李永強(qiáng) 唐文娟 周永健
摘要:非酒精性脂肪性肝?。∟AFLD)是全世界最為常見(jiàn)的慢性肝病。肝臟與腸道之間有著緊密的結(jié)構(gòu)及功能關(guān)系即“腸-肝軸”,其中腸道菌群可通過(guò)菌群易位、內(nèi)源性乙醇的產(chǎn)生、膽汁酸和膽堿代謝的調(diào)節(jié)異常、內(nèi)毒素血癥等參與NAFLD的發(fā)生、發(fā)展。本文主要關(guān)注腸道菌群及代謝產(chǎn)物在NAFLD發(fā)生、發(fā)展及治療中的作用進(jìn)展。關(guān)鍵詞:非酒精性脂肪性肝病; 胃腸道微生物組; 治療學(xué)基金項(xiàng)目:國(guó)家自然科學(xué)基金(82170585, 81970507); 廣州市醫(yī)學(xué)重點(diǎn)學(xué)科(2021-2023); 廣州市科技計(jì)劃項(xiàng)目(SL2022A03J01100); 廣東省自然科學(xué)基金(2021A1515011290)
Role of intestinal microbiota and metabolites in the development, progression, and treatment of nonalcoholic fatty liver disease
LI Yongqiang, TANG Wenjuan, ZHOU Yongjian. (Department of Gastroenterology, Guangzhou First Peoples Hospital & The Second Affiliated Hospital of South China University of Technology;Guangzhou Digestive Disease Center,? Guangzhou 510180, China)
Corresponding author:ZHOU Yongjian, eyzhouyongjian@scut.edu.cn (ORCID:0000-0003-1721-7639)
Abstract:Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease around the world. There is a close structural and functional relationship between the liver and the intestine, namely “the gut-liver axis”, in which intestinal microbiota can participate in the development and progression of NAFLD through microbial translocation, production of endogenous ethanol, abnormal regulation of bile acid metabolism and choline metabolism, and endotoxemia. This article reviews the role of intestinal microbiota and metabolites in the development, progression, and treatment of NAFLD.
Key words:Non-alcoholic Fatty Liver Disease; Gastrointestinal Microbiome; Therapeutics
Research funding:National Natural Science Foundation of China (NSFC)(82170585, 81970507); The Project of Key Medical Discipline in Guangzhou(2021-2023); Guangzhou Planned Project of Science and Technology(SL2022A03J01100); National Natural Science Foundation of Guangdong Province (2021A1515011290)
