院就診并診斷為MAFLD的患者為研究對(duì)象。MAFLD診斷標(biāo)準(zhǔn)參照2020年發(fā)布的《亞太地區(qū)肝病協(xié)會(huì)代謝相關(guān)脂肪性肝病診斷與處理臨床實(shí)踐指南》[8],存在影像學(xué)(彩超/CT/MR)脂肪肝證據(jù)或肝穿病理提示存在>5%肝細(xì)胞脂肪變者,合并BMI≥23.0 kg/m2、2型糖尿病、代謝功能異常三者之一,即可診斷為MAFLD。其中代謝功能異常定義為滿(mǎn)足以下7項(xiàng)之2項(xiàng)或以上:(1)男性腰圍≥90 cm,女性腰圍≥80 cm;(2)血壓≥130 mmHg/85 mmHg或使用降壓藥物;(3)甘油三酯≥1.70 mmol;(4)男性HDL-C<1.0 mmol/L,女性HDL-C<1.3 mmol/L;(5)糖尿病前期(即空腹血糖5.6~6.9 mmol/L,餐后2 h血糖7.8~11.0 mmol/L,糖化血紅蛋白5.7%~6.4%);(6)胰島素抵抗穩(wěn)態(tài)模型(HOMA-IR)指數(shù)≥2.5;(7)超敏C反應(yīng)蛋白≥2.0 mg/L。納入標(biāo)準(zhǔn):(1)符合MAFLD診斷的18~70歲患者,性別不限;(2)行肝穿刺病理活檢及FibroScan檢查,并在肝穿刺病理活檢前后1個(gè)月內(nèi)存在經(jīng)影像學(xué)證實(shí)的脂肪肝。排除標(biāo)準(zhǔn):(1)肝穿刺前已經(jīng)確診肝硬化或肝癌,或存在嚴(yán)重肝功能不全;(2)合并急性感染、嚴(yán)重心肺腎等重要臟器功能障礙或其他惡性腫瘤史;(3)孕婦或哺乳期婦女;(4)重要數(shù)據(jù)缺失者。
1.2研究方法
1.2.1病理學(xué)標(biāo)準(zhǔn)及分組根據(jù)美國(guó)NASH臨床研究網(wǎng)絡(luò)病理協(xié)會(huì)提出的改良Brunt標(biāo)準(zhǔn)及NAS評(píng)分[9],將肝纖維化等級(jí)分為0~4級(jí),對(duì)肝脂肪變性、肝小葉炎癥及肝細(xì)胞氣球樣變程度分別賦予0~3分、0~3分、0~2分,三個(gè)維度得分相加為NAS總得分,本研究將NAS≥5分歸為脂肪性肝炎組,NAS<5分歸為無(wú)脂肪性肝炎組。
1.2.2亞組設(shè)置將本研究中同時(shí)符合MAFLD和NAFLD診斷的人群,以及同時(shí)符合MAFLD和慢性乙型肝炎病毒感染(cHBVi)診斷的人群分別設(shè)置為亞組(即MAFLD+NAFLD組與MAFLD+cHBVi組),其中NAFLD診斷參考《非酒精性脂肪性肝病防治指南(2018更新版)》[10],cHBVi診斷參考《慢性乙型肝炎防治指南(2019年版)》[11]。
1.2.3資料收集收集患者的一般資料,包括性別、年齡、BMI、吸煙史、飲酒情況、高血壓情況、糖尿病情況、合并肝病情況等,其中過(guò)量飲酒定義為平均酒精攝入≥20 g/d(女)及≥30 g/d(男)。收集患者的血清學(xué)檢驗(yàn)數(shù)據(jù),包括肝功能(ALT、AST、Alb、ALP、GGT、TBil、DBil、TBA、ADA),腎功能(Urea、Cr、UA、TCO2、eGFR),糖代謝指標(biāo)(GLU、HbA1c),脂代謝指標(biāo)(TG、TC、HDL-C、LDL-C、Apo-A1、Apo-B)及PLT、CK-MB、TSH等。
1.2.4FibroScan數(shù)據(jù)采集肝臟硬度值(LSM)及受控衰減參數(shù)(CAP)由Echosens公司生產(chǎn)的FibroScan-502機(jī)型進(jìn)行測(cè)量,由經(jīng)驗(yàn)豐富的醫(yī)生進(jìn)行測(cè)量,保證每次測(cè)量均≥10次有效激發(fā),成功率≥60%且IQR/M≤0.30[12]。
