何永明 張 芳
生長素調(diào)控水稻穎花開放的效應(yīng)研究
何永明 張 芳*
江西農(nóng)業(yè)大學(xué) / 作物生理生態(tài)與遺傳育種教育部重點(diǎn)實(shí)驗(yàn)室 / 江西省作物生理生態(tài)與遺傳育種重點(diǎn)實(shí)驗(yàn)室, 江西南昌 330045
穎花開放由漿片膨大所啟動, 對水稻授粉受精具有直接影響。生長素是調(diào)節(jié)花藥開裂、花粉育性和種子起始等生殖發(fā)育過程的重要激素。為闡明生長素在水稻穎花開放中的調(diào)控作用, 本研究以粳稻品種中花11為試驗(yàn)材料, 調(diào)查了外源生長素及其抑制劑對穎花開放的影響, 以及內(nèi)源生長素水平和生長素信號通路基因表達(dá)的動態(tài)變化。結(jié)果表明, IAA (10~20 mmol L–1)、NAA (0.05~0.50 mmol L–1)浸穗處理將推遲水稻穎花開放, 其中高濃度(0.5 mmol L–1) NAA能使穎花開放推遲3 d, 并表現(xiàn)出穎花張開時間延長和結(jié)實(shí)率下降的現(xiàn)象。IAA極性運(yùn)輸抑制劑TIBA及其作用抑制劑PCIB也抑制穎花開放。NAA預(yù)處理后, 增施茉莉酸甲酯(MeJA)能有效恢復(fù)穎花開放。水稻穎花中IAA含量在自然開放前2 h迅速下降, 比開穎前1 d、2 d分別降低了65.85%、74.27%。與IAA水平變化相對應(yīng), 穎花開放時漿片IAA生物合成基因(、)表達(dá)下調(diào), 而催化IAA結(jié)合失活的酶基因(、)、IAA輸出載體基因(、)以及IAA極性運(yùn)輸正向調(diào)節(jié)因子基因均顯著上調(diào)表達(dá)。此外, 我們也鑒定到13個差異表達(dá)的IAA早期響應(yīng)基因(、、), 其中10個上調(diào)表達(dá), 3個下調(diào)表達(dá)。綜上表明, 水稻穎花開放受內(nèi)源生長素調(diào)控, 但提高漿片生長素水平則抑制其開放。
水稻; 穎花開放; 生長素; 抑制效應(yīng)
水稻是世界重要的糧食作物之一, 其花器官的發(fā)育為人類提供了主要的糧食來源。近年來, 我國秈粳亞種間雜種優(yōu)勢利用取得重大突破, 以甬優(yōu)、春優(yōu)、浙優(yōu)等系列為代表的粳型不育系/秈型恢復(fù)系(“粳不秈恢”)雜交組合, 雜種優(yōu)勢更強(qiáng), 發(fā)展勢頭良好[1-2]; 但其親本在日間開花時間的差異, 導(dǎo)致制種產(chǎn)量低下, 嚴(yán)重制約了秈粳雜交水稻的推廣[3-4]。因此, 明確水稻穎花開放調(diào)控機(jī)制, 解決秈粳品種的“花時不遇”成為提高雜交制種產(chǎn)量的關(guān)鍵。花時是指水稻穎花在1 d中的開放時間, 通常以開花高峰表示。成熟穎花的開放通常發(fā)生在09:00—12:00, 但與品種遺傳特性(秈稻花時一般比粳稻早)和環(huán)境因素(溫度、濕度、光照、風(fēng)力和CO2等)密切相關(guān), 例如增溫和CO2處理均可促進(jìn)水稻開穎, 搓揉稻穗等機(jī)械刺激也能引起水稻開花, 田間風(fēng)速增加會延遲水稻穎花開放[5-7]。
植物激素是植物細(xì)胞接受特定環(huán)境信號誘導(dǎo)的信號分子, 調(diào)控著植物生長發(fā)育及環(huán)境適應(yīng)的各個過程。曾曉春等研究發(fā)現(xiàn)茉莉酸(JA)及其甲酯(MeJA)對水稻開穎表現(xiàn)出強(qiáng)烈誘導(dǎo)效應(yīng), 該效應(yīng)在雄性不育系表現(xiàn)更明顯[8-10]。1 mmol L–1水楊酸(SA)能抑制MeJA誘導(dǎo)的水稻開穎, 而MeJA的再次處理能解除SA的抑制作用[10]。水稻漿片JA生物合成在穎花開放前大幅上升, 閉穎后急劇下降[9,11-12], 水稻JA缺失突變體[13-14]、[15-16]以及JA不足的不育系ZS97A[17]表現(xiàn)出花時分散的現(xiàn)象, 而MeJA在人工改善水稻花時方面具有良好效果[18-20]。脫落酸(ABA)處理可明顯加快已開穎花的閉穎過程, 縮短開閉歷時[21]。
生長素主要以吲哚乙酸(indole-3-acetic acid, IAA)形式存在于植物體內(nèi), 是最早被發(fā)現(xiàn)且作用最廣泛的植物激素, 對水稻花器官發(fā)育的調(diào)控發(fā)揮著重要作用。水稻控制依賴于色氨酸的生長素合成, 該基因缺失后,突變體胚胎致死, 花器官異常發(fā)育[22]。編碼的雙加氧酶催化IAA不可逆氧化生成OxIAA, 該基因缺失后花藥和子房中游離IAA增加, 突變體表現(xiàn)出雄性不育[23]。參與水稻生長素極性運(yùn)輸?shù)恼{(diào)控, 過量表達(dá)后, 轉(zhuǎn)基因水稻雄蕊減少, 雌蕊柱頭增加, 漿片發(fā)育異常[24]。眾多研究證明, JA、MeJA能調(diào)控水稻花時, 但生長素除了調(diào)控水稻花器官的發(fā)育外, 是否也參與調(diào)控水稻穎花開放?為此, 本研究以中花11為試驗(yàn)材料, 采用生長素及其抑制劑處理開花前的稻穗, 對其進(jìn)行開花動態(tài)調(diào)查、內(nèi)源生長素水平測定和基因表達(dá)分析等, 從而摸清生長素對水稻穎花開放的調(diào)控效應(yīng), 以期進(jìn)一步揭示水稻穎花開放的內(nèi)在控制機(jī)制, 為水稻花時的人工調(diào)節(jié)提供理論基礎(chǔ)和技術(shù)路徑。