非酒精性脂肪性肝?。∟AFLD)是在排除病毒感染、酒精過(guò)量及其他因素,以肝脂肪異常堆積為特征的肝病,包括肝臟單純脂肪變性、非酒精性脂肪性肝炎(NASH)、肝纖維化、肝硬化,并可能發(fā)展為肝細(xì)胞癌和肝衰竭。隨著生活節(jié)奏、飲食習(xí)慣改變等因素,NAFLD發(fā)病率高達(dá)25%[1],已成為全球最常見(jiàn)的慢性肝病。NAFLD是與向心性肥胖、胰島素抵抗、高血壓、高血脂、高血糖等代謝綜合征有關(guān)的肝?。?]。當(dāng)前NAFLD的發(fā)病機(jī)制尚未完全明確,“多因素共同打擊”假說(shuō)逐漸取代“二次打擊”假說(shuō)理論成為NAFLD發(fā)病機(jī)制的主要理論。除了脂肪堆積、脂質(zhì)氧化應(yīng)激、胰島素抵抗外,腸道菌群及代謝物、腸道屏障功能異常也密切參與了NAFLD的發(fā)生、發(fā)展[3]。
肝臟與腸道之間有著緊密的結(jié)構(gòu)及功能關(guān)系,即“腸-肝軸”,兩者通過(guò)膽道、門(mén)靜脈、體循環(huán)進(jìn)行聯(lián)系,肝臟通過(guò)膽道系統(tǒng)將分泌的膽汁酸及其他生物活性物質(zhì)釋放到腸道中。肝臟的75%血供來(lái)自門(mén)靜脈,成為第一個(gè)通過(guò)門(mén)靜脈血液暴露于腸道菌群及代謝產(chǎn)物的器官。正常的腸道屏障能夠阻止腸腔內(nèi)微生物及代謝產(chǎn)物或毒素轉(zhuǎn)移至腸腔外,腸道屏障的破壞或能引起腸道微生物的易位,過(guò)度活化免疫系統(tǒng),引發(fā)或促進(jìn)肝臟炎癥的發(fā)生發(fā)展。因而NAFLD的發(fā)生發(fā)展可影響腸道菌群穩(wěn)態(tài),腸道菌群及代謝產(chǎn)物異常等也可影響NAFLD的發(fā)生發(fā)展。本文主要關(guān)注NAFLD的腸道菌群及代謝產(chǎn)物失衡和相關(guān)治療的進(jìn)展。
1腸道菌群失衡是NAFLD發(fā)生、發(fā)展的重要因素
人體腸道菌群主要以擬桿菌門(mén)、厚壁菌門(mén)、變形桿菌門(mén)、放線(xiàn)菌門(mén)為主,占腸道菌群的90%,其中擬桿菌門(mén)、厚壁菌門(mén)占主導(dǎo)地位[4]。腸道菌群與人體代謝、免疫和疾病的調(diào)節(jié)有關(guān),其與NAFLD的發(fā)生發(fā)展有著密切聯(lián)系,腸道中存在物理、生化、免疫等多種屏障限制腸道微生物及代謝物的易位。長(zhǎng)期不健康飲食習(xí)慣(如高糖高脂飲食、暴飲暴食)可引起腸道微生物群的生態(tài)失調(diào),進(jìn)而導(dǎo)致屏障功能損傷和免疫穩(wěn)態(tài)的紊亂。一方面,由腸道菌群及其代謝產(chǎn)物誘導(dǎo)的免疫細(xì)胞的過(guò)度激活可能導(dǎo)致進(jìn)一步的肝損傷、炎癥和纖維化,從而加速NAFLD的發(fā)展,另一方面,來(lái)自腸道細(xì)菌的代謝物如短鏈脂肪酸 (SCFA)、膽汁酸等改善肝組織中的炎癥反應(yīng)、氧化損傷、脂肪變性。與健康者相比,NAFLD患者腸道菌群多樣性顯著下降,腸道菌群組成存在顯著改變[5],主要為革蘭陰性菌(包括擬桿菌、變形桿菌、腸桿菌)豐度顯著增加,而厚壁菌門(mén)細(xì)菌尤其是產(chǎn)SCFA的細(xì)菌如乳酸桿菌、瘤胃球菌等的豐度顯著減少[5]。腸道菌群或是NAFLD發(fā)生發(fā)展病理過(guò)程的關(guān)鍵因素。