1.2.5其他對(duì)比模型本研究構(gòu)建模型將與acNASH、肝臟脂肪變指數(shù)(HSI)、NAFLD纖維化評(píng)分(NFS)三種無(wú)創(chuàng)診斷模型進(jìn)行對(duì)比,公式如下[6,13]:acNASH=AST/SCr×10;HSI=8×(ALT/AST)+BMI(女性,+2;2型糖尿病,+2);NFS=-1.675+(0.037×年齡)+(0.094×BMI)+[1.13×T2DM(yes=1,no=0)]+(0.99×AST/ALT)-(0.013×PLT)-(0.66×Alb)。
1.3統(tǒng)計(jì)學(xué)方法應(yīng)用SPSS 22.0軟件進(jìn)行統(tǒng)計(jì)學(xué)分析。計(jì)數(shù)資料組間比較采用χ2檢驗(yàn);符合正態(tài)分布的計(jì)量資料以x±s表示,兩組間比較采用成組t檢驗(yàn),不符合正態(tài)分布的計(jì)量資料以M(P25~P75)表示,兩組間比較采用Mann-Whitney U檢驗(yàn)。基于R語(yǔ)言軟件及相關(guān)程序包,利用LASSO回歸對(duì)變量進(jìn)行降維處理,篩選具有非零系數(shù)特征的變量,并進(jìn)一步將其納入多因素Logistic回歸分析,篩選出最佳診斷因素,構(gòu)建列線圖診斷模型,繪制受試者工作特征曲線(ROC曲線),計(jì)算ROC曲線下面積(AUC),并進(jìn)一步采用加強(qiáng)Bootstrap法對(duì)模型進(jìn)行內(nèi)部驗(yàn)證,繪制Calibration曲線顯示校準(zhǔn)度。最后分析模型在開(kāi)發(fā)隊(duì)列與MAFLD+NAFLD、MAFLD+cHBVi兩個(gè)亞組隊(duì)列人群中的表現(xiàn),采用MedCalc軟件與其他模型進(jìn)行ROC曲線對(duì)比。P<0.05表示差異有統(tǒng)計(jì)學(xué)意義。
2結(jié)果
2.1一般資料共納入MAFLD患者299例,無(wú)脂肪性肝炎組129例,脂肪性肝炎組170例。兩組間BMI、ALT、AST、ADA、ALP、GGT、TBA、TCO2、UA、HbA1c比較差異均有統(tǒng)計(jì)學(xué)意義(P值均<0.05);FibroScan方面,兩組LSM及CAP比較提示差異均具有統(tǒng)計(jì)學(xué)意義(P值均<0.001);病理學(xué)方面,兩組的纖維化等級(jí)、脂肪變積分、小葉炎癥積分、氣球樣變積分及NAS總分差異均有統(tǒng)計(jì)學(xué)意義(P值均<0.001)。亞組隊(duì)列方面,MAFLD+NAFLD有、無(wú)脂肪性肝炎組分別為63、48例,MAFLD+cHBVi有、無(wú)脂肪性肝炎組分別為90、71例(表1)。
2.2MAFLD脂肪性肝炎的LASSO回歸分析將一般資料、血清學(xué)指標(biāo)及FibroScan數(shù)據(jù)共39個(gè)變量納入LASSO回歸分析,進(jìn)行降維處理后篩選出6個(gè)具有非零系數(shù)特征的變量,即LSM、CAP、BMI、ALT、AST、UA(圖1)。
2.3MAFLD脂肪性肝炎的多因素Logistic回歸分析
對(duì)LASSO回歸所篩變量進(jìn)一步納入多因素Logistic回歸分析,結(jié)果顯示:LSM(OR=1.148)、CAP(OR=1.301)、BMI(OR=1.015)、AST(OR=1.023)是MAFLD患者發(fā)生脂肪性肝炎的最佳診斷因素(P值均<0.05)(表2)。
