亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        濕潤劑對基質水分吸持和白菜穴盤苗生長的影響

        2023-03-31 03:40:20張宗儉段韞丹張愛愛張棣莛尚慶茂
        農業(yè)工程學報 2023年1期
        關鍵詞:穴盤苗穴盤潮汐

        鄭 旭,張宗儉,段韞丹,張愛愛,張棣莛,尚慶茂,3

        濕潤劑對基質水分吸持和白菜穴盤苗生長的影響

        鄭 旭1,張宗儉2,段韞丹1,張愛愛1,張棣莛1,尚慶茂1,3※

        (1. 中國農業(yè)科學院蔬菜花卉研究所,北京 100081;2. 北京廣源益農化學有限責任公司,北京 100083;3. 三亞中國農業(yè)科學院國家南繁研究院,三亞 572024)

        基質水分吸持特性直接影響蔬菜穴盤苗生長發(fā)育及整齊度,配制適宜的基質是潮汐式育苗的一個關鍵科學問題。為了探究濕潤劑對基質水分吸持的作用,該研究選用3種濕潤劑(SP、GY-S903、KT),設置0、0.15、0.30、0.60 mL/L共4個添加量,研究濕潤劑添加對育苗基質水分吸收、蒸散和白菜穴盤苗生長的作用。結果表明:添加濕潤劑處理與未添加濕潤劑的對照處理相比,基質吸水量提高23.90%~74.70%,吸水高度提高46.03%~94.28%,吸水速率增加60.57%~116.26%,且濕潤劑添加量越高,基質吸水能力越強;相對于不添加濕潤劑處理,添加濕潤劑顯著提高了基質相對含水量和基質水分蒸散速率(<0.05);濕潤劑添加減小了潮汐床箱中不同位點穴盤基質吸水差異,吸水量變異系數(shù)降低9.01個百分點。進一步測定濕潤劑添加后白菜穴盤苗生長發(fā)育參數(shù),發(fā)現(xiàn)適量濕潤劑對白菜穴盤苗生長無不良影響。研究結果為改善育苗基質水分吸持特性提供了依據(jù)。

        基質;灌溉;育苗;濕潤劑;水分吸持;白菜穴盤苗

        0 引 言

        潮汐式育苗是一種底部灌溉育苗方式[1]。潮汐床箱中的肥料溶液在基質毛細管力作用下經(jīng)穴盤底部排水孔進入基質和根際空間,以滿足幼苗生長發(fā)育對水分、養(yǎng)分的需求[2]。潮汐灌溉具有節(jié)水節(jié)肥省工、水肥供給精準等優(yōu)勢,在蔬菜集約化育苗應用前景良好[3]。

        由于基質斥水性和水分子表面張力,灌溉初始階段水分很難快速、均勻地濕潤基質[4]?;|斥水性強,使基質吸水時間延長或無法吸水,同時,也容易引起穴盤和孔穴之間基質吸水速率和吸水量的差異,進而影響幼苗生長整齊度。與頂部灌溉方式相比,基質僅依靠底部7 mm左右排水孔接觸肥料溶液,潮汐式育苗受基質斥水性影響更大。因此,降低基質斥水性,提高基質吸水速率和一致性是潮汐式育苗亟待解決重要的問題。

        濕潤劑作為一種表面活性劑,其分子結構包含非極性親脂疏水基團(也稱尾端)和極性親水基團(也稱頭端),所以也稱作雙親化合物。濕潤劑疏水基團與固體基質顆粒結合,親水基團與水分子結合,可顯著降低水分子表面張力,促進水分子在基質中的擴散運動[4-5]。SONG等[6]發(fā)現(xiàn)烷基聚合物類濕潤劑能快速進入疏水有機物,減弱基質疏水性[7]。濕潤劑可以改善土壤吸水性并提高水分利用效率。BARTON等[8]發(fā)現(xiàn)濕潤劑可以延緩冬季土壤水分蒸發(fā),緩解草坪干旱脅迫。崔敏等[9]發(fā)現(xiàn)分析純OP-10、工業(yè)級OP-10和分析純聚山梨醇酯80均能顯著縮短草炭的初次濕潤時間和干燥后回濕時間,工業(yè)級OP-10能顯著提高水分在草炭中的滲透速率,進而提高灌溉效率,且2%濃度即可達到最佳效果。胡文超等[10]發(fā)現(xiàn)0~5 mm粒徑花生殼粉碎物添加工業(yè)級OP-10后,吸水量顯著提高,持水力增強,黃瓜穴盤幼苗生長健壯??傮w而言,濕潤劑在育苗基質應用技術研究非常少,特別是潮汐灌溉條件下濕潤劑作用效果更鮮見報道[11]。