2腸道菌群來(lái)源的代謝產(chǎn)物影響NAFLD的發(fā)生、發(fā)展2.1膽汁酸膽汁酸由肝臟合成,經(jīng)膽管分泌到腸道,以促進(jìn)膳食脂肪、膽固醇和脂溶性維生素的乳化及吸收,其后膽汁酸到達(dá)回腸末端,被膽汁酸轉(zhuǎn)運(yùn)蛋白介導(dǎo)的活性攝取機(jī)制重吸收。膽汁酸可通過(guò)法尼醇X受體(FXR)和G蛋白偶聯(lián)膽汁酸受體5(TGR5,也稱(chēng)GPBAR1)活化信號(hào)通路,在維持肝葡萄糖、脂質(zhì)和能量代謝的調(diào)節(jié)中發(fā)揮重要作用[6-7]。FXR主要由初級(jí)膽汁酸激活,而TGR5主要由次級(jí)膽汁酸激活[8-9]。FXR活化刺激過(guò)氧化物酶體增殖物激活受體α(PPARα)的表達(dá)和活化,誘導(dǎo)成纖維細(xì)胞生長(zhǎng)因子21的表達(dá)和分泌。成纖維細(xì)胞生長(zhǎng)因子21通過(guò)絲裂原活化蛋白激酶,激活哺乳動(dòng)物雷帕霉素復(fù)合物1靶點(diǎn),增強(qiáng)脂肪細(xì)胞中的葡萄糖攝取,并通過(guò)調(diào)節(jié)脂肪生成的主要轉(zhuǎn)錄調(diào)節(jié)因子PPARγ的活性,促進(jìn)脂肪組織中的脂肪酸氧化[10-12]。FXR還上調(diào)肝糖原合成,調(diào)節(jié)胰高血糖素樣肽1的表達(dá),增加與NAFLD密切相關(guān)的胰島素敏感性[8]。研究[13]顯示,F(xiàn)XR激動(dòng)劑藥物奧貝膽酸可防止腸道屏障破壞,抑制NASH的發(fā)展,為其用于預(yù)防或治療NASH提供了證據(jù)。除了FXR外,TGR5在肝臟組織中的Kupffer細(xì)胞和內(nèi)皮細(xì)胞中表達(dá),可調(diào)節(jié)肝臟炎癥和葡萄糖代謝,具有改善胰島素敏感性的功能。TGR5通過(guò)抑制巨噬細(xì)胞中NF-κB信號(hào)傳導(dǎo)和細(xì)胞因子生成來(lái)減輕炎癥反應(yīng)[14]。
腸道菌群中的膽汁酸水解酶催化膽汁酸解耦連反應(yīng)是膽汁酸代謝的重要通路反應(yīng)。腸道中多個(gè)細(xì)菌種類(lèi)可使初級(jí)膽汁酸解耦連,包括梭狀芽胞桿菌、乳酸菌、雙歧桿菌、真桿菌、埃希氏菌和擬桿菌[15],腸道菌群通過(guò)將初級(jí)膽汁酸代謝為次級(jí)膽汁酸,影響膽汁酸池的穩(wěn)態(tài),后者參與調(diào)節(jié)NAFLD形成過(guò)程中的脂質(zhì)和能量代謝途徑[16]。腸道菌群失衡影響膽汁酸代謝,腸道菌群與膽汁酸之間的相互作用為NAFLD的腸道菌群靶向治療提供了基礎(chǔ)證據(jù)。
2.2SCFASCFA是一組由5個(gè)或以下的碳原子組成的飽和脂肪酸,主要通過(guò)腸道微生物發(fā)酵可溶性膳食纖維和不易消化的碳水化合物產(chǎn)生。其中丁酸、丙酸和乙酸在腸道中含量最高[17],乙酸和丙酸主要由腸道中擬桿菌門(mén)產(chǎn)生,丁酸主要由厚壁菌門(mén)產(chǎn)生[18]。SCFA作用于G蛋白偶聯(lián)受體GPR41和GPR43,這些受體廣泛分布在腸道內(nèi)分泌L細(xì)胞、白色脂肪組織、骨骼肌和肝臟中,其中L細(xì)胞釋放胰高血糖素樣肽1,通過(guò)直接作用于肝細(xì)胞,激活脂肪酸β-氧化和胰島素敏感性相關(guān)的基因來(lái)參與NAFLD發(fā)生發(fā)展[19-20]。此外,SCFA通過(guò)抑制組蛋白脫乙酰酶和GPR43通路在Treg細(xì)胞分化發(fā)揮免疫調(diào)節(jié)作用,通過(guò)減少T淋巴細(xì)胞、中性粒細(xì)胞、巨噬細(xì)胞、單核細(xì)胞等多種免疫細(xì)胞的遷移和增殖,減少多種促炎細(xì)胞因子(腫瘤壞死因子-α、單核細(xì)胞趨化蛋白-1等)的表達(dá),上調(diào)抗炎細(xì)胞因子前列腺素E2,發(fā)揮抗炎作用[21]。另外丁酸鹽可通過(guò)AMPK(腺苷酸活化蛋白激酶)激活,促進(jìn)緊密連接的組裝及腸道屏障的形成,改善腸道菌群失調(diào)來(lái)減輕高脂肪飲食誘發(fā)的脂肪性肝炎[22]。
2.3脂多糖(LPS)LPS又稱(chēng)為內(nèi)毒素,是革蘭陰性菌的外膜主要成分。肝細(xì)胞中廣泛表達(dá)的Toll樣受體4(TLR4)是LPS和多種游離脂肪酸的模式識(shí)別受體[23],通過(guò)門(mén)靜脈系統(tǒng)進(jìn)入肝臟的LPS誘導(dǎo)的TLR4活化誘導(dǎo)Kupffer細(xì)胞分泌炎性細(xì)胞因子(例如IL-6、IL-1β和TNF-α)和趨化因子,刺激星狀細(xì)胞,導(dǎo)致肝臟炎癥和纖維化[24-25],此外,增加的LPS可能通過(guò)肌球蛋白輕鏈激酶的TLR-14依賴(lài)性上調(diào)以及IRAK-4(IL-1R相關(guān)激酶4)的活化損害腸道屏障功能,導(dǎo)致腸道通透性增加。據(jù)報(bào)道[26],在NAFLD患者和實(shí)驗(yàn)動(dòng)物中均可見(jiàn)血清LPS水平升高,降低血漿LPS水平可改善肝脂肪變性,提示LPS引發(fā)的慢性低度炎癥可能是NAFLD進(jìn)展的重要因素。