水稻品種為中花11, 分批種植于江西農(nóng)業(yè)大學(xué)科技園, 常規(guī)管理, 抽穗期為7月上旬至9月上旬。吲哚乙酸(indole-3-acetic acid, IAA)、萘乙酸(naphthaleneacetic acid, NAA)、三碘苯甲酸(2,3,5-triiodobenzoic acid, TIBA)和對氯苯氧異丁酸(p-chlorophenoxyisobutyric acid, PCIB) (國藥集團(tuán)化學(xué)試劑有限公司), 以0.1 mol L–1KOH溶解; 茉莉酸甲酯(methyl jamonate, MeJA)(Sigma公司)以95%乙醇溶解。試劑配成高濃度母液, 避光存放于4℃冰箱, 使用時取母液稀釋成相應(yīng)的施用濃度, 并用0.1 mmol L–1HCl調(diào)節(jié)生長素類溶液pH至6.5。
穎花開花調(diào)查試驗(yàn)前1 d下午18:00—19:00, 選擇頂部已有少量穎花開放的主穗, 以一定濃度的生長素類(IAA、NAA、TIBA、PCIB)溶液(含0.2‰吐溫-20)浸蘸1 min, MeJA溶液在開花調(diào)查當(dāng)天早上08:00處理, 以H2O (含0.2‰吐溫-20)作對照。08:30—15:00時間內(nèi)統(tǒng)計(jì)處理稻穗的穎花開放數(shù), 每30 min統(tǒng)計(jì)1次, 以記號筆標(biāo)記已開的穎花, 每處理6穗。單朵穎花的開閉歷時調(diào)查為在10:00— 13:00之間記錄單朵穎花的開放和閉合時間, 每處理記錄8朵(2朵穗–1)。
試驗(yàn)前1 d下午, 選取已抽出1/2左右的主穗, 每株選1穗, 用記號筆標(biāo)記已開放的穎花(不計(jì)入結(jié)實(shí)率), 然后用一定濃度的IAA、NAA溶液處理稻穗(方法同1.2), 隨后套袋, 25 d后考查單穗穎花結(jié)實(shí)率,每處理8穗。
根據(jù)穎花著生位置和雄蕊長度判斷穎花的成熟度。剪取稻穗上開花前不同時間點(diǎn)的穎花, 液氮速凍后保存于–80℃冰箱。穎花樣品在液氮中研磨至粉末, 準(zhǔn)確稱取0.1 g, 放置于1.5 mL離心管, 加入500 μL預(yù)冷的激素提取液(甲醇∶水∶乙酸=90∶9∶1), 于避光的4℃平板搖床中劇烈振蕩提取24 h, 低溫高速離心(4℃, 12,000轉(zhuǎn) min–1, 15 min), 收集上清液備用; 繼續(xù)加400 μL提取液重復(fù)提取2次(提取時間分別為12 h、6 h), 然后合并3次提取所獲上清液于室溫下以氮?dú)獯蹈? 加200 μL甲醇溶解, 再經(jīng)0.22 μm尼龍濾膜過濾, 保存于–20℃冰箱中待測。按Liu等[25]操作, 利用UFLC-ESI-MS系統(tǒng)測定IAA濃度, 每個樣品3次生物學(xué)重復(fù)。
在液氮中剝?nèi)∽匀婚_放前1 d、0 h漿片, 以Trizol法提取漿片RNA。RNA樣品的純度和完整性經(jīng)Nanodrop 2000、Aglient 2100檢驗(yàn)合格后, 送北京百邁客生物科技有限公司進(jìn)行RNA測序。測序平臺為Illumina公司的HiSeq X-ten高通量測序系統(tǒng), 測序讀長為PE150。測序數(shù)據(jù)(Reads)與粳稻參考基因組(RGAP7)進(jìn)行比對, 應(yīng)用StringTie軟件進(jìn)行組裝和定量?;虮磉_(dá)水平采用FPKM (每千個堿基的轉(zhuǎn)錄每百萬映射讀取的碎片)指標(biāo)定量。應(yīng)用GO、KEGG數(shù)據(jù)庫對IAA途徑差異表達(dá)基因進(jìn)行富集和注釋。
用于qRT-PCR分析的植物RNA樣品經(jīng)DNase I (Invitrogen)去除基因組DNA的污染后, 利用M-MLV 逆轉(zhuǎn)錄酶(Invitrogen)反轉(zhuǎn)錄合成cDNA。qRT-PCR采用SYBR Premix ExII試劑盒(Takara), 反應(yīng)體系20 μL: SYBR Premix Ex10 μL, 正反向引物各0.4 μL, cDNA模板2 μL, ROX Reference Dye (50x) 0.4 μL, ddH2O 6.8 μL。反應(yīng)條件為: 95℃ 30 s; 95℃ 5 s, 60℃ 38s, 循環(huán)數(shù)為40, 以為內(nèi)參基因[26]。目標(biāo)基因、的引物序列參考李金濤等[27],、和分別參見Woo等[28]、Du等[29]和Liu等[30], 結(jié)果根據(jù)2–ΔCt方法計(jì)算分析, 每份樣品3次重復(fù)。
從圖1-A可以看出, 施用外源生長素(IAA和NAA)后第1天, 水稻穎花開放數(shù)均顯著降低。相比清水對照, 10 mmol L–1、20 mmol L–1IAA和0.05 mmol L–1、0.2 mmol L–1NAA處理下, 穎花開放數(shù)分別下降了33.33%、57.14%和71.43%、89.88%, 而0.5 mmol L–1NAA噴施后未觀察到穎花開放。隨著時間的推移, 生長素的抑制效應(yīng)減弱, 水稻穎花逐漸恢復(fù)開放, 低濃度生長素(10 mmol L–1IAA、0.05 mmol L–1NAA)施用后, 第2天穎花開放數(shù)最多(與對照一致), 而0.2 mmol L–1、0.5 mmol L–1NAA處理的水稻分別在第3天和第4天出現(xiàn)開穎高峰。由此可見, 外施生長素將抑制水稻穎花開放, 抑制效應(yīng)隨施用濃度的增加而顯著提升, 且NAA的效果比IAA更加強(qiáng)烈。
通過觀察穎花開放最多當(dāng)天的日開花動態(tài)可知, 低濃度生長素(10 mmol L–1IAA、0.05 mmol L–1NAA)處理下水稻花時比對照(花時為11:30)推遲了1 h, 于12:30出現(xiàn)開穎高峰; 而高濃度生長素(0.2 mmol L–1NAA)的施用使穎花開放集中度下降, 花時分散, 在11:30—13:30間的穎花開放數(shù)無明顯差異(圖1-B)。這表明外施生長素將推遲水稻花時, 且推遲效應(yīng)與生長素濃度正相關(guān)。跟蹤調(diào)查穎花的開閉歷時(圖1-C), 從中可以看出, 生長素處理顯著延長了單朵花開穎的歷時(開穎到閉穎的時間), 外施10 mmol L–1IAA和0.1 mmol L–1、0.2 mmol L–1NAA后, 單朵穎花開閉歷時分別比對照處理增加了28.91%和24.48%、45.13% (圖1-C), 這與Huang等[21]結(jié)果一致。
