掌奕然 陶維國 郭傳清 陳修杰 苗德俊
摘要:針對目前對礦井工作面通風系統(tǒng)風量調(diào)節(jié)及礦井降阻等方面研究較少的問題,以濟寧二號煤礦10303工作面和33下02工作面為工程背景,對這2處原有的通風系統(tǒng)在風量調(diào)節(jié)及礦井降阻等方面進行優(yōu)化改造。將工作面通風系統(tǒng)圖導(dǎo)入Ventism軟件中,生成實體巷道并迭代計算,構(gòu)建礦井通風網(wǎng)絡(luò)解算模型。將現(xiàn)場實測的主要參數(shù)輸入到該模型中進行風流計算,得到的巷道內(nèi)流速、溫度及風量等相關(guān)數(shù)據(jù)與現(xiàn)場測定數(shù)據(jù)誤差在標準范圍內(nèi)。由礦井通風阻力測定結(jié)果可知,原有通風系統(tǒng)存在如下問題:南翼石門調(diào)節(jié)風墻設(shè)置不合理;33下02工作面實際供風量小于理想需風量;南翼?740水平軌道大巷通風路線長,受輔助運輸巷并聯(lián)進風的影響,南翼回風大巷阻力大。針對上述問題,提出3條改造措施:①在南翼回風石門和北翼帶式輸送機巷交匯處設(shè)置1個封閉風門,并將南翼帶式輸送機大巷與回風石門原有的風窗面積調(diào)整為2.9 m2;②在三采區(qū)軌道下山延伸與33下02軌道聯(lián)絡(luò)巷處設(shè)置1個面積為0.1 m2的調(diào)節(jié)風窗;③在十一采區(qū)管子道和南翼?740水平軌道大巷接口處,將0.9 m2的調(diào)節(jié)風窗改為2.4 m2,減少南翼?740水平軌道大巷風量,增加輔助運輸巷的并聯(lián)風量。改造后的通風系統(tǒng)模擬結(jié)果表明:南翼?740水平軌道大巷阻力降低了32.7%,33下02工作面風量提升了19.8%,礦井通風路線總阻力降低了6.4%。改造后的通風系統(tǒng)現(xiàn)場實測結(jié)果表明:實測風量和數(shù)值模擬結(jié)果平均相對誤差為1.28%,實測阻力和數(shù)值模擬結(jié)果平均相對誤差為2.52%,模擬結(jié)果與現(xiàn)場實測結(jié)果基本吻合。通風系統(tǒng)改造后,進風井風量和阻力變化不大;回風井監(jiān)測點處的風量減少,阻力降低;33下02軌道聯(lián)絡(luò)巷及工作面監(jiān)測點處實測風量分別增加了25.3%和21.4%,阻力增大了57.4%和41.1%;南翼?740水平軌道大巷監(jiān)測點處實測風量降低了20.3%,實測阻力減小了36.6%。工作面風量和礦井總阻力達到預(yù)期優(yōu)化效果。
關(guān)鍵詞:煤礦通風系統(tǒng);風量調(diào)節(jié);礦井通風網(wǎng)絡(luò)解算;Ventsim軟件;通風阻力
中圖分類號: TD724??? 文獻標志碼: A
Optimization and transformation of ventilation system in Jining No.2 Coal Mine
ZHANG Yiran1, TAO Weiguo2, GUO Chuanqing2, CHEN Xiujie1, MIAO Dejun1
(1. College of Safety and Environmental Engineering, Shandong University of Science and Technology,Qingdao 266590, China;2. Jining No.2 Coal Mine, YankuangEnery Group Co., Ltd., Jining 272000, China)
Abstract: Currently, there's a lack of research on air volume regulation and mine resistance reduction of ventilation system in mine working face. In order to solve the above problem, taking 10303 working face and 33low 02 working face of Jining No.2 Coal Mine as the engineering background, the original ventilation systems in these two areas are optimized and transformed in terms of air volume regulation and mine resistance reduction. The ventilation system diagram of the working face is imported into Ventism software, generating a solid roadway and iterating the calculation to construct a mine ventilation network solution model. The main parameters measured on-site are input into the