        因此,本研究以不添加濕潤劑基質為對照,比較分析3種濕潤劑(SP、GY-S903、KT)對育苗基質水分吸持和潮汐灌溉條件下白菜穴盤苗生長發(fā)育的作用,旨為改進育苗基質配制和潮汐式育苗技術提供科學依據(jù)。

        1 材料與方法

        1.1 材 料

        育苗基質由草炭、蛭石、珍珠巖按體積比3∶1∶1配制而成。草炭粒徑0~10.00 mm,購自北京林大林業(yè)科技股份有限公司,蛭石和珍珠巖,粒徑2.00~4.00 mm,購自河北靈壽縣匯鑫蛭石廠?;|混合后,>5.00 mm、2.00~<5.00 mm、1.00~<2.00 mm、0.50~<1.00 mm、0.25 mm~<0.50 mm、0.10~<0.25 mm和<0.10 mm粒徑體積占比分別為6.12%、34.69%、10.88%、33.33%、7.48%、6.12%和1.36%,容重0.28 g/cm3,pH值6.78,EC值1.64 mS/cm,初始相對含水量6.58%。

        50孔塑料育苗穴盤,長×寬×高為540 mm×280 mm× 55 mm,單穴容積60 cm3。72孔塑料穴盤,長×寬×高為540 mm×280 mm×50 mm,單穴容積38 cm3,購自臺州隆基塑業(yè)有限公司。

        進口商品化濕潤劑SP,由河北培基生物科技有限公司提供。超級鋪展劑GY-S903和高效滲透劑無水快T(KT),源自北京廣源益農化學有限責任公司。育苗溫室環(huán)境參數(shù)采用國家農業(yè)信息化工程技術研究中心溫室娃娃(型號DP21400)測定。

        白菜品種選用‘綠筍70’,發(fā)芽率85%,購于中蔬種業(yè)(北京)有限公司。

        1.2 方 法

        1.2.1 試驗設計

        試驗于2021年10月-2022年3月在中國農業(yè)科學院蔬菜花卉研究所玻璃溫室進行。試驗采用濕潤劑種類、添加量雙因素完全區(qū)組設計,濕潤劑種類包括SP、GY-S903、KT,添加量共4個水平,分別是0、0.15、0.30、0.60 mL/L,共10個處理。

        1.2.2 測定方法

        1)塑料管基質吸水試驗 采用長250 mm、內徑42 mm亞克力透明塑料管。試驗前,管底端用100目(孔徑0.15 mm)窗紗包裹,每支裝填50 g基質,高度20 cm,吸水前稱取塑料管和基質總質量1(g),然后將填裝基質的塑料管豎立在盛有4 cm深水位的塑料盒中(內徑,長×寬×高為1 600 mm×570 mm×60 mm),如圖1a所示。持續(xù)吸水30 min,然后,測量透明塑料管內基質吸水高度 (cm),稱取吸水后塑料管和基質總質量2(g),重復3次。按式(1)計算每管基質的吸水量1(g)。

        1=2?1(1)

        2)穴盤基質吸水試驗 稱取72孔穴盤質量3(g);每處理填裝10張穴盤,稱取穴盤和基質總質量4(g),然后放入盛有2 cm深水位的塑料盒中(內徑,長×寬×高=1 600 mm× 570 mm×60 mm)如圖1b所示。每隔1 min取出一張穴盤,記錄吸水時間1(min),并立即稱取吸水后穴盤和基質總質量5(g)。按式(2)計算基質相對含水量1(%),繪制基質吸水曲線,按照式(3)計算吸水速率1(g/min)。