生長素處理可顯著推遲穎花開放, 是否影響水稻結(jié)實(shí)?為此, 本研究調(diào)查了各處理下的水稻自交結(jié)實(shí)率(圖2), 10 mmol L–1IAA和0.1 mmol L–1、0.2 mmol L–1NAA施用后, 水稻單穗自交結(jié)實(shí)率分別比對照處理下降35.84%和48.61%、74.22%。這暗示著生長素處理推遲了穎花開放, 可能造成已發(fā)育成熟的雄蕊因未能及時開穎而育性下降, 導(dǎo)致水稻自交結(jié)實(shí)率顯著降低。
為深入闡明生長素對穎花開放的調(diào)控作用, 本研究進(jìn)一步調(diào)查了稻穗在施用IAA抑制劑TIBA和PCIB后的開花動態(tài)。TIBA、PCIB分別是IAA的極性運(yùn)輸抑制劑和作用抑制劑[31]。結(jié)果顯示TIBA處理后, 穎花開放的集中度和全天開放總數(shù)明顯下降, 下降效應(yīng)隨TIBA施用濃度的增加而增強(qiáng)(圖3-A)。低濃度PCIB (1 mmol L–1)處理的水稻穎花開放時間及數(shù)量與對照基本無異, 高濃度(5 mmol L–1、10 mmol L–1) PCIB的施用雖不推遲花時但抑制穎花開放, 花時開穎數(shù)和全天開放總量分別減少27.01%、59.12%和18.86%、43.06% (圖3-B)。上述結(jié)果說明, 阻礙穎花中IAA的向基運(yùn)輸以及拮抗IAA的生理作用均抑制穎花開放, 進(jìn)一步表明內(nèi)源IAA信號介導(dǎo)穎花開放的調(diào)控。
圖1 不同生長素處理下的水稻穎花開放動態(tài)
A: 不同生長素處理后4 d內(nèi)水稻穎花開放情況。B: 不同生長素處理后水稻穎花開放最多的當(dāng)天逐時開花情況。C: 不同生長素處理后單朵穎花開閉歷時。不同小寫字母代表在0.05概率水平差異顯著(Duncan’s檢驗(yàn))。
A: the number of opening florets per panicle after different auxin conditions during 4 days. B: the number of opening florets per panicle in one day that has most opening florets under different auxin conditions. C: the opening duration of single florets under different auxin conditions. Different lowercase letters mean significant difference at the 0.05 probability level (Duncan’s test).
圖2 不同生長素處理下的單穗自交結(jié)實(shí)率
不同小寫字母代表在0.05概率水平差異顯著(Duncan’s檢驗(yàn))。
Different lowercase letters mean significant difference at the 0.05 probability level (Duncan’s test).
從圖4可以看出, 單一MeJA處理的水稻花時由11:30 (對照)提前至08:30, 全天穎花開放總數(shù)比對照高出35.35%, 此結(jié)果與前人研究一致, 表明MeJA能誘導(dǎo)水稻開穎。0.1 mmol L–1、0.2 mmol L–1NAA處理后, 穎花開放幾乎被完全抑制(與圖1結(jié)果一致); 而在此處理上增施MeJA, 水稻穎花恢復(fù)開放, 且花時分別提早至上午09:00、09:30, 當(dāng)天穎花開放總數(shù)也與對照無明顯差異。這表明生長素對水稻穎花開放的抑制效應(yīng)可被MeJA所逆轉(zhuǎn), 這也提示外源生長素處理并未損傷穎花內(nèi)漿片等組織。
圖5顯示, 水稻穎花中IAA水平波動較大: 開穎前2 d (BF2d)高水平積累, 含量達(dá)到最大值(近90 mg g–1); 而隨著開花的臨近, IAA含量逐步下降, 且在穎花開放前數(shù)小時內(nèi)快速下降。與BF2d相比, 穎花中IAA在開穎前1 d (BF1d)降低了24.67%, 而在開穎花前2 h (BF2h)降幅高達(dá)74.27%, 且含量持續(xù)下降, 于穎花開放時(BF0h)達(dá)到最低值, 僅為BF2d的19.96% (圖5)。這表明水稻花器官發(fā)育可能需要高濃度IAA, 于開花前2 d大量積累IAA, 而穎花開放需要低水平IAA, 前期積累于穎花的IAA在穎花開放前2 h內(nèi)快速下降。
圖3 TIBA (A)和PCIB (B)處理下水稻穎花的開放動態(tài)
圖4 MeJA對生長素抑制水稻穎花開放的影響
圖5 水稻穎花開放前不同時間的IAA含量
BF2d、BF1d、BF2h和BF0h分別表示開花前2 d、1 d、2 h和穎花開放時。不同小寫字母代表在0.05概率水平差異顯著(Duncan’s檢驗(yàn))。
BF2d, BF1d, BF2h, and BF0h means the time of 2 d, 1 d, 2 h before flowering and floret opening, respectively. Different lowercase letters mean significant difference at the 0.05 probability level (Duncan’s test).