model for airflow calculation. The errors between calculated relevant data suchas flow velocity, temperature, and air volume in the roadway obtained and the on-site measurement data are within the standard range. From the measurement results of mine ventilation resistance, it can be seen that the original ventilation system has the following problems. The setting of the regulating air wall at the south wing stone gate is unreasonable. The actual air supply volume of 33low02 working face is less than the ideal air volume. The ventilation route of the south wing -740 horizontal track main roadway is long. It is affected by the parallel intake of auxiliary transportation roadways, resulting in high resistance in the south wing return air main roadway. In order to solve the above problems, three renovation measures are proposed.① A closed air door is installed at the intersection of the south wing return air stone gate and the north wing belt conveyor roadway. The original air window area of the south wing belt conveyor roadway and return air stone gate is adjusted to 2.9 m2.② A 0.1 m2 adjustable wind window is installed at the intersection of the extension of the third mining area's track downhill and the 33low02 connecting roadway.③ The 0.9 m2 adjustable air window at the interface between the pipe duct in the 11th mining area and the south wing -740 horizontal track roadwayhas been changed to 2.4 m2,so as to reduce the air volume of the south wing -740 horizontal track roadway and increase the parallel air volume of the auxiliary transportation roadway. The simulation results of the modified ventilation system show that the resistance of the southern wing -740 horizontal track main roadway has been reduced by 32.7%. The air volume of the 33low02 working face has been increased by 19.8%. The total resistance of the mine ventilation route has been reduced by 6.4%. The on-site measurement results of the modified ventilation system show that the average relative error between the measured air volume and numerical simulation results is 1.28%. The average relative error between the measured resistance and numerical simulation results is 2.52%. The optimized simulation results are basically consistent with the on-site test results. The range of changes in air volume