        1=(5?4)/(5?3)×100% (2)

        1=(5?4)/1(3)

        3)潮汐灌溉穴盤基質吸水試驗 選用12張72孔穴盤,稱取并記錄每張穴盤質量6(g),其中6張?zhí)钛b0.3 mL/L GY-S903處理基質,6張?zhí)钛b不加濕潤劑基質,稱取并記錄穴盤和基質總質量7(g);各取1張穴盤,2張為1組,并排置于潮汐床箱(長×寬×深為4 500 mm×1 690 mm×70 mm)6個位置(圖1c),設置潮汐灌溉上水時間5 min,上水高度2 cm,滯床時間10 min,結束后稱取穴盤和基質總質量8(g),按式(4)計算100 g基質吸水量2(g),按照式(5)計算變異系數(shù)(%),其中表示吸水量標準偏差,表示平均值。

        =(87)×100/(76) (4)

        =(/)×100% (5)

        圖1 基質水分吸持試驗示意圖

        4)穴盤基質水分蒸散試驗 在圖2所示的環(huán)境條件下,選用72孔穴盤并稱取質量9(g),填裝各處理基質,稱取穴盤和基質總質量10(g),然后放入盛有2 cm深水位的塑料盒中(內徑,長×寬×高為1 600 mm× 570 mm×60 mm),基質飽和吸水后,懸掛于重力測定儀(蚌埠大洋傳感系統(tǒng)工程有限公司制造),每隔1 h自動記錄1次穴盤和基質總質量11(g),按式(6)計算基質相對含水量2(%),繪制基質水分蒸散曲線,按式(7)計算水分蒸散速率V(g/h),其中2表示水分蒸散時間(h)。

        2=(11?10)/(11?9)×100% (6)

        2=(11?10)/2(7)

        圖2 基質水分蒸散試驗期間環(huán)境參數(shù)

        5)穴盤苗生長試驗 選用50孔穴盤,填裝各處理基質,直播白菜種子,覆蓋珍珠巖,正常溫、光、水、肥管理,播種后第5天記錄出苗數(shù),并計算出苗率,播種后30 d,每盤隨機取10株幼苗,測定幼苗表觀形態(tài)指標。根體積用10 mL量筒排水法測量,總葉面積用LA-S植物圖像分析儀系統(tǒng)(杭州萬深檢測科技有限公司,型號i800)測定,莖葉和根系干、鮮質量采用稱重法測定,根冠比是根系干質量與莖葉干質量的比值。

        1.3 數(shù)據(jù)處理與統(tǒng)計分析

        采用Microsoft Excel 2016、SAS 9.4軟件和Origin2022進行數(shù)據(jù)處理和作圖。

        2 結果與分析

        2.1 濕潤劑添加對育苗基質吸水的影響

        從表1可知,塑料管吸水試驗中,基質添加濕潤劑促進了基質吸水,且隨濕潤劑添加量增加基質吸水性能增強,表現(xiàn)出明顯的劑量效應。從基質吸水量看,添加濕潤劑處理基質吸水量較對照提高了23.90%~74.70%,均顯著高于對照(<0.05),其中SP和GY-S903 在0.6 mL/L處理水平吸水量達到最高,較對照分別提高了74.70%和67.96%。同一濕潤劑種類,隨著添加量增加,基質吸水量也呈增加趨勢,其中SP最為明顯。GY-S903 在0.6 mL/L處理水平吸水量較0.30、0.15 mL/L水平分別增加10.00和14.33 g。但同一添加量,不同濕潤劑種類之間差異不顯著,如在0.3 mL/L添加量水平,SP、KT、GY-S903吸水量未達到差異顯著水平(<0.05)。說明本研究中濕潤劑添加量對基質吸水作用明顯大于濕潤劑種類,吸水高度提高46.03%~94.28%,吸水速率增加60.57%~116.26%,與吸水量相似。