2.4腸道菌群來(lái)源的內(nèi)源性乙醇研究[27]顯示,NAFLD患兒的血乙醇水平顯著高于健康兒童,與血液中胰島素、瘦素和甘油三酯水平呈正相關(guān),不飲酒的NASH患者腸道菌群組成改變引起生態(tài)失調(diào)會(huì)增加血液中乙醇水平,提示腸道微生物發(fā)酵可產(chǎn)生內(nèi)源性乙醇[28]。臨床前和臨床研究已確認(rèn)大腸桿菌、腸桿菌科和肺炎克雷伯菌為產(chǎn)乙醇細(xì)菌,在NAFLD患者和小鼠中含量相對(duì)較高[28]。乙醇可增加細(xì)胞色素P450 2E1(CYP2E1)的mRNA和蛋白表達(dá),導(dǎo)致自由基的釋放,引起線(xiàn)粒體功能障礙,引發(fā)肝損傷[29]。內(nèi)源性乙醇抑制三羧酸循環(huán)并增加乙酸鹽水平,促進(jìn)肝細(xì)胞中甘油三酯的積累[30]。乙醇的代謝產(chǎn)物乙醛參與削弱腸道緊密連接蛋白[31],與腸道中抗菌肽表達(dá)下調(diào)有關(guān)[32],并增加腸道屏障通透性,導(dǎo)致腸道屏障功能損傷,增加腸道菌群的易位??傊?,腸道微生物群的調(diào)節(jié)會(huì)產(chǎn)生各種改變的代謝物,最終導(dǎo)致肝臟炎癥和NAFLD的發(fā)生發(fā)展。
2.5膽堿膽堿是一種人體必需的磷脂,主要通過(guò)飲食攝入及肝臟合成,是細(xì)胞膜磷脂的重要組成之一,其參與肝臟中的低密度脂蛋白合成等脂質(zhì)代謝過(guò)程、膽汁和膽固醇的肝腸循環(huán)過(guò)程,并在肝臟脂質(zhì)轉(zhuǎn)運(yùn)中起著重要作用[33]。而膽堿缺乏將抑制極低密度脂蛋白合成和分泌,導(dǎo)致肝臟甘油三酯蓄積和肝脂肪變性,從而引起肥胖[34]。腸道菌群可將膽堿轉(zhuǎn)化為三甲胺(TMA),后者經(jīng)肝臟單加氧酶氧化形成三甲胺N-氧化物(TMAO),被認(rèn)為是早期代謝綜合征的新型生物標(biāo)志物[35]。研究[36]顯示,腸道菌群將膽堿轉(zhuǎn)化為T(mén)MA會(huì)降低宿主的膽堿生物利用度,并模仿膽堿缺乏狀態(tài),導(dǎo)致代謝紊亂。據(jù)報(bào)道[37],NAFLD患者血液中TMAO水平升高,TMAO調(diào)節(jié)葡萄糖代謝并通過(guò)增加血清炎性細(xì)胞因子C-C基序趨化因子2水平誘導(dǎo)胰島素抵抗,引起脂肪組織炎癥及血糖異常。
3靶向腸道菌群對(duì)NAFLD的潛在防治作用
目前,越來(lái)越多的證據(jù)表明腸道菌群及其代謝產(chǎn)物的變化影響著NAFLD的發(fā)生、發(fā)展。多項(xiàng)研究提示靶向腸道菌群如益生菌、益生元、合生元以及腸道菌群移植等在NAFLD的防治中具有較好的前景。
3.1益生菌乳酸桿菌、雙歧桿菌是最常用的益生菌[38]。動(dòng)物研究[39]顯示,乳桿菌可通過(guò)激活A(yù)MPK通路磷酸化ACC,阻斷SREBP-1/Fas信號(hào)通路,抑制脂肪的重新生成,增加脂肪酸氧化,以緩解NAFLD進(jìn)展。同樣,補(bǔ)充混合益生菌制劑可改善腸道上皮通透性,維持緊密連接蛋白,減輕炎癥,并降低肝臟甘油三酯濃度[40]。在臨床研究中,Alisi等[41]發(fā)現(xiàn)補(bǔ)充4個(gè)月的VSL#3(含副干酪乳桿菌、植物乳桿菌、嗜酸乳桿菌、德氏乳桿菌、長(zhǎng)雙歧桿菌、嬰兒雙歧桿菌、短雙歧桿菌、唾液鏈球菌)改善了NAFLD肥胖兒童的肝功能,增加了胰高血糖素樣肽/活性胰高血糖素樣肽水平。Sepideh等[42]認(rèn)為補(bǔ)充多菌株益生菌可改善NAFLD患者胰島素敏感性和肝臟炎癥。此外,益生菌與藥物(如NASH治療中的二甲雙胍和NAFLD治療中的他汀類(lèi)藥物)聯(lián)合使用比單獨(dú)使用更能改善肝臟炎癥、降低膽固醇水平[43-44]。以上研究提示益生菌單獨(dú)使用或與其他藥物聯(lián)合使用在NAFLD治療中顯示了良好的臨床應(yīng)用潛力。