and resistance of the intake shaft before and after the entilation system adjustment is not significant. The air volume at the measuring point of the return air shaft decreases, and resistance decreased. The optimized measured air volume at the 33low02 track connecting roadway and the measuring points of the working face increase by 25.3% and 21.4%, respectively, and the resistances increase by 57.4% and 41.1%. The optimized measured air volume at the south wing -740 horizontal track roadway decreases by 20.3%, and resistance decreases by 36.6%. After the renovation, the air volume of the working face and the total resistance of the mine have achieved the expected results.
Key words: coal mine ventilation system; air volume regulation; mine ventilation network calculation; Ventsim software; ventilation resistance
0 引言
礦井通風的作用是供給井下足夠的新鮮空氣,稀釋并排除井下有毒有害氣體,調(diào)節(jié)井下氣候,保證正常生產(chǎn)[1-2]。為了設(shè)計和模擬井下工作環(huán)境,研究人員開發(fā)應(yīng)用Ventsim三維礦井通風仿真系統(tǒng),其不僅適用于通風設(shè)計與網(wǎng)絡(luò)解算,也可對風流、污染物及火災(zāi)進行實時模擬與監(jiān)測,確保工人和設(shè)備處在一個良好的工作環(huán)境中[3-5]。
目前,Ventsim軟件已廣泛應(yīng)用到煤礦和非煤礦山的通風系統(tǒng)優(yōu)化中[6]。盧輝等[7]使用Ventsim軟件對工作面優(yōu)化后的通風系統(tǒng)和風壓分布狀態(tài)進行模擬。辛嵩等[8]運用Ventsim軟件對煤礦單翼通風系統(tǒng)進行優(yōu)化處理,得到通風總阻力、巷道測點風速等優(yōu)化結(jié)果。陳浩等[9]利用Ventsim軟件優(yōu)化通風系統(tǒng),有效降低了礦井通風阻力,減少了能耗。耿守鋒[10]采用Ventsim軟件對通風網(wǎng)絡(luò)進行計算,有效解決了礦井風機聯(lián)合運行不穩(wěn)定的問題。肖夢輝等[11]使用Ventsim軟件對金屬礦山進行3種不同工況下的火災(zāi)數(shù)值模擬,研究當有火源產(chǎn)生時,井下風壓變化及煙氣的擴散規(guī)律。任浩[12]采用增大巷道斷面面積、提升主要通風機性能、改變通風方式等方法對通風網(wǎng)絡(luò)進行優(yōu)化,通過Ventsim軟件進行風路優(yōu)化網(wǎng)絡(luò)解算,達到礦井通風系統(tǒng)預(yù)期風量優(yōu)化目標。上述學者借助Ventsim軟件對礦井通風系統(tǒng)預(yù)警與穩(wěn)定性進行了分析,但缺乏對工作面風量調(diào)節(jié)及礦井降阻等方面的研究[13-14]。
本文以兗礦能源集團股份有限公司濟寧二號煤礦10303工作面和33下02工作面為工程背景,采用Ventsim軟件建立三維通風網(wǎng)絡(luò)模型,基于該模型,針對這2處通風系統(tǒng)存在通風路線長、阻力大、南北兩翼通風結(jié)構(gòu)不均衡等問題,對原有的通風系統(tǒng)進行優(yōu)化改造。
1 礦井概況及通風系統(tǒng)分析
1.1 礦井概況
濟寧二號煤礦位于山東省濟寧市高新區(qū),隸屬兗礦能源集團股份有限公司。該礦主要以長壁開采法采煤,礦井生產(chǎn)能力為5 Mt/a,核定通風能力為 6 Mt/a,配套建設(shè)一座入洗能力為4 Mt/a 的現(xiàn)代化大型造煤廠,井田面積為90 km2,地質(zhì)儲量為8.55億 t,可采儲量為3.47億 t。礦井地質(zhì)條件復(fù)雜,煤層賦存變化大,埋藏深,礦井采用立井多水平開拓方式,第一水平標高為?555 m,第二水平標高為?740 m,開采深度為?450~?1000 m。
1.2 通風系統(tǒng)分析
礦井通風系統(tǒng)為中央并列通風,通風方式為抽出式,主井和副井進風,回風井回風。其中南翼軌道大巷、南翼公路大巷、南翼?740水平軌道大巷、十采區(qū)進風巷為進風,西翼通風巷、北翼回風巷、南翼回風大巷為回風。地面主要通風機機房安裝2臺 GAF33.5?17?1GZ 型軸流式通風機,配備 TD1600?8/1430同步電動機,電動機額定功率為1600 kW,額定轉(zhuǎn)速為750 r/min,額定流量為342.8 m3/s。