        穴盤吸水試驗反映了濕潤劑添加基質吸水時間動態(tài),如圖3所示。由圖3可以看出,隨著吸水時間延長,基質相對含水量逐步增加,直至達到吸水飽和狀態(tài)。未添加濕潤劑對照處理,基質相對含水量梯度緩慢增加,到達吸水飽和狀態(tài)時間延遲,而濕潤劑添加后,基質相對含水量在前期(吸水起始–吸水5 min)快速躍升,并迅速接近吸水飽和,之后趨于平緩。3種濕潤劑表現(xiàn)基本相同。同時,也可看出,濕潤劑添加量作用差異也表現(xiàn)在前期階段(吸水起始–吸水5 min),添加量越大,吸水越快,基質相對含水量越高,在開始吸水1 min即可表現(xiàn)明顯差異。3種濕潤劑,SP早期劑量效應最明顯,其次是GY-S903,再后是KT。此外,濕潤劑添加一定程度上提高了基質飽和持水量。

        表1 濕潤劑添加后基質吸水量和吸水速率的變化

        注:表中CK表示未加濕潤劑的對照處理。吸水速率按照吸水前10 min數(shù)據(jù)計算。不同小寫字母表示處理間差異顯著(<0.05),下同。

        Note: CK in the table refers to the control treatment without wetting agent. The water absorption rate is calculated according to the data 10 minutes before water absorption. Different lowercase letters indicate significant differences among wetting agent additive amount treatments (<0.05), the same below.

        圖3 濕潤劑對穴盤中基質水分吸收的影響

        選擇濕潤劑GY-S903在實際育苗用潮汐床箱進行穴盤基質吸水試驗,由表2可知,開始灌溉15 min后,添加濕潤劑處理較對照處理吸水量提高2倍以上,達到極顯著差異水平(<0.01)。進一步分析6個位點基質吸水量變異系數(shù),濕潤劑GY-S903添加后為0.68%,對照為9.69%,吸水量變異系數(shù)降低9.01個百分點。說明濕潤劑添加減小了潮汐床箱中不同位點間穴盤基質吸水的差異性,提高了吸水的一致性。

        表2 潮汐灌溉條件下濕潤劑添加后穴盤基質吸水量

        注:穴盤放置位點見圖1c。不同大寫字母表示濕潤劑添加與未添加對照間差異極顯著(<0.01)。濕潤劑添加量為0.30 mL·L-1。吸水量為100 g基質吸水量。

        Note: Plug tray position see Fig. 1c for the specific placement point of acupoint plate. Different capital letters indicate significant differences between wetting agent treatments (<0.01). The additive amount of wetting agent is 0.30 mL·L-1. The water absorption indicate absorption amount of per 100 g substrate.

        2.2 濕潤劑添加對育苗基質水分蒸散的影響

        由表3和圖4可知,在溫室條件下,受溫光和飽和蒸汽壓差作用,穴盤基質水分不斷蒸發(fā),基質相對含水量快速降低,所有處理均表現(xiàn)出相似的變化趨勢。濕潤劑添加后,提高了基質初始和蒸散失水后回濕相對含水量,由此也造成基質水分蒸散速率極顯著高于未添加濕潤劑的對照處理(<0.05),但在一定時段內,添加濕潤劑處理的基質,其相對含水量始終高于對照處理,濕潤劑添加基質相對含水量較未添加對照處理提高2.9~13.8個百分點。

        表3 濕潤劑添加后基質水分蒸散速率

        注:Ⅰ、Ⅱ和Ⅲ表示基質蒸散-灌溉第1、2和3次干濕循環(huán)。

        濕潤劑添加量對穴盤基質水分蒸散和相對含水量的作用因濕潤劑種類而異,如SP,添加量越大,水分蒸散速率越大,但對于KT,水分蒸散速率則與添加量關系并不明顯。

        2.3 濕潤劑添加對白菜穴盤苗生長的影響

        由圖5和表4可知,濕潤劑KT添加0.60 mL/L顯著降低了白菜穴盤苗總葉面積、莖葉鮮質量、根系鮮質量和全株干質量(<0.05),其他濕潤劑添加處理對白菜穴盤苗生長均無顯著影響(>0.05)。說明在育苗實踐中,選擇適宜的濕潤劑種類和添加量非常重要,只要濕潤劑種類及其添加量適宜就不會對幼苗生長發(fā)育造成不良影響。