2.4MAFLD發(fā)生脂肪性肝炎的診斷模型構(gòu)建及內(nèi)部驗(yàn)證根據(jù)多因素Logistic回歸分析結(jié)果,將LSM、CAP、BMI、AST及其對(duì)應(yīng)權(quán)重系數(shù),采用R軟件進(jìn)行模型構(gòu)建及列線圖可視化(圖2),將模型命名為L(zhǎng)CBA,繪制ROC曲線。結(jié)果顯示,LCBA模型診斷MAFLD脂肪性肝炎概率的AUC為0.816(95%CI:0.768~0.858)(P<0.001),敏感度為78.24%,特異度為71.32%(表3),提示診斷模型區(qū)分度良好。進(jìn)一步使用加強(qiáng)Bootstrap法對(duì)模型開(kāi)發(fā)隊(duì)列數(shù)據(jù)進(jìn)行 1 000次有放回的重抽樣,獲得1 000個(gè)與開(kāi)發(fā)隊(duì)列樣本量相等的數(shù)據(jù)集作為內(nèi)部驗(yàn)證集,結(jié)果顯示,AUC的高估值調(diào)整值為0.006 36,用原始模型的模型表現(xiàn)——高估值調(diào)整值,獲得內(nèi)部驗(yàn)證后的模型表現(xiàn),故AUC內(nèi)部驗(yàn)證=0.810,提示內(nèi)部驗(yàn)證后的LCBA模型區(qū)分度依舊良好。繪制Calibration校準(zhǔn)曲線(圖3),Hosmer-Lemeshow擬合優(yōu)度檢驗(yàn)P=0.058,提示LCBA模型校準(zhǔn)度良好,診斷概率與真實(shí)概率擬合一致性?xún)?yōu)。
2.5LCBA模型在MAFLD+NAFLD和MAFLD+cHBVi亞組人群中的表現(xiàn)結(jié)果顯示,LCBA模型在MAFLD+NAFLD及MAFLD+CHB亞組人群中診斷概率的AUC分別為0.866(95%CI:0.788~0.923)、0.764(95%CI:0.691~0.827),統(tǒng)計(jì)學(xué)有意義(P值均<0.001)(表3)。
2.6LCBA模型與其他模型比較將LCBA模型分別在MAFLD、MAFLD+NAFLD、MAFLD+CHB人群中與acNASH、HSI、NFS三種模型進(jìn)行比較,繪制ROC曲線,結(jié)果顯示,LCBA模型在三種人群中的診斷概率AUC均高于另外三種模型(表4、圖4),提示LCBA模型區(qū)分度更優(yōu)。
3討論
目前,MAFLD在全球范圍內(nèi)患病率逐年上升,正成為全球第一慢性肝病,據(jù)統(tǒng)計(jì),亞洲人群的MAFLD患病率為15%~40%[14],而因MAFLD轉(zhuǎn)診的行病理檢查的亞洲患者中,脂肪性肝炎的發(fā)生率高達(dá)58%~63.45%[15-16]。本研究結(jié)果顯示,在總MAFLD人群及MAFLD+NAFLD、MAFLD+cHBVi兩個(gè)亞組中脂肪性肝炎的發(fā)生率分別為56.86%(170/299)、56.77%(63/111)、55.90%(90/161),與文獻(xiàn)報(bào)道脂肪性肝炎的發(fā)生率相近。脂肪性肝炎是MAFLD疾病進(jìn)展的主要途徑,隨著炎癥的持續(xù)存在,可進(jìn)展為肝硬化、肝細(xì)胞癌和終末期肝?。?7-18]。然而,目前尚無(wú)可供準(zhǔn)確判別MAFLD脂肪性肝炎的單項(xiàng)指標(biāo),故探索準(zhǔn)確可靠的無(wú)創(chuàng)診斷模型尤為必要。
本研究中,脂肪性肝炎組肝功能指標(biāo)中的ALT、AST、ALP、GGT、ADA及代謝異常指標(biāo)中的BMI、HbA1c、TG、UA均比無(wú)脂肪性肝炎組高(P值均<0.05);病理學(xué)方面,脂肪性肝炎組纖維化、脂肪變、小葉炎癥、氣球樣變程度也均高于無(wú)脂肪性肝炎組(P值均<0.05)。本研究先后通過(guò)LASSO回歸及多因素Logistic回歸,進(jìn)行MAFLD脂肪性肝炎診斷變量的篩選,在降低自變量間共線性的影響下,最終篩選出LSM、CAP、BMI、AST四個(gè)最佳診斷變量,通過(guò)列線圖形式構(gòu)筑LCBA無(wú)創(chuàng)診斷模型,模型提示當(dāng)LSM=10 kPa時(shí)對(duì)應(yīng)積20分,CAP=330 dB/m積17.5分,BMI=28 kg/m2積12.5分,AST=80 U/L積14分,相加為64分,此時(shí)對(duì)應(yīng)風(fēng)險(xiǎn)>0.95,提示出現(xiàn)脂肪性肝炎風(fēng)險(xiǎn)極高。