結(jié)合礦井的生產(chǎn)布局和現(xiàn)有的通風系統(tǒng)狀況,在通風路線及用風地點設(shè)置20個監(jiān)測點,如圖1所示,通風路線阻力測定數(shù)據(jù)見表1。
2 通風系統(tǒng)三維模型建立及可靠性驗證
2.1 三維模型建立
由于濟寧二號煤礦通風網(wǎng)絡(luò)結(jié)構(gòu)復(fù)雜,為了確保模擬的準確性,對不受2條通風系統(tǒng)路線影響的其他巷道及部分密閉的巷道采取不建模解算,模型中只保留主要通風大巷及部分聯(lián)絡(luò)巷。在不影響、破壞整個通風系統(tǒng)分析的前提下,對濟寧二號煤礦通風模型進行簡化。利用 CAD 繪圖軟件繪制通風路線的巷道中心線并標出 z 軸坐標,圖紙以 DXF 格式保存并導(dǎo)出。將繪制完成的通風系統(tǒng)圖以單線格式導(dǎo)入Ventism[15]軟件中,構(gòu)建礦井通風網(wǎng)絡(luò)拓撲關(guān)系[16],對通風系統(tǒng)進行數(shù)字化、可視化處理,錄入巷道尺寸、風阻參數(shù)、風機數(shù)據(jù)等解算相關(guān)數(shù)據(jù),生成實體巷道并迭代計算。最終對比實測數(shù)據(jù)進行校準和檢測[17-18],構(gòu)建礦井通風網(wǎng)絡(luò)解算模型,如圖2所示。
2.2 模型可靠性驗證
為檢驗?zāi)M結(jié)果的可靠性,對通風系統(tǒng)三維模型進行網(wǎng)絡(luò)模擬解算。將現(xiàn)場實測的巷道斷面尺寸、障礙物面積、摩擦因數(shù)等主要參數(shù)輸入模型中,進行風流計算并得到巷道內(nèi)的流速、溫度及風量等相關(guān)數(shù)據(jù)[19-20]。將模擬結(jié)果與現(xiàn)場實測數(shù)據(jù)進行對比驗證,通過二者誤差結(jié)果判定模型及相關(guān)參數(shù)的可靠性,確保該模型能夠應(yīng)用到優(yōu)化改造措施中,比結(jié)果如圖3所示。
由圖3可看出,測點2副井處實際風量與模擬風量的誤差最大,誤差值為3.2%;測點9十采區(qū)帶式輸送機巷誤差最小,其誤差值為1.3%。根據(jù)上述結(jié)果可得,誤差區(qū)間在標準范圍(±20%)之內(nèi),模擬結(jié)果符合實際情況。因此,本文構(gòu)建的三維模型真實有效,模型參數(shù)可在后續(xù)通風系統(tǒng)的改造中使用。
3 改造措施的建立及模擬分析
3.1 改造措施的建立
根據(jù)礦井通風阻力測定結(jié)果可知,濟寧二號煤礦通風系統(tǒng)存在通風路線長、阻力大、南北兩翼通風結(jié)構(gòu)不均衡等問題。南北兩翼帶式輸送機大巷貫穿整個礦井的南北采區(qū),南翼石門調(diào)節(jié)風墻設(shè)置不合理,南翼帶式輸送機大巷阻力為175 Pa;33下02 工作面受到三采區(qū)軌道下山分風的影響,實際供風量為24.8 m3/s,小于理想需風量;南翼?740水平軌道大巷通風路線長,受到輔助運輸巷并聯(lián)進風的影響,南翼回風大巷阻力達227.45 Pa。為了滿足礦井正常生產(chǎn),本文提出3條改造措施,如圖4—圖6所示。
改造措施1:回風風流從南翼帶式輸送機大巷到北翼帶式輸送機大巷再到北翼回風巷,其路程長,摩擦阻力大。在南翼回風石門和北翼帶式輸送機大巷交匯處設(shè)置1個封閉風門,并將南翼帶式輸送機大巷與回風石門原有的風窗面積調(diào)整為2.9 m2。通過增大南翼回風石門的回風量,降低北翼帶式輸送機大巷阻力。
改造措施2:33下02工作面風量僅為24.8 m3/s,實際供風量遠小于理想需風量。由于三采區(qū)軌道下山延伸后的巷道不參與通風回路解算,在三采區(qū)軌道下山延伸與33下02軌道聯(lián)絡(luò)巷處設(shè)置1個調(diào)節(jié)風窗,風窗面積為0.1 m2,增大了33下02軌道聯(lián)絡(luò)巷和33下02工作面的供風量。
改造措施3:進風風流從南翼進風、軌道下山并聯(lián)進入?740水平軌道巷和輔助運輸巷,由南翼進風下山貫穿十一采區(qū)管子道通向南翼?740水平軌道大巷,在十一采區(qū)管子道和南翼?740水平軌道大巷接口處有1個0.9 m2的調(diào)節(jié)風窗,將其面積改為2.4 m2,減少南翼?740水平軌道大巷風量,增加輔助運輸巷的并聯(lián)風量。
3.2 改造后模擬結(jié)果分析
對北翼回風巷、33下02工作面及?740水平軌道大巷3處用風地點進行優(yōu)化改造,通過設(shè)置風門、改變調(diào)節(jié)風窗面積、并聯(lián)通風降阻等措施,解決了礦井通風系統(tǒng)阻力大、路線長及局部地點風量較小等問題,對改造后的通風系統(tǒng)進行風流模擬,結(jié)果見表2。