穎花基部的一對微小漿片在推動外稃張開過程中發(fā)揮關(guān)鍵作用[17], 為進(jìn)一步揭示水稻穎花開放過程中漿片IAA水平的動態(tài)變化, 本研究對漿片進(jìn)行轉(zhuǎn)錄組測序, 并對IAA信號通路差異表達(dá)基因進(jìn)行富集分析(圖6-A)。植物體內(nèi)最基本的生長素合成途徑是以色氨酸為前提的吲哚丙酮酸途徑, 需要色氨酸氨基轉(zhuǎn)移酶(TAR/TAA)和黃素單加氧酶(YUCCA)的催化[31]。與IAA合成和代謝途徑相關(guān)的基因, 我們富集到了7個差異基因。與開花前1 d (BF1d)相比, 水稻穎花開放時(BF0h)漿片IAA合成關(guān)鍵基因、均顯著下降表達(dá), 但表達(dá)上調(diào)。IAA的結(jié)合態(tài)是非活性形式, 催化IAA與氨基酸不可逆結(jié)合的GH3蛋白編碼基因和[32]表達(dá)分別增加了約12和2倍。我們也富集到3個與IAA極性運(yùn)輸有關(guān)的差異基因, 介導(dǎo)IAA輸出的PIN1蛋白基因和, 以及IAA極性運(yùn)輸正調(diào)節(jié)因子基因[30]均大幅增強(qiáng)表達(dá)。以上基因表達(dá)變化表明, 穎花開放前漿片游離態(tài)IAA水平會下降, 這與圖5穎花IAA水平大幅下降相一致。13個差異表達(dá)的生長素信號途徑早期響應(yīng)基因(、、)也被鑒定, 其中10個上調(diào)表達(dá), 3個下調(diào)表達(dá), 這提示IAA信號介導(dǎo)漿片膨大過程。為進(jìn)一步驗(yàn)證轉(zhuǎn)錄組測序結(jié)果, 對其中10個基因的表達(dá)水平進(jìn)行qRT-PCR鑒定(圖6-B), 從中可以看出, 這10個基因的差異表達(dá)變化與轉(zhuǎn)錄組測序結(jié)果基本吻合。
圖6 漿片中IAA信號通路相關(guān)基因的表達(dá)分析
A: 水稻穎花開放前1 d和穎花開放時漿片轉(zhuǎn)錄組分析。B:,,和等10個選擇基因的表達(dá)變化值qRT-PCR檢測與RNA-Seq的相關(guān)性分析。橫坐標(biāo)為qRT-PCR的相對表達(dá)水平, 縱坐標(biāo)為RNA-Seq的差異表達(dá)水平, 二者均取log2的對數(shù)。BF1d和BF0h分別表示開花前1 d和穎花開放時。
A: transcriptional analysis of rice lodicules at the time of 1 d before flowering and floret opening. B: the correlation analysis on the expression changes of 10 selected genes including,,, andwith the methods of qRT-PCR and RNA-seq. The values of log2for relative expression level of qRT-PCR and differential expression levels of RNA-Seq were as the horizontal and vertical coordinates, respectively. BF1d and BF0h means the time of 1 d before flowering and floret opening, respectively.
生長素作為最重要的植物激素, 參與調(diào)控植物生長發(fā)育的各個過程[32-33]。然而, 生長素在植物花開放中的調(diào)控作用卻研究較少。前人發(fā)現(xiàn), 生長素(IAA、NAA)促進(jìn)鳶尾()和睡蓮()的花朵開放, 而其極性運(yùn)輸抑制劑TIBA卻抑制開放[34-35]。但是, 外施生長素及極性運(yùn)輸抑制劑(TIBA、NPA)對水稻胚根、擬南芥初生根的生長只表現(xiàn)出抑制作用, 沒有促進(jìn)效應(yīng)[31,36]。本研究顯示, 外源生長素(IAA、NAA)對水稻穎花開放具有明顯抑制作用, 抑制效應(yīng)與生長素濃度正相關(guān)(圖1-A, B)。這與水稻突變體植株因活性IAA大幅增加而表現(xiàn)出穎花不開和花藥不裂的現(xiàn)象[23]相符合。本研究進(jìn)一步發(fā)現(xiàn), IAA運(yùn)輸、作用抑制劑TIBA、PCIB也顯著抑制穎花開放(圖3), 而且穎花自然開放前2 h內(nèi)源IAA含量顯著下降(圖5)。這些結(jié)果表明, 內(nèi)源IAA介導(dǎo)水稻穎花開放的調(diào)控, 但穎花開放時漿片IAA含量已下降至低水平, 提高IAA水平則推遲穎花開放。
已知JA誘導(dǎo)穎花開放, 并且穎花開放前漿片JA水平會顯著上升[11,17]。在擬南芥花器官晚期發(fā)育以及側(cè)根發(fā)育中, IAA信號途徑對JA生物合成均存在負(fù)調(diào)控作用[37-38]。有趣的是, MeJA能有效恢復(fù)生長素抑制的穎花開放(圖4), 這提示高水平IAA對漿片JA生物合成可能有抑制作用, 兩者相互作用的分子機(jī)制有待進(jìn)一步研究。