3.2益生元益生元是宿主微生物選擇性利用的一種基質(zhì),有益于宿主健康[38]。作為益生元中的膳食低聚果糖,除了利于有益菌種(雙歧桿菌屬)的繁殖,還可通過(guò)PPARα刺激脂肪酸氧化減少肝臟甘油三酯的積累,并通過(guò)抑制SREBP-2依賴(lài)性膽固醇合成,減少膽固醇蓄積[45]。益生元還可增加內(nèi)源性促腸胰高血糖素衍生肽的產(chǎn)生,改善腸道屏障中緊密連接完整性,降低肥胖相關(guān)的腸道通透性[46]。異麥芽低聚糖與番茄紅素(抗氧化劑)的聯(lián)合治療可防止體質(zhì)量增加,增強(qiáng)脂肪組織脂肪動(dòng)員,并改善高脂飲食誘導(dǎo)的NAFLD小鼠的胰島素抵抗,減少代謝內(nèi)毒素血癥,提示抗氧化劑和益生元的聯(lián)合使用在NAFLD治療中可能帶來(lái)更大的益處。
3.3合生元合生元是益生菌、益生元的組合,通過(guò)選擇性刺激一種或有限數(shù)量的促進(jìn)健康的細(xì)菌的生長(zhǎng)和/或激活其代謝[38]。研究[47]顯示,含副干酪乳桿菌B21060阿拉伯半乳聚糖和低聚果糖的合生素可增加核PPAR及其靶基因的表達(dá),有效降低與高脂攝入有關(guān)的肝損傷。Malaguarnera等[48]認(rèn)為合生元(長(zhǎng)雙歧桿菌和低聚果糖)與生活方式干預(yù)相結(jié)合在降低NASH患者血清腫瘤壞死因子、C反應(yīng)蛋白、內(nèi)毒素和轉(zhuǎn)氨酶水平,改善HOMA-IR和NASH活性指數(shù)的程度優(yōu)于單獨(dú)生活方式干預(yù)。目前仍需更多研究驗(yàn)證益生菌、益生元、合生元在預(yù)防和治療NAFLD中的效果。
3.4腸道菌群移植(fecal microbiota transplantation,F(xiàn)MT)FMT是近年來(lái)較為新穎的治療方法,是將健康人糞便中的功能腸道菌群移植到患者腸道內(nèi),重建新的腸道菌群,實(shí)現(xiàn)腸道及腸外疾病的治療。現(xiàn)FMT已成功用于難治性和復(fù)發(fā)性艱難梭菌患者的治療,也有較多應(yīng)用于治療炎癥性腸病和腸易激綜合征。FMT可通過(guò)改善肝內(nèi)脂質(zhì)積累、血清促炎細(xì)胞因子水平來(lái)減輕高脂飲食誘導(dǎo)NASH小鼠模型的肝臟炎癥[49]。研究[50]顯示FMT可以通過(guò)改善腸道微生物群失調(diào)來(lái)減少肝臟中的脂肪堆積,減輕脂肪肝,且認(rèn)為FMT對(duì)瘦NAFLD患者的腸道微生物群重建效果優(yōu)于肥胖的NAFLD患者。
4小結(jié)和展望
腸道菌群及代謝物在NAFLD發(fā)生、發(fā)展中扮演著重要的角色。靶向腸道菌群如益生菌、益生元、合生元、腸道菌群移植治療在動(dòng)物試驗(yàn)中獲得積極的療效,相關(guān)臨床研究也逐漸得到關(guān)注。鑒于腸道菌群容易受到多種因素影響,不同地區(qū)、飲食,不同患者腸道菌群亦存在差異,腸道微生物群靶向治療對(duì)NAFLD的臨床療效仍需通過(guò)大規(guī)模和組織良好的隨機(jī)對(duì)照試驗(yàn)研究來(lái)證實(shí)。
利益沖突聲明:本文不存在任何利益沖突。作者貢獻(xiàn)聲明:李永強(qiáng)負(fù)責(zé)論文的擬定及撰寫(xiě);唐文娟負(fù)責(zé)論文的修改;周永健參與修改論文并最后定稿。
參考文獻(xiàn):
[1]XIAO J, WANG F, WONG NK, et al. Global liver disease burdens and research trends: Analysis from a Chinese perspective[J]. J Hepatol, 2019, 71(1): 212-221. DOI: 10.1016/j.jhep.2019.03.004.