瞬時(shí)彈性成像技術(shù)是近年來(lái)最有前景的量化肝臟纖維化及脂肪變的無(wú)創(chuàng)測(cè)量手段, 已廣泛用于臨床且數(shù)據(jù)易得,其所測(cè)量的LSM和CAP在分別反映纖維化及肝脂肪變性程度方面已被證實(shí)具有較高的準(zhǔn)確性與敏感度[17],故可作為肝臟病理活檢的部分替代手段。一項(xiàng)綜合646例肝臟病理的研究[19]指出,NAS評(píng)分上升與纖維化等級(jí)增加具有高度共線性,表明脂肪性肝炎與纖維化進(jìn)展密不可分,故在MAFLD發(fā)生脂肪性肝炎時(shí),常表現(xiàn)為L(zhǎng)SM與CAP均有所升高,與本研究結(jié)果一致。
BMI 作為體內(nèi)脂肪的替代度量之一[20],是診斷肥胖癥的關(guān)鍵指標(biāo)。BMI升高是包括MAFLD在內(nèi)的多種代謝疾病的主要危險(xiǎn)因素,一項(xiàng)全球性研究[13]中指出,在單純脂肪肝和脂肪性肝炎人群中的肥胖比例分別為51.34%和81.83%,說(shuō)明BMI升高與脂肪肝的形成和脂肪性肝炎的發(fā)生均具有高度相關(guān)性。BMI升高引起肝臟脂肪蓄積,并進(jìn)一步形成脂毒性,導(dǎo)致線粒體功能障礙和氧化應(yīng)激,是MAFLD發(fā)生脂肪性肝炎的關(guān)鍵機(jī)制[21-22],而AST主要存在于肝細(xì)胞的線粒體中,當(dāng)肝細(xì)胞出現(xiàn)炎癥損傷甚至壞死時(shí),線粒體中的AST將釋放出來(lái),導(dǎo)致血清AST升高[23],故AST是反映脂肪性肝炎的可靠靈敏指標(biāo)之一[13,16]。
綜上,基于病理學(xué)證實(shí)的LCBA模型,作為診斷MAFLD發(fā)生脂肪性肝炎的風(fēng)險(xiǎn)量化工具,數(shù)據(jù)易得,操作簡(jiǎn)便,診斷效能良好,且優(yōu)于acNASH、HSI、NFS模型,符合臨床實(shí)際所需,值得推廣應(yīng)用。但不可否認(rèn),本研究也存在一定的局限性,例如樣本量有限,且數(shù)據(jù)為單中心,僅進(jìn)行了內(nèi)部驗(yàn)證,缺少外部驗(yàn)證評(píng)估模型的泛化能力,未來(lái)期望可進(jìn)一步通過(guò)多中心研究、擴(kuò)大樣本量等方法來(lái)對(duì)LCBA模型進(jìn)一步優(yōu)化。
倫理學(xué)聲明:本研究方案于2022年2月14日經(jīng)由廣東省中醫(yī)院倫理委員會(huì)審批,批號(hào)為YE2022-035-01。利益沖突聲明:本文不存在任何利益沖突。作者貢獻(xiàn)聲明:陳智恒、施梅姐、池曉玲負(fù)責(zé)課題設(shè)計(jì),擬定寫(xiě)作思路,資料分析,撰寫(xiě)論文;高博文、桂蓓、蕭煥明、謝玉寶、黎勝參與收集并核對(duì)數(shù)據(jù),修改論文;池曉玲指導(dǎo)撰寫(xiě)文章并最后定稿。
參考文獻(xiàn):
[1]ESLAM M, NEWSOME PN, SARIN SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement[J]. J Hepatol, 2020, 73(1): 202-209. DOI: 10.1016/j.jhep.2020.03.039.
[2]KOLAKOWSKI A, DZIEMITKO S, CHMIELECKA A, et al. Molecular Advances in MAFLD—A Link between Sphingolipids and Extracellular Matrix in Development and Progression to Fibrosis[J]. Int J Mol Sci, 2022, 23(19): 11380. DOI: 10.3390/ijms231911380.