作為高效的發(fā)育信號, 激素必須壽命短并且不能長時間積累, 細(xì)胞內(nèi)IAA穩(wěn)態(tài)(homeostasis)受到合成、代謝、結(jié)合和運(yùn)輸?shù)鹊木C合調(diào)控[23,32]。YUCCA是催化IPA (吲哚-3-丙酮酸)合成IAA的限速酶, 對生長素的生物合成至關(guān)重要, 并在眾多植物研究中獲得證實(shí)。研究表明, 擬南芥YUCCA基因家族11個成員均參與IAA的生物合成[39]; HvYUCCA4特異表達(dá)于大麥花粉, 負(fù)責(zé)活性生長素的合成[40]; 水稻中多數(shù)超表達(dá)后都導(dǎo)致轉(zhuǎn)基因植株IAA水平顯著增加, 并表現(xiàn)出相似的異常表型[41]。本研究中的表達(dá)下降, 尤其是, 該基因可能直接調(diào)控漿片IAA的生物合成。Lee等[42]研究發(fā)現(xiàn)擬南芥中超量表達(dá)還能提高植株的抗旱性。本研究結(jié)果顯示, 穎花開放時漿片表達(dá)量顯著增加(圖6), 但I(xiàn)AA含量(圖5)并未積累, 推測穎花開放時柱頭和花藥暴露在外, 需忍受一定程度的干旱脅迫, 從而誘導(dǎo)了該基因的增強(qiáng)表達(dá)。
生長素的分解代謝保證了活性激素的濃度超過最適水平或激素反應(yīng)完成時活性激素的降解。是生長素早期基因(、和)之一, 編碼生長素酰胺合成酶, 催化游離的IAA不可逆降解生成OxIAA, 在IAA的酶促降解以及植株體內(nèi)IAA穩(wěn)態(tài)調(diào)控中起著非常重要的作用。和過量表達(dá)導(dǎo)致擬南芥?zhèn)雀∩偾野? 植株體內(nèi)高水平積累IAA; 而基因敲除后, 突變體對IAA非常敏感[43-44]。Ding等[45]研究發(fā)現(xiàn)水稻中GH3.8能催化IAA-氨基酸的合成從而抑制生長素的作用。本研究顯示水稻穎花自然開放時, 漿片中和顯著增強(qiáng)表達(dá)(圖6), 表明IAA的不可逆降解增強(qiáng), 這與穎花中IAA水平低下(圖5)相符。
生長素的極性運(yùn)輸依賴于3種載體蛋白: 輸入載體AUX1/LAX蛋白、輸出載體PIN蛋白和兼有輸入與輸出功能的ABCB/MDR/PGP蛋白, 植物通過調(diào)控這些載體蛋白來調(diào)節(jié)生長素的極性運(yùn)輸和分布, 進(jìn)而調(diào)控植物的生長發(fā)育[30]。本研究發(fā)現(xiàn), 穎花開放時漿片和表達(dá)水平上升, 且生長素極性運(yùn)輸正調(diào)控因子也上調(diào)表達(dá)(圖6), 表明生長素輸出加快, 這與極性運(yùn)輸抑制TIBA推遲穎花開放(圖3-A)符合。最新研究表明, ABCB可獨(dú)立于PIN蛋白作用于生長素外流; 但PIN介導(dǎo)的生長素外流主要是通過ABCB共定位的共依賴外流[46]。研究表明, 在擬南芥中AtABCB1和AtABCB19介導(dǎo)生長素輸出[47-48], 而AtABCB4和AtABCB21兼具生長素輸出和輸入雙重運(yùn)輸功能, 運(yùn)輸方向取決于細(xì)胞內(nèi)生長素水平[49-50]。水稻OsABCB14已被證實(shí)是生長素輸入載體, 并介導(dǎo)鐵(Fe)穩(wěn)態(tài)[51]。本研究鑒定到穎花開放時漿片中表達(dá)水平顯著下調(diào)(圖6), 其生理功能有待進(jìn)一步研究。
水稻穎花開放需要漿片IAA水平的下降, 外源提高IAA水平則抑制穎花開放, 但這種抑制效應(yīng)可被MeJA解除。水稻穎花自然開放過程中漿片低水平IAA的形成受到IAA生物合成、結(jié)合、極性運(yùn)輸?shù)认嚓P(guān)途徑的調(diào)節(jié)。
[1] 宋昕蔚, 林建榮, 吳明國. 水稻秈粳亞種間雜種優(yōu)勢利用研究進(jìn)展與展望. 科學(xué)通報, 2016, 61: 3778–3786. Song X W, Lin J R, Wu M G. Review and prospect on utilization of heterosis betweenrice subspecies., 2016, 61: 3778–3786 (in Chinese with English abstract).
[2] 徐偉東, 蔡金洋, 楊堯城. 水稻秈粳亞種間雜種優(yōu)勢利用研究現(xiàn)狀與展望. 中國稻米, 2016, 22(2): 1–7. Xu W D, Cai J Y, Yang Y C. Research progress and prospect on utilization of heterosis betweenrice subspecies., 2016, 22(2): 1–7 (in Chinese with English abstract).
[3] 王勝軍, 王廣峰, 范俊山, 張春和, 閆雙勇, 童繼平, 馬忠友, 蘇京平, 孫林靜, 劉學(xué)軍. 粳型三系雜交稻親本開花習(xí)性研究.貴州農(nóng)業(yè)科學(xué), 2009, 37(12): 12–14. Wang S J, Wang G F, Fan J S, Zhang C H, Yan S Y, Tong J P, Ma Z Y, Su J P, Sun L J, Liu X J. Study on flowering habit of sterile and restorer lines of hybridrice., 2009, 37(12): 12–14 (in Chinese with English abstract).
[4] 林建榮, 宋昕蔚, 吳明國, 程式華. 秈粳超級雜交稻育種技術(shù)創(chuàng)新與品種培育. 中國農(nóng)業(yè)科學(xué), 2016, 49: 207–218. Lin J R, Song X W, Wu M G, Cheng S H. Breeding technology innovation of-super hybrid rice and varietal breeding., 2016, 49: 207–218 (in Chinese with English abstract).