[2]KIM D, TOUROS A, KIM WR. Nonalcoholic fatty liver disease and metabolic syndrome[J]. Clin Liver Dis, 2018, 22(1): 133-140. DOI: 10.1016/j.cld.2017.08.010.
[3]BUZZETTI E, PINZANI M, TSOCHATZIS EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD)[J]. Metabolism, 2016, 65(8): 1038-1048. DOI: 10.1016/j.metabol.2015.12.012.
[4]ECKBURG PB, BIK EM, BERNSTEIN CN, et al. Diversity of the human intestinal microbial flora[J]. Science, 2005, 308(5728): 1635-1638. DOI: 10.1126/science.1110591.
[5]WANG B, JIANG X, CAO M, et al. Altered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease[J]. Sci Rep, 2016, 6: 32002. DOI: 10.1038/srep32002.
[6]PARKS DJ, BLANCHARD SG, BLEDSOE RK, et al. Bile acids: natural ligands for an orphan nuclear receptor[J]. Science, 1999, 284(5418): 1365-1368. DOI: 10.1126/science.284.5418.1365.
[7]CHIANG J. Bile acid metabolism and signaling in liver disease and therapy[J]. Liver Res, 2017, 1(1): 3-9. DOI: 10.1016/j.livres.2017.05.001.
[8]CHVEZ-TALAVERA O, TAILLEUX A, LEFEBVRE P, et al. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease[J]. Gastroenterology, 2017, 152(7): 1679-1694. e3. DOI: 10.1053/j.gastro.2017.01.055.
[9]ARAB JP, KARPEN SJ, DAWSON PA, et al. Bile acids and nonalcoholic fatty liver disease: Molecular insights and therapeutic perspectives[J]. Hepatology, 2017, 65(1): 350-362. DOI: 10.1002/hep.28709.
[10]CYPHERT HA, GE X, KOHAN AB, et al. Activation of the farnesoid X receptor induces hepatic expression and secretion of fibroblast growth factor 21[J]. J Biol Chem, 2012, 287(30): 25123-25138. DOI: 10.1074/jbc.M112.375907.
[11]MINARD AY, TAN SX, YANG P, et al. mTORC1 is a major regulatory node in the FGF21 signaling network in adipocytes[J]. Cell Rep, 2016, 17(1): 29-36. DOI: 10.1016/j.celrep.2016.08.086.
[12]DUTCHAK PA, KATAFUCHI T, BOOKOUT AL, et al. Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones[J]. Cell, 2012, 148(3): 556-567. DOI: 10.1016/j.cell.2011.11.062.
[13]MOURIES J, BRESCIA P, SILVESTRI A, et al. Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development[J]. J Hepatol, 2019, 71(6): 1216-1228. DOI: 10.1016/j.jhep.2019.08.005.
[14]LOU G, MA X, FU X, et al. GPBAR1/TGR5 mediates bile acid-induced cytokine expression in murine Kupffer cells[J]. PLoS One, 2014, 9(4): e93567. DOI: 10.1371/journal.pone.0093567.
[15]WAHLSTRM A, SAYIN SI, MARSCHALL HU, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism[J]. Cell Metab, 2016, 24(1): 41-50. DOI: 10.1016/j.cmet.2016.05.005.
[16]HOUTEN SM, WATANABE M, AUWERX J. Endocrine functions of bile acids[J]. EMBO J, 2006, 25(7): 1419-1425. DOI: 10.1038/sj.emboj.7601049.
[17]den BESTEN G, van EUNEN K, GROEN AK, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism[J]. J Lipid Res, 2013, 54(9): 2325-2340. DOI: 10.1194/jlr.R036012.
[18]CHAKRABORTI CK. New-found link between microbiota and obesity[J]. World J Gastrointest Pathophysiol, 2015, 6(4): 110-119. DOI: 10.4291/wjgp.v6.i4.110.
[19]MOUZAKI M, LOOMBA R. Insights into the evolving role of the gut microbiome in nonalcoholic fatty liver disease: rationale and prospects for therapeutic intervention[J]. Therap Adv Gastroenterol, 2019, 12: 1756284819858470. DOI: 10.1177/1756284819858470.