根據(jù)圖7表2可得,20個巷道監(jiān)測點優(yōu)化后的總阻力為2081.31 Pa,較優(yōu)化前降低了6.4%。分析南北兩翼回風大巷、南翼?740水平軌道大巷、33下02 工作面4個監(jiān)測點優(yōu)化前后的風量和阻力,以此探究3處用風地點的優(yōu)化效果。南翼回風大巷優(yōu)化后的風量為123.0 m3/s,較優(yōu)化前增加了2.4 m3/s;北翼回風大巷優(yōu)化后的風量僅為1.2 m3/s,阻力為0.19 Pa,阻力較優(yōu)化前降低了103.45 Pa。南翼?740水平軌道大巷優(yōu)化后的風量為62 m3/s,阻力為7.69 Pa,阻力較優(yōu)化前降低了32.7%。33下02工作面優(yōu)化后的風量為29.7 m3/s,較優(yōu)化前增加了19.8%。通過增加南翼回風大巷的回風量,降低了北翼回風大巷阻力;通過增大調(diào)節(jié)風窗面積,降低了南翼?740水平軌道大巷阻力;在33下02軌道聯(lián)絡(luò)巷設(shè)置調(diào)節(jié)風窗,33下02工作面的風量得到了提升。礦井的總阻力降低,各測點優(yōu)化后的風量及阻力都符合標準。
3.3 改造后實測效果分析
在三采區(qū)軌道下山延伸與33下02軌道聯(lián)絡(luò)巷處設(shè)置風窗,33下02軌道聯(lián)絡(luò)巷和33下02工作面設(shè)置監(jiān)測點;主井、副井及回風井各設(shè)置監(jiān)測點;南翼?740水平軌道大巷1號聯(lián)絡(luò)巷設(shè)置1個監(jiān)測點。監(jiān)測點需要放置在風流穩(wěn)定、巷道規(guī)整的地點,然后使用 CFZZ5通風阻力測試儀,風表、秒表等工具監(jiān)測幾處測點的風量、阻力變化情況,如圖7所示,將優(yōu)化前后測定的數(shù)據(jù)與數(shù)值模擬結(jié)果對比見,表3。
由表3可看出,各監(jiān)測點優(yōu)化前實測風量和模擬風量誤差在1%之內(nèi),優(yōu)化后二者最大誤差為2.4%,這是由于優(yōu)化后南翼?740水平軌道大巷內(nèi)風量減小,解算的參數(shù)不變,導(dǎo)致二者誤差變大,但在可接受范圍之內(nèi)。優(yōu)化后實測風量和模擬風量平均相對誤差為1.28%,優(yōu)化后實測阻力和模擬阻力平均相對誤差為2.52%,模擬結(jié)果與現(xiàn)場實測結(jié)果基本吻合。通風系統(tǒng)優(yōu)化后,進風井風量和阻力變化不大;回風井監(jiān)測點處的風量減少,阻力降低;33下02 軌道聯(lián)絡(luò)巷及工作面監(jiān)測點處實測風量分別增加了25.3%和21.4%,阻力增大了57.4%和41.1%;南翼 ?740水平軌道大巷監(jiān)測點處實測風量降低了20.3%,實測阻力減小了36.6%。工作面風量和礦井總阻力達到預(yù)期優(yōu)化效果。
4 優(yōu)化后通風系統(tǒng)安全校驗及網(wǎng)絡(luò)解算
為確保優(yōu)化后的通風系統(tǒng)既能夠完成部分區(qū)域的風量調(diào)節(jié)目標,又不影響礦井其他分支的風量輸送,對整個礦井進行通風網(wǎng)絡(luò)安全校驗。根據(jù)優(yōu)化后的通風系統(tǒng)得到風網(wǎng)阻力參數(shù),在原有網(wǎng)絡(luò)結(jié)構(gòu)上添加分支,并結(jié)合現(xiàn)有的巷道參數(shù)對分支進行賦值,最終對優(yōu)化后的通風系統(tǒng)進行網(wǎng)絡(luò)解算。優(yōu)化后礦井通風網(wǎng)絡(luò)解算結(jié)果見表4??煽闯鲞M風總風量為288.1 m3/s,回風總風量為280.5 m3/s,風量損失較少,約為2.6%;33下02工作面風量達到30.1 m3/s,較優(yōu)化前提升了21.4%,南翼?740水平軌道大巷阻力降低,且風量為60.5 m3/s,減少了20.3%,由此判定整個通風系統(tǒng)是合理的。
5 結(jié)論
1)針對33下02工作面受到三采區(qū)軌道下山分風導(dǎo)致風量較小的問題,通過在三采區(qū)軌道下山延伸處設(shè)置1個0.1 m2的調(diào)節(jié)風窗,將三采區(qū)軌道下山的風量大部分引入工作面。改造后工作面的實測風量達30.1 m3/s,較之前提高了21.4%。
2)風流從南翼進風下山流向南翼?740輔助運輸巷和南翼?740水平軌道大巷,將十一采區(qū)管子道和南翼?740水平軌道大巷接口0.9 m2的調(diào)節(jié)風窗改為2.4 m2,增加輔助運輸巷的并聯(lián)風量,改造后南翼?740水平軌道大巷的實測風量為60.5 m3/s,減少了20.3%;通過在北翼運輸巷設(shè)置風門,改變聯(lián)絡(luò)巷的風窗面積,封閉了北翼回風巷,減少了風量的沿程損失,總阻力明顯降低。
3)將改造措施應(yīng)用到濟寧二號煤礦的通風系統(tǒng)優(yōu)化中,現(xiàn)場實測風量和數(shù)值模擬結(jié)果平均相對誤差為1.28%,實測阻力和數(shù)值模擬結(jié)果平均相對誤差為2.52%,優(yōu)化后的模擬結(jié)果與現(xiàn)實測結(jié)果基本吻合。
參考文獻(References):
[1] 李興旺.優(yōu)化礦井通風與安全生產(chǎn)的關(guān)系研究[J].礦業(yè)裝備,2021(6):164-165.