        圖5 濕潤劑對白菜穴盤苗生長發(fā)育的影響

        表4 濕潤劑添加對白菜穴盤苗生長發(fā)育的影響

        3 討 論

        3.1 濕潤劑及添加量對基質水分吸持能力的影響

        疏水性有機物使得育苗基質斥水性較強[12],濕潤劑可以有效降低基質的斥水性,提高基質水分的吸持能力。本文研究發(fā)現(xiàn),與未添加濕潤劑對照處理相比,濕潤劑添加顯著提高了基質吸水量、前期吸水速率,改善了不同位點穴盤基質吸水一致性,縮短了基質達到飽和吸水所需時間,增強了穴盤基質蒸散失水后回濕能力。LOWE等[13]研究證明濕潤劑可以將高有機質土壤的斥水性降低30%,低有機質土壤的斥水性降低60%,但在非斥水性土壤上無顯著變化[14-15]。崔敏[16]對斥水性栽培基質的研究發(fā)現(xiàn),濕潤劑能夠提高草炭的毛管水含量和持水能力。MADSEN等[17]在對斥水性土壤改良中發(fā)現(xiàn),濕潤劑處理的土壤含水量最高,較對照相對含水量增加了16%,但不同濕潤劑處理之間的差異不顯著[18-19]。DEBOER等[20]研究認為,濕潤劑可以促進水分快速滲透,減少土壤表層2 cm的水分滲透時間。李風珍等[21]在土壤中添加水分調節(jié)劑DY-ESP00,使滴灌噴頭周圍30 cm土壤水分分布更加均勻。本文的研究結果與上述以往研究相一致。

        BARATELLA等[22]認為濕潤劑可以減少土壤水分蒸發(fā),促進土壤的濕潤和再濕潤,提高水分利用率,但本研究發(fā)現(xiàn)濕潤劑添加并未降低基質水分蒸散速率,推測與基質吸水特性和吸水量有關。草炭、蛭石、珍珠巖混配的基質,粒徑、飽和吸水量和孔隙度顯著高于土壤,水分飽和狀態(tài)下更容易蒸散。此外,添加濕潤劑后基質相對含水量顯著高于未添加處理(<0.05),與環(huán)境長期保持較高蒸汽壓差,也促進了水分蒸散。本文濕潤劑可以提高潮汐式育苗基質水分的均勻性。

        濕潤劑添加量越高,基質水分吸持能力越強。高慶月[23]也認為不同添加量的潤濕劑對基質吸水量和濕潤再濕潤能力等物理性質有顯著影響;URRESTARAZU等[24]研究發(fā)現(xiàn),總吸水量隨潤濕劑用量的增加而增加,當潤濕劑含量為2 mg/L時,基質的吸水量顯著提高,飽和含水量最高為222.38%,但較高劑量的潤濕劑之間沒有顯著差異;崔敏[16]則發(fā)現(xiàn)適量的濕潤劑(濃度小于1%)可以顯著提升基質的毛管水上升高度,使草炭在保持更多的水分的同時有更大的透氣性。

        3.2 添加濕潤劑對幼苗生長的影響

        濕潤劑通過提高基質的持水能力,使基質保持較高的可用水量[25],進而影響幼苗的生長發(fā)育[26],添加適量濕潤劑不會對白菜穴盤苗生長發(fā)育造成不良影響,在出苗率、總葉面積、莖葉和根系干物質積累、根冠比與對照無顯著差異。馮曉燕等[27]發(fā)現(xiàn)0.5%體積濃度的濕潤劑,就可以明顯改善基質潤濕能力,且不影響植物生長?;|中添加1.0 g/L的脂肪醇聚氧乙烯醚,提高了黃瓜出苗率和幼苗根系體積[28],促進肯塔基早熟禾的快速萌發(fā)和形態(tài)建成[29]。每升基質添加10 mL潤濕劑時,促進黃瓜生長發(fā)育,改善黃瓜果實品質,提高黃瓜總產量[30]。TRINCHERA等[31]發(fā)現(xiàn)濕潤劑作用于土壤/根界面,能夠提高生菜作物的養(yǎng)分利用效率。對于供水有限的斥水性土壤,濕潤劑可以促進水分和養(yǎng)分的吸收以及作物的早期生長[32];LASKOWSKI等[33]認為濕潤劑可以在缺水條件下提高草坪的質量。上述試驗說明濕潤劑添加對幼苗生長的促進作用,特別在斥水性基質和供水有限的情況下更加明顯。本文試驗中白菜穴盤苗未因濕潤劑添加表現(xiàn)出顯著生長促進作用,可能與幼苗生長期間水分供應相對充足有關。