[20]SVEGLIATI-BARONI G, SACCOMANNO S, RYCHLICKI C, et al. Glucagon-like peptide-1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis[J]. Liver Int, 2011, 31(9): 1285-1297. DOI: 10.1111/j.1478-3231.2011.02462.x.
[21]SMITH PM, HOWITT MR, PANIKOV N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis[J]. Science, 2013, 341(6145): 569-573. DOI: 10.1126/science.1241165.
[22]ZHOU D, PAN Q, XIN FZ, et al. Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier[J]. World J Gastroenterol, 2017, 23(1): 60-75. DOI: 10.3748/wjg.v23.i1.60.
[23]SHARIFNIA T, ANTOUN J, VERRIERE TG, et al. Hepatic TLR4 signaling in obese NAFLD[J]. Am J Physiol Gastrointest Liver Physiol, 2015, 309(4): G270-G278. DOI: 10.1152/ajpgi.00304.2014.
[24]CECCARELLI S, PANERA N, MINA M, et al. LPS-induced TNF-α factor mediates pro-inflammatory and pro-fibrogenic pattern in non-alcoholic fatty liver disease[J]. Oncotarget, 2015, 6(39): 41434-41452. DOI: 10.18632/oncotarget.5163.
[25]NIGHOT M, AL-SADI R, GUO S, et al. Lipopolysaccharide-induced increase in intestinal epithelial tight permeability is mediated by toll-like receptor 4/Myeloid differentiation primary response 88 (MyD88) activation of myosin light chain kinase expression[J]. Am J Pathol, 2017, 187(12): 2698-2710. DOI: 10.1016/j.ajpath.2017.08.005.
[26]HARTE AL, da SILVA NF, CREELY SJ, et al. Elevated endotoxin levels in non-alcoholic fatty liver disease[J]. J Inflamm (Lond), 2010, 7: 15. DOI: 10.1186/1476-9255-7-15.
[27]ENGSTLER AJ, AUMILLER T, DEGEN C, et al. Insulin resistance alters hepatic ethanol metabolism: studies in mice and children with non-alcoholic fatty liver disease[J]. Gut, 2016, 65(9): 1564-1571. DOI: 10.1136/gutjnl-2014-308379.
[28]ZHU L, BAKER SS, GILL C, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH[J]. Hepatology, 2013, 57(2): 601-609. DOI: 10.1002/hep.26093.
[29]BAKER SS, BAKER RD, LIU W, et al. Role of alcohol metabolism in non-alcoholic steatohepatitis[J]. PLoS One, 2010, 5(3): e9570. DOI: 10.1371/journal.pone.0009570.
[30]CHEN X, ZHANG Z, LI H, et al. Endogenous ethanol produced by intestinal bacteria induces mitochondrial dysfunction in non-alcoholic fatty liver disease[J]. J Gastroenterol Hepatol, 2020, 35(11): 2009-2019. DOI: 10.1111/jgh.15027.
[31]MIR H, MEENA AS, CHAUDHRY KK, et al. Occludin deficiency promotes ethanol-induced disruption of colonic epithelial junctions, gut barrier dysfunction and liver damage in mice[J]. Biochim Biophys Acta, 2016, 1860(4): 765-774. DOI: 10.1016/j.bbagen.2015.12.013.
[32]HARTMANN P, SEEBAUER CT, MAZAGOVA M, et al. Deficiency of intestinal mucin-2 protects mice from diet-induced fatty liver disease and obesity[J]. Am J Physiol Gastrointest Liver Physiol, 2016, 310(5): G310-322. DOI: 10.1152/ajpgi.00094.2015.
[33]CORBIN KD, ZEISEL SH. Choline metabolism provides novel insights into nonalcoholic fatty liver disease and its progression[J]. Curr Opin Gastroenterol, 2012, 28(2): 159-165. DOI: 10.1097/MOG.0b013e32834e7b4b.
[34]YE JZ, LI YT, WU WR, et al. Dynamic alterations in the gut microbiota and metabolome during the development of methionine-choline-deficient diet-induced nonalcoholic steatohepatitis[J]. World J Gastroenterol, 2018, 24(23): 2468-2481. DOI: 10.3748/wjg.v24.i23.2468.
[35]BARREA L, ANNUNZIATA G, MUSCOGIURI G, et al. Trimethylamine-N-oxide (TMAO) as novel potential biomarker of early predictors of metabolic syndrome[J]. Nutrients, 2018, 10(12):? 1971. DOI: 10.3390/nu10121971.