[5] 何永明, 曾曉春, 向妙蓮, 黃俊寶, 付永琦. 水稻花時調(diào)控研究進(jìn)展. 湖北農(nóng)業(yè)科學(xué), 2014, 53: 1489–1492. He Y M, Zeng X C, Xiang M L, Huang J B, Fu Y Q. Advances on floret opening time of rice., 2014, 53: 1489–1492 (in Chinese with English abstract).
[6] 張萌, 戴冬青, 李西明, 張華麗, 馬良勇. 水稻花時性狀研究進(jìn)展. 核農(nóng)學(xué)報, 2016, 30: 267–274. Zhang M, Dai D Q, Li X M, Zhang H L, Ma L Y. Advances on the study of flowering time trait in hybrid rice., 2016, 30: 267–274 (in Chinese with English abstract).
[7] 黃友明, 曾曉春. 多功能調(diào)節(jié)劑對雜交水稻制種母本穎花開閉和種子生產(chǎn)的影響. 雜交水稻, 2022, 37(3): 87–94. Huang Y M, Zeng X C. Effects of multifunctional regulators on spikelet opening and closing and seed production of the female parent in hybrid rice seed production., 2022, 37(3): 87–94 (in Chinese with English abstract).
[8] 曾曉春, 周燮. 茉莉酸甲酯(MeJA)誘導(dǎo)水稻穎花開放. 植物學(xué)報, 1999, 41: 560–562. Zeng X C, Zhou X. Methyl jasmonate induces the opening of spikelets in rice., 1999, 41: 560–562 (in Chinese with English abstract).
[9] 何永明, 林擁軍, 曾曉春. 水稻穎花自然開放過程中茉莉酸(JA)生物合成的變化. 作物學(xué)報, 2012, 38: 1891–1899. He Y M, Lin Y J, Zeng X C. Dynamic changes of jasmonic acid biosynthesis in rice florets during natural anthesis., 2012, 38: 1891–1899 (in Chinese with English abstract).
[10] 宋平, 夏凱, 吳傳萬, 包冬萍, 陳麗莉, 周燮, 曹顯祖. 雄性不育和可育水稻開穎對茉莉酸甲酯響應(yīng)的差異. 植物學(xué)報, 2001, 43: 480–485. Song P, Xia K, Wu C W, Bao D P, Chen L L, Zhou X, Cao X Z. Differential response of floret opening in male-sterile and male-fertile rices to methyl jasmonate., 2001, 43: 480–485 (in Chinese with English abstract).
[11] 黃俊寶, 何永明, 曾曉春, 向妙蓮, 付永琦. 水稻穎花開放前花器官茉莉酸水平變化及漿片茉莉酸信號基因表達(dá)分析. 中國農(nóng)業(yè)科學(xué), 2015, 48: 1219–1227. Huang J B, He Y M, Zeng X C, Xiang M L, Fu Y Q. Changes of JA levels in floral organs and expression analysis of JA signaling genes in lodicules before floret opening in rice., 2015, 48: 1219–1227 (in Chinese with English abstract).
[12] 付永琦, 向妙蓮, 蔣海燕, 何永明, 曾曉春. 水稻穎花開放前漿片轉(zhuǎn)錄組變化. 中國農(nóng)業(yè)科學(xué), 2016, 49: 1017–1033. Fu Y Q, Xiang M L, Jiang H Y, He Y M, Zeng X C. Transcriptome profiling of lodicules before floret opening inL., 2016, 49: 1017–1033 (in Chinese with English abstract).
[13] Biswas K K, Neumann R, Haga K, Yatoh O, Iino M. Photomorphogenesis of rice seedlings: a mutant impaired in phytochrome-mediated inhibition of coleoptile growth., 2013, 44: 242–254.
[14] 潘孝武, 劉文強(qiáng), 黎用朝, 熊海波, 盛新年, 段永紅, 余亞瑩, 趙文錦, 魏秀彩, 李小湘. 水稻裂穎突變體的鑒定及基因定位. 中國水稻科學(xué), 2019, 33: 323–330. Pan X W, Liu W Q, Li Y C, Xiong H B, Sheng X N, Duan Y H, Yu Y Y, Zhao W J, Wei X C, Li X X. Identification and genetic analysis of split husk mutant sh1 in rice., 2019, 33: 323–330 (in Chinese with English abstract).
[15] Liao L, Shi C H, Zeng D D, Jin X L, Wu J G. Morphogenesis and molecular basis on the unclosed glumes, a novel mutation related to the floral organ of rice., 2015, 33: 480–489.
[16] Li X H, Wang Y H, Duan E C, Qi Q, Zhou K N, Lin Q Y, Wang D, Wang Y L, Long W H, Zhao Z G, Cheng Z J, Lei C L, Zhang X, Guo X P, Wang J L, Wu C Y, Jiang L, Wang C M, Wan J M. OPEN GLUME1: a key enzyme reducing the precursor of JA, participates in carbohydrate transport of lodicules during anthesis in rice., 2018, 37: 329–346.
[17] Liu L, Zou Z S, Qian K, Xia C, He Y, Zeng H L, Zhou X, Riemann M, Yin C X. Jasmonic acid deficiency leads to scattered floret opening time in cytoplasmic male sterile rice Zhenshan 97A., 2017, 68: 4613–4625.
[18] 林俊城, 田小海, 殷桂香, 湯吉洪, 楊志剛. 人工調(diào)節(jié)秈型雜交水稻不育系花時的研究. 中國農(nóng)業(yè)科學(xué), 2008, 41: 2474–2479. Lin J C, Tian X H, Yin G X, Tang J H, Yang Z G. Artificial regulation of the flowering time of CMS lines inhybrid rice seed production, 2008, 41: 2474–2479 (in Chinese with English abstract).