LI Xingwang. Study on the relationship between optimizing mine ventilation and safety production[J]. Mining Equipment,2021(6):164-165.
[2] 袁明昌,支學藝,吳亞軍.武山銅礦通風系統(tǒng)優(yōu)化研究[J].礦業(yè)研究與開發(fā),2019,39(6):118-121.
YUAN Mingchang,ZHI Xueyi,WU Yajun. Study on optimization of ventilation system in Wushan Copper Mine[J]. Mining Research and Development,2019,39(6):118-121.
[3] 閆巖.基于Ventsim模型礦井通風優(yōu)化研究[J].煤炭與化工,2021,44(6):115-117.
YAN Yan. Study on mine ventilation optimization based on Ventsim model[J]. Coal and Chemical Industry,2021,44(6):115-117.
[4] 郝海清,蔣曙光,王凱,等.基于Ventsim的礦井運輸巷火災(zāi)風煙流應(yīng)急調(diào)控技術(shù)[J].煤礦安全,2022,53(9):38-46.
HAO Haiqing,JIANG Shuguang,WANG Kai,et al. Emergency control technology of air and smoke flow in mine belt roadway fire based on Ventsim software[J]. Safety in Coal Mines,2022,53(9):38-46.
[5] 石銀斌.五虎山礦井通風量數(shù)值模擬優(yōu)化研究[J].工礦自動化,2021,47(增刊1):75-77.
SHI Yinbin. Research on numerical simulation and optimization of ventilation rate in Wuhushan Coal Mine[J]. Industry and Mine Automation,2021,47(S1):75-77.
[6] 何敏,武福生,成燕玲.基于三維模型的通風系統(tǒng)優(yōu)化調(diào)控模擬分析[J].工礦自動化,2016,42(11):41-44.
HE Min,WU Fusheng,CHENG Yanling. Simulation analysis of optimal regulation and control of ventilation system based on 3D model[J]. Industry and Mine Automation,2016,42(11):41-44.
[7] 盧輝,袁樹杰,馬瑞峰,等.基于Ventsim的南山煤礦孤島工作面均壓通風方案研究[J].中國安全生產(chǎn)科學技術(shù),2020,16(8):125-130.
LU Hui,YUAN Shujie,MA Ruifeng,et al. Study on scheme of pressure equalizing ventilation in isolated island working face of Nanshan coal mine based on Ventsim[J]. Journal of Safety Science and Technology,2020,16(8):125-130.
[8] 辛嵩,侯傳彬,金曉娜,等.基于Ventsim模型的礦井單翼通風系統(tǒng)優(yōu)化研究[J].礦業(yè)安全與環(huán)保,2019,46(6):84-88.
XIN Song, HOU Chuanbin, JIN Xiaona, et al. Optimization of mine single-wing ventilation system based on ventsim[J]. Mining Safety & Environmental Protection,2019,46(6):84-88.