[36]ROMANO KA, MARTINEZ-DEL CAMPO A, KASAHARA K, et al. Metabolic, epigenetic, and transgenerational effects of gut bacterial choline consumption[J]. Cell Host Microbe, 2017, 22(3): 279-290. e7. DOI: 10.1016/j.chom.2017.07.021.
[37]GAO X, LIU X, XU J, et al. Dietary trimethylamine N-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet[J]. J Biosci Bioeng, 2014, 118(4): 476-481. DOI: 10.1016/j.jbiosc.2014.03.001.
[38]J?GER R, MOHR AE, CARPENTER KC, et al. International society of sports nutrition position stand: probiotics[J]. J Int Soc Sports Nutr, 2019, 16(1): 62. DOI: 10.1186/s12970-019-0329-0.
[39]ZHAO Z, WANG C, ZHANG L, et al. Lactobacillus plantarum NA136 improves the non-alcoholic fatty liver disease by modulating the AMPK/Nrf2 pathway[J]. Appl Microbiol Biotechnol, 2019, 103(14): 5843-5850. DOI: 10.1007/s00253-019-09703-4.
[40]BRISKEY D, HERITAGE M, JASKOWSKI LA, et al. Probiotics modify tight-junction proteins in an animal model of nonalcoholic fatty liver disease[J]. Therap Adv Gastroenterol, 2016, 9(4): 463-472. DOI: 10.1177/1756283X16645055.
[41]ALISI A, BEDOGNI G, BAVIERA G, et al. Randomised clinical trial: The beneficial effects of VSL#3 in obese children with non-alcoholic steatohepatitis[J]. Aliment Pharmacol Ther, 2014, 39(11): 1276-1285. DOI: 10.1111/apt.12758.
[42]SEPIDEH A, KARIM P, HOSSEIN A, et al. Effects of multistrain probiotic supplementation on glycemic and inflammatory indices in patients with nonalcoholic fatty liver disease: a double-blind? randomized clinical trial[J]. J Am Coll Nutr, 2016, 35(6): 500-505. DOI: 10.1080/07315724.2015.1031355.
[43]ZVENIGORODSKAIA LA, CHERKASHOVA EA, SAMSONOVA NG, et al. Advisability of using probiotics in the treatment of atherogenic dyslipidemia[J]. Eksp Klin Gastroenterol, 2011, (2): 37-43.
[44]SHAVAKHI A, MINAKARI M, FIROUZIAN H, et al. Effect of a probiotic and metformin on liver aminotransferases in non-alcoholic steatohepatitis: a double blind randomized clinical trial[J]. Int J Prev Med, 2013, 4(5): 531-537.
[45]PACHIKIAN BD, ESSAGHIR A, DEMOULIN JB, et al. Prebiotic approach alleviates hepatic steatosis: implication of fatty acid oxidative and cholesterol synthesis pathways[J]. Mol Nutr Food Res, 2013, 57(2): 347-359. DOI: 10.1002/mnfr.201200364.
[46]CANI PD, POSSEMIERS S, van de WIELE T, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability[J]. Gut, 2009, 58(8): 1091-1103. DOI: 10.1136/gut.2008.165886.
[47]RASO GM, SIMEOLI R, IACONO A, et al. Effects of a Lactobacillus paracasei B21060 based synbiotic on steatosis, insulin signaling and toll-like receptor expression in rats fed a high-fat diet[J]. J Nutr Biochem, 2014, 25(1): 81-90. DOI: 10.1016/j.jnutbio.2013.09.006.
[48]MALAGUARNERA M, VACANTE M, ANTIC T, et al. Bifidobacterium longum with fructo-oligosaccharides in patients with non alcoholic steatohepatitis[J]. Dig Dis Sci, 2012, 57(2): 545-553. DOI: 10.1007/s10620-011-1887-4.
[49]LE ROY T, LLOPIS M, LEPAGE P, et al. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice[J]. Gut, 2013, 62(12): 1787-1794. DOI: 10.1136/gutjnl-2012-303816.
[50]XUE L, DENG Z, LUO W, et al. Effect of fecal microbiota transplantation on non-alcoholic fatty liver disease: a randomized clinical trial[J]. Front Cell Infect Microbiol, 2022, 12: 759306. DOI: 10.3389/fcimb.2022.759306.
收稿日期:2023-05-04;錄用日期:2023-06-04
本文編輯:林姣
引證本文:LI YQ, TANG WJ, ZHOU YJ.? Role of intestinal microbiota and metabolites in the development, progression, and treatment of nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2023, 39(8): 1805-1810.