[19] 閆志強(qiáng), 徐海, 馬作斌, 高東昌, 徐正進(jìn). 秈稻與粳稻花時對茉莉酸甲酯(MeJA)響應(yīng)的敏感性差異. 中國農(nóng)業(yè)科學(xué), 2014, 47: 2529–2540. Yan Z Q, Xu H, Ma Z B, Gao D C, Xu Z J. Differential response of floret opening to exo-methyl jasmonate between subsp.and subsp.in rice., 2014, 47: 2529–2540 (in Chinese with English abstract).
[20] 王依明, 王冬翼, 顧春軍, 吳雪源, 戴國忠. 茉莉酸甲酯噴施時間對粳型水稻不育系花時誘導(dǎo)效應(yīng)研究. 上海農(nóng)業(yè)學(xué)報, 2015, 31(6): 91–94. Wang Y M, Wang D X, Gu C J, Wu X Y, Dai G Z. Effect of methyl jasmonate spraying time on keng rice sterile lines’ flowering habit., 2015, 31(6): 91–94 (in Chinese with English abstract).
[21] Huang Y M, Zeng X C, Cao H P. Hormonal regulation of floret closure of rice ()., 2018, 13: e0198828.
[22] Sazuka T, Kamiya N, Nishimura T, Ohmae K, Sato Y, Imamura K, Nagato Y, Koshiba T, Nagamura Y, Ashikari M. A rice tryptophan deficient dwarf mutant,, contains a reduced level of indole acetic acid and develops abnormal flowers and organless embryos., 2009, 60: 227–241.
[23] Zhao Z G, Zhang Y H, Liu X, Zhang X, Liu S C, Yu X W, Ren Y L, Zheng X M, Zhou K N, Jiang L, Guo X P, Gai Y, Wu C Y, Zhai H Q, Wang H Y, Wan J M. A role for a dioxygenase in auxin metabolism and reproductive development in rice., 2013, 27: 113–122.
[24] Wu H M, Xie D J, Tang Z S.regulates floral organ development by modulating auxin transport and interacts with MADS16 in rice., 2020, 18: 1778–1795.
[25] Liu H B, Li X H, Xiao J H, Wang S P. A convenient method for simultaneous quantification of multiple phytohormones and metabolites: application in study of rice-bacterium interaction., 2012, 8: 2.
[26] 張芳, 陸涵, 何永明. 水稻雄蕊發(fā)育晚期赤霉素生物合成特性分析. 江西農(nóng)業(yè)大學(xué)學(xué)報, 2022, 44(1): 21–28.Zhang F, Lu H, He Y M. Characteristics of gibberellin biosynthesis in late stamen development of rice., 2022, 44(1): 21–28 (in Chinese with English abstract).
[27] 李金濤, 樊海燕, 趙琦琦, 逯丹陽, 楊玉娜, 易慶平, 劉明艷, 賈玉芳, 彭波, 簡清梅. 脫落酸對水稻根系生長素合成與運(yùn)輸?shù)恼{(diào)控. 信陽師范學(xué)院學(xué)報(自然科學(xué)版), 2019, 32(1): 39–46. Li J T, Fan H Y, Zhao Q Q, Lu D Y, Yang Y N, Yi Q P, Liu M Y, Jia Y F, Pen B, Jian Q M. Research of abscisic acid modulated auxin biosynthesis and transport in rice root.(Nat Sci Edn), 2019, 32(1): 39–46 (in Chinese with English abstract).
[28] Woo Y M, Park H J, Mukhamad S, Yang J L, Park J J, Back K, Park Y M, An G. Constitutively wilted 1, a member of the ricegene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio., 2007, 65: 126–136.
[29] Du H, Liu H B, Xiong L Z. Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice., 2013, 4: 389–397.
[30] Liu L C, Tong H N, Xiao Y H, Che R H, Xu F, Hu B, Liang C Z, Chu J F, Li J Y, Chu C C. Activation of big grain1 significantly improves grain size by regulating auxin transport in rice., 2015, 112: 11102–11107.
[31] Yin C X, Wu Q R, Zeng H L, Xia K, Xu J W, Li R W. Endogenous auxin is required but supraoptimal for rapid growth of rice (L.) seminal roots, and auxin inhibition of rice seminal root growth is not caused by ethylene., 2011, 30: 20–29.
[32] Wang Y D, Zhang T, Wang R C, Zhao Y D. Recent advances in auxin research in rice and their implications for crop improvement., 2018, 69: 255–263.
[33] 沈衛(wèi)平, 蔡強(qiáng), 周鋒利, 張建中, 張大兵, 袁政. 植物激素調(diào)控水稻花器官發(fā)育分子機(jī)制的研究進(jìn)展. 植物生理學(xué)報, 2015, 51: 593–600. Shen W P, Cai Q, Zhou F L, Zhang J Z, Zhang D B, Yuan Z. Advances in the molecular mechanism underlying phytohormones function in regulating rice flower development., 2015, 51: 593–600 (in Chinese with English abstract).
[34] van Doorn W G, Dole I, Celikel F G, Harkema H. Opening of Iris flowers is regulated by endogenous auxins., 2013, 170: 161–164.
[35] Ke M, Gao Z, Chen J Q, Qiu Y T, Zhang L S, Chen X. Auxin controls circadian flower opening and closure in the waterlily., 2018, 18: 143.
[36] Staswick P E. The tryptophan conjugates of jasmonic and indole-3-acetic acids are endogenous auxin inhibitors., 2009, 150: 1310–1321.
[37] Cecchetti V, Altamura M M, Brunetti P, Petrocelli V, Falasca G, Ljung K, Costantino P, Cardarelli M. Auxin controlsanther dehiscence by regulating endothecium lignification and jasmonic acid biosynthesis., 2013, 74: 411–422.
[38] Cai X T, Xu P, Zhao P X, Liu R, Yu L H, Xiang C B.ERF109 mediates cross-talk between jasmonic acid and auxin biosynthesis during lateral root formation., 2014, 5: 5833.
[39] Cao X, Yang H L, Shang C Q, Ma S, Liu L, Cheng J L. The roles of auxin biosynthesis in YUCCA gene family in plants., 2019, 20: 6343.