[9] 陳浩,陳宜華,胡秀林,等.基于Ventsim的深井金屬礦山通風系統(tǒng)優(yōu)化[J].工業(yè)安全與環(huán)保,2018,44(4):30-33.
CHEN Hao,CHEN Yihua,HU Xiulin,et al. Ventilation system optimization of deep well metal mine based on ventsim[J]. Industrial? Safety and Environmental Protection,2018,44(4):30-33.
[10] 耿守鋒.礦井通風系統(tǒng)三維模型構(gòu)建與優(yōu)化設(shè)計[J].煤礦現(xiàn)代化,2022,31(1):77-79.
GENG Shoufeng. Three-dimensional model construction and optimal design of mine ventilation system[J]. Coal Mine Modernization,2022,31(1):77-79.
[11] 肖夢輝,于濤,常寶孟,等.基于Ventsim的復(fù)雜礦井火災(zāi)數(shù)值模擬研究[J].礦業(yè)研究與開發(fā),2021,41(12):129-134.
XIAO Menghui,YU Tao,CHANG Baomeng,et al. Numerical simulation study on complex mine fire based on ventsim[J]. Mining Research and Development,2021,41(12):129-134.
[12] 任浩.新發(fā)煤業(yè)通風系統(tǒng)優(yōu)化研究[D].包頭:內(nèi)蒙古科技大學,2020.
REN Hao. Study on optimization of ventilation system in XinfaCoal? Mine[D]. Baotou: Inner? Mongolia University of Science & Technology,2020
[13] 曹懷軒.基于Ventsim的復(fù)雜通風系統(tǒng)優(yōu)化及監(jiān)測預(yù)警研究[D].青島:山東科技大學,2020.
CAO Huaixuan. Research on optimization and monitoring early warning of complex ventilation system based on Ventsim[D]. Qingdao:Shandong University of Science and Technology,2020.
[14] 朱旭東.基于Ventsim的漳村礦通風系統(tǒng)優(yōu)化研究[D].焦作:河南理工大學,2020.
ZHU Xudong. Study on optimization of ventilation system of Zhangcun Mine based on Ventsim[D]. Jiaozuo:Henan Polytechnic University,2020.
[15] 陳艷麗.基于Ventsim的礦井通風系統(tǒng)穩(wěn)定性分析[D].長沙:中南大學,2014.
CHEN Yanli. The stability analysis of mine ventilation system on Ventsim software[D]. Changsha:Central South University,2014.
[16] 陶維國,姜希印,王連濤,等.濟寧二號煤礦通風系統(tǒng)優(yōu)化研究與實施[J].煤礦現(xiàn)代化,2016(4):130-133.
TAO Weiguo,JIANG Xiyin,WANG Liantao,et al. The optimize researches and implement on ventilation system of Jining NO.2 Coal Mine[J]. Coal Mine Modernization,2016(4):130-133.
[17] 王緒友,王連濤,陶維國,等.濟寧二號煤礦沿空留巷工作面通風系統(tǒng)優(yōu)化研究[J].礦業(yè)安全與環(huán)保,2016,43(1):77-80.
WANG Xuyou,WANG Liantao,TAO Weiguo,et al. Study on ventilation system optimization of working face with gob-side entry retaining in Jining No.2 Coal Mine[J]. Mining Safety & Environmental Protection,2016,43(1):77-80.
[18] 郭鵬閣.基于VSE軟件的礦井通風系統(tǒng)優(yōu)化研究[J].山東煤炭科技,2021,39(3):103-106.
GUO Pengge. Research on optimization of mine ventilation system based on VSE software[J]. Shandong Coal Science and Technology,2021,39(3):103-106.
[19] 謝中朋.復(fù)雜礦井通風系統(tǒng)穩(wěn)定性研究[D].北京:中國礦業(yè)大學(北京),2015.
XIE Zhongpeng. Research on stability of complicated mine ventilation system[D]. Beijing:China University of Mining and Technology-Beijing,2015.
[20] 孫利陽.魯奎山鐵礦通風系統(tǒng)優(yōu)化方案研究[D].昆明:昆明理工大學,2021.
SUN Liyang. Study on the optimization scheme of ventilation system in Rukui Mountain Iron Mine[D]. Kunming: Kunming University? of Science? and Technology,2021.