[3]MA YQ, XIE YP, LAING XY, et al. Study on the expression characteristics of serum leptin and receptor genes in patients with non-alcoholic fatty liver disease and cirrhosis[J]. Clin J Med Offic, 2021, 49(8): 930-932. DOI: 10.16680/j.1671-3826.2021.08.28.馬艷芹, 謝永鵬, 梁旭陽(yáng), 等. 非酒精性脂肪肝轉(zhuǎn)歸肝硬化患者血清瘦素及受體基因表達(dá)特征研究[J]. 臨床軍醫(yī)雜志, 2021, 49(8): 930-932. DOI: 10.16680/j.1671-3826.2021.08.28.
[4]DOU KF, YANG XS. Surgeons should attach importance to the understanding of metabolic associated fatty liver disease[J]. Chin J Dig Surg, 2021, 20(1): 40-45. DOI: 10.3760/cma.j.cn115610-20201214-00780.竇科峰, 楊西勝. 外科醫(yī)師應(yīng)重視對(duì)代謝相關(guān)脂肪性肝病的認(rèn)識(shí)[J]. 中華消化外科雜志, 2021, 20(1): 40-45. DOI: 10.3760/cma.j.cn115610-20201214-00780.
[5]Chinese Society of Hepatology, Chinese Medical Association; Chiese Society of Gastroenterology, Chinese Medical Association; Chinese Society of Infectious Diseases, Chinese Medical Association. Consensus on the diagnosis and therapy of hepatic fibrosis(2019)[J]. J CIin HepatoI, 2019, 35(10): 2163-2172. DOI: 10.3969/j.issn.1001-5256.2019.10.007.中華醫(yī)學(xué)會(huì)肝病學(xué)分會(huì), 中華醫(yī)學(xué)會(huì)消化病學(xué)分會(huì), 中華醫(yī)學(xué)會(huì)感染病學(xué)分會(huì). 肝纖維化診斷及治療共識(shí)(2019年)[J]. 臨床肝膽病雜志, 2019, 35(10): 2163-2172. DOI: 10.3969/j.issn.1001-5256.2019.10.007.
[6]NL? S, VARELA-CHINCHILLA CD, TRINIDAD-CALDER?N PA. MAFLD/NAFLD biopsy-free scoring systems for hepatic steatosis, NASH, and fibrosis diagnosis[J]. Front Med (Lausanne), 2021, 8: 774079. DOI: 10.3389/fmed.2021.774079.
[7]OTGONSUREN M, ESTEP MJ, HOSSAIN N, et al. Single non-invasive model to diagnose non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH)[J]. J Gastroenterol Hepatol, 2014, 29(12): 2006-2013. DOI: 10.1111/jgh.12665.
[8]ESLAM M, SARIN SK, WONG VW, et al. The Asian Pacific Association for the Study of the Liver clinical practice guidelines for the diagnosis and management of metabolic associated fatty liver disease[J]. Hepatol Int, 2020, 14(6): 889-919. DOI: 10.1007/s12072-020-10094-2.
[9]KLEINER DE, BRUNT EM, van NATTA M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease[J]. Hepatology, 2005, 41(6): 1313-1321. DOI: 10.1002/hep.20701
[10]National Workshop on Fatty Liver and Alcoholic Liver Disease, Chinese Society of Hepatology, Chinese Medical Association; Fatty Liver Expert Committee, Chinese Medical Doctor Association. Guidelines of prevention and treatment for nonalcoholic fatty liver disease:a 2018 update[J]. J CIin HepatoI, 2018, 34(5): 947-957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.中華醫(yī)學(xué)會(huì)肝病學(xué)分會(huì)脂肪肝和酒精性肝病學(xué)組, 中國(guó)醫(yī)師協(xié)會(huì)脂肪性肝病專(zhuān)家委員會(huì). 非酒精性脂肪性肝病防治指南(2018年更新版)[J]. 臨床肝膽病雜志, 2018, 34(5): 947-957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.
[11]Chinese Society of Infectious Diseases, Chinese Medical Association; Chinese Society of Hepatology, Chinese Medical Association. Guidelines for the prevention and treatment of chronic hepatitis B (version 2019)[J]. J CIin HepatoI, 2019, 35(12): 2648-2669. DOI: 10.3969/j.issn.1001-5256.2019.12.007.中華醫(yī)學(xué)會(huì)感染病學(xué)分會(huì), 中華醫(yī)學(xué)會(huì)肝病學(xué)分會(huì). 慢性乙型肝炎防治指南(2019年版)[J]. 臨床肝膽病雜志, 2019, 35(12): 2648-2669. DOI: 10.3969/j.issn.1001-5256.2019.12.007.