[40] Dhika A, Felix P F, Ulla N, Marine P, Jan ?, Zhang Y J, Chen Z L, Andrea G, Alisdair R F, Karin L, Iván F A. Auxin boosts energy generation pathways to fuel pollen maturation in barley., 2022, 32: 1798–1811.
[41] Zhang T, Li R N, Xing J L, Yan L, Wang R C, Zhao Y D. The YUCCA-Auxin-WOX11 module controls crown root development in rice., 2018, 9: 523.
[42] Lee M, Jung J H, Han D Y, Seo P J, Park W J, Park C M. Activation of a flavin monooxygenase geneenhances drought resistance in., 2012, 235: 923–938.
[43] Staswick P E, Serban B, Rowe M, Tiryaki I, Maldonado M T, Maldonado M C, Suza W. Characterization of anenzyme family that conjugates amino acids toindole-3-acetic acid., 2005, 17: 616–627.
[44] 黃薇, 孫琦, 劉芳, 金玉環(huán), 羅先梅, 黃先忠. 小擬南芥激素相關(guān)基因及的克隆與表達(dá). 石河子大學(xué)學(xué)報, 2019, 37: 323–331. Huang W, Sun Q, Liu F, Jin Y H, Luo X M, Huang X Z. Analysis of hormone-related genes ofand cloning and expression ofgene., 2019, 37: 323–331 (in Chinese with English abstract).
[45] Ding X H, Cao Y L, Huang L L, Zhao J, Xu C G, Li X H, Wang S P. Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice., 2008, 20: 228–240.
[46] Nathan L M, Ute V, Alexander W, George J, Duncan B, Anthony B, Malcolm J B, Markus G, Darren M W, Leah R B. Systems approaches reveal that ABCB and PIN proteins mediate co-dependent auxin efflux., 2022, 34: 2309–2327.
[47] Geisler M, Blakeslee J J, Bouchard R, Lee O R, Vincenzetti V, Bandyopadhyay A, Titapiwatanakun B, Peer W A, Bailly A, Richards E L. Cellular efflux of auxin catalyzed by theMDR/PGP transporter AtPGP1., 2005, 44: 179–194.
[48] Bouchard R, Bailly A, Blakeslee J J, Oehring S C, Vincenzetti V, Lee O R, Paponov I, Palme K, Mancuso S, Murphy A S. Immunophilin-like TWISTED DWARF1 modulates auxin efflux activities ofP-glycoproteins., 2006, 281: 30603–30612.
[49] Cho M, Lee Z W, Cho H T. ATP-binding cassette B4, an auxin-efflux transporter, stably associates with the plasma membrane and shows distinctive intracellular trafficking from that of PIN-FORMED proteins., 2012, 159: 642–654.
[50] Kamimoto Y, Terasaka K, Hamamoto M, Takanashi K, Fukuda S, Shitan N, Sugiyama A, Suzuki H, Shibata D, Wang B.ABCB21 is a facultative auxin importer/exporter regulated by cytoplasmic auxin concentration., 2012, 53: 2090–2100.
[51] Xu Y X, Zhang S N, Guo H P, Wang S K, Xu L G, Li C Y, Qian Q, Chen F, Markus G, Qi Y H, Jiang D A. OsABCB14 functions in auxin transport and iron homeostasis in rice (L.)., 2014, 79: 106–117.
Study of regulating effect of auxin on floret opening in rice
HE Yong-Ming and ZHANG Fang*
Jiangxi Agricultural University / Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang 330045, Jiangxi, China
Floret opening which is driven by swelling of lodicules has a direct effect on rice pollination and fertilization. Auxin is an essential phytohormone in regulating reproductive development processes such as anther dehiscence, pollen fertility, and seed initiation. To elucidate the role of auxin in floret opening, the effects of exogenous auxin and its inhibitors on floret opening, and dynamic changes of endogenous auxin levels, and gene relative expression levels of auxin pathway in florets and lodicules were investigated incultivar Zhonghua 11. The results showed that the panicles soaked with IAA (10–20 mmol L–1) or NAA (0.05–0.50 mmol L–1) delayed significantly floret opening. Under high concentration of NAA (0.5 mmol L–1), compared with the water-treated panicles, the floret opening was postponed by three days. The prolonged opening duration of single floret and decreased seed-setting rate were also observed after IAA and NAA treatments. Treatments with IAA polar transport inhibitor TIBA and function inhibitor PCIB delayed florets opening as well. Furthermore, the application of methyl jamonate (MeJA) could restore effectively floret opening which was retared by NAA pretreatments. A sharp decline of IAA levels was detected two hours before floret opening in natural condition. Compared to that at 1 d and 2 d before opening, IAA level in florets at 2 hours before opening was decreased by 65.85% and 74.27%, respectively. Corresponding to the changes of IAA levels in florets, the relative expression levels of IAA biosynthetic genes (,) in the lodicules were down-regulated during floret opening, while the expressions of catabolic genes (/) in formation of inactive IAA conjugates, IAA efflux transport genes (,), and its positive regulatorgene were significantly up-regulated. 13 differentially expressed early auxin response genes (,,) were also identified, among which, 10 were up-regulated and 3 down-regulated. In conclusion, rice floret opening was regulated by endogenous auxin, but was inhibited by elevating auxin level in lodicules.
rice; floret opening; auxin; inhibitory effect
10.3724/SP.J.1006.2023.22027
本研究由國家自然科學(xué)基金項(xiàng)目(31360295, 31801272)和江西省自然科學(xué)基金項(xiàng)目(20212BAB205006, 20202BABL215001)資助。
This study was supported by the National Natural Science Foundation of China (31360295, 31801272) and the Jiangxi Provincial Natural Science Foundation (20212BAB205006, 20202BABL215001).
張芳, E-mail: zhangf0124@126.com
E-mail: hymcom@126.com
2022-05-07;
2022-10-10;
2022-10-26.
URL: https://kns.cnki.net/kcms/detail/11.1809.S.20221025.1811.008.html
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).