        濕潤劑添加量過高會限制幼苗根系的生長[34]。本文研究發(fā)現(xiàn)濕潤劑KT添加0.60 mL/L顯著降低白菜出苗率、幼苗總葉面積、全株干質量等生長參數(shù)指標,說明高劑量濕潤劑對幼苗生長具有毒害作用。崔敏[16]發(fā)現(xiàn)0.5%濃度的濕潤劑溶液可以引起矢車菊和高羊茅發(fā)芽率的顯著降低。過高的濕潤劑用量影響土壤微生物種群結構[35],間接影響植物正常生長。濕潤劑的毒害作用除劑量外,具體還要取決于濕潤劑類型、植物種類和生長發(fā)育狀態(tài)[36]。

        4 結 論

        1)濕潤劑添加顯著提高了基質的吸水能力,與未加濕潤劑對照相比,濕潤劑使基質吸水量提高23.90%~74.70%,吸水速率提高60.57%~116.26%,且基質吸水能力隨濕潤劑添加量增加呈增強趨勢,存在明顯劑量效應。

        2)濕潤劑未能降低基質水分蒸散速率,但顯著提高了基質的持水能力(<0.05),使基質長時間內保持較高相對含水量。蒸散-回濕循環(huán)中,濕潤劑添加基質相對含水量較未添加對照提高2.9~13.8個百分點。

        3)濕潤劑適量添加對白菜穴盤苗生長無不良影響,出苗率、總葉面積、植株干物質積累等參數(shù)指標未達到顯著差異水平,但過量添加可造成毒害作用,因此在實際育苗實踐中選擇適宜濕潤劑種類及添加量非常重要。

        [1] 劉明池,季延海,武占會,等. 我國蔬菜育苗產業(yè)現(xiàn)狀與發(fā)展趨勢[J]. 中國蔬菜,2018,1(11):1-7.

        LIU Mingchi, JI Yanhai, WU Zhanhui, et al. Status and development trend of vegetable seedling industry in China[J]. China Vegetables, 2018, 1(11): 1-7. (in Chinese with English abstract)

        [2] 董春娟,張曉蕊,尚慶茂. 蔬菜潮汐式育苗技術應用概況與研究進展[J]. 中國蔬菜,2018,349(3):16-26.

        DONG Chunjuan, ZHANG Xiaorui, SHANG Qingmao. Overview of the application and research progress of the tidal seeding technology for vegetables[J]. China Vegetable, 2018, 349(3): 16-26. (in Chinese with English abstract)

        [3] 田雅楠,曹玲玲,趙立群,等. 潮汐式灌溉技術在蔬菜育苗上的應用[J]. 農業(yè)工程技術,2021,41(7):26-30.

        [4] 董春娟,尚慶茂. 濕潤劑在蔬菜穴盤育苗基質中的應用[J].中國蔬菜,2013,1(19):48-50,3.

        DONG Chunjuan, SHANG Qingmao. Application of wetting agent in vegetable plug seedling substrate[J]. China Vegetables, 2013, 1(19): 48-50, 3. (in Chinese with English abstract)

        [5] WANG H, WANG C, FU J, et al. Wetting behavior and mechanism of wetting agents on low-energy surface[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2013, 424: 10-17.

        [6] SONG E, GOYNE K W, KREMER R J, et al. Surfactant chemistry effects on organic matter removal from water repellent sand[J]. Soil Science Society of America Journal, 2018, 82(5): 1252-1258.

        [7] SONG E, SCHNEIDER J G, ANDERSON S H, et al. Wetting agent influence on water infiltration into hydrophobic sand: II. physical properties[J]. Agronomy