[12]Consensus expert committee on clinical application of transient elastography(TE). Expert consensus on clinical application of transient elastography (TE) (2015)[J/CD]. Chin J Liver Dis: Electronic Edition, 2015, 7(2): 12-18. DOI: 10.3969/j.issn.1674-7380.2015.02.002.瞬時(shí)彈性成像技術(shù)(TE)臨床應(yīng)用共識(shí)專(zhuān)家委員會(huì). 瞬時(shí)彈性成像技術(shù)(TE)臨床應(yīng)用專(zhuān)家共識(shí)(2015年)[J/CD]. 中國(guó)肝臟病雜志(電子版), 2015, 7(2): 12-18. DOI: 10.3969/j.issn.1674-7380.2015.02.002.
[13]WU XX, ZHENG KI, BOURSIER J, et al. acNASH index to diagnose nonalcoholic steatohepatitis: a prospective derivation and global validation study[J]. EClinicalMedicine, 2021, 41: 101145. DOI: 10.1016/j.eclinm.2021.101145.
[14]YOUNOSSI Z, TACKE F, ARRESE M, et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J]. Hepatology, 2019, 69(6): 2672-2682. DOI: 10.1002/hep.30251.
[15]YOUNOSSI ZM, KOENIG AB, ABDELATIF D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64(1): 73-84. DOI: 10.1002/hep.28431.
[16]NEWSOME PN, SASSO M, DEEKS JJ, et al. FibroScan-AST (FAST) score for the non-invasive identification of patients with non-alcoholic steatohepatitis with significant activity and fibrosis: a prospective derivation and global validation study[J]. Lancet Gastroenterol Hepatol, 2020, 5(4): 362-373. DOI: 10.1016/S2468-1253(19)30383-8.
[17]CAO YT, XIANG LL, QI F, et al. Accuracy of controlled attenuation parameter (CAP) and liver stiffness measurement (LSM) for assessing steatosis and fibrosis in non-alcoholic fatty liver disease: A systematic review and meta-analysis[J]. EClinicalMedicine, 2022, 51: 101547. DOI: 10.1016/j.eclinm.2022.101547.
[18]TAYLOR RS, TAYLOR RJ, BAYLISS S, et al. Association between fibrosis stage and outcomes of patients with nonalcoholic fatty liver disease: A systematic review and meta-analysis[J]. Gastroenterology, 2020, 158(6): 1611-1625. e12. DOI: 10.1053/j.gastro.2020.01.043.
[19]HAGSTRM H, NASR P, EKSTEDT M, et al. Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-proven NAFLD[J]. J Hepatol, 2017, 67(6): 1265-1273. DOI: 10.1016/j.jhep.2017.07.027.
[20]VILALTA A, GUTI?RREZ JA, CHAVES S, et al. Adipose tissue measurement in clinical research for obesity, type 2 diabetes and NAFLD/NASH[J]. Endocrinol Diabetes Metab, 2022, 5(3): e00335. DOI: 10.1002/edm2.335.
[21]HORN CL, MORALES AL, SAVARD C, et al. Role of cholesterol-associated steatohepatitis in the development of NASH[J]. Hepatol Commun, 2022, 6(1): 12-35. DOI: 10.1002/hep4.1801.
[22]LIM S, KIM JW, TARGHER G. Links between metabolic syndrome and metabolic dysfunction-associated fatty liver disease[J]. Trends Endocrinol Metab, 2021, 32(7): 500-514. DOI: 10.1016/j.tem.2021.04.008.
[23]KWO PY, COHEN SM, LIM JK. ACG clinical guideline: evaluation of abnormal liver chemistries[J]. Am J Gastroenterol, 2017, 112(1): 18-35. DOI: 10.1038/ajg.2016.517.
收稿日期:2022-12-30;錄用日期:2023-02-13
本文編輯:林姣
引證本文:CHEN ZH, GAO BW, GUI B, et al. Construction and analysis of a noninvasive diagnostic model for steatohepatitis in metabolic associated fatty liver disease[J]. J Clin Hepatol, 2023, 39(8): 1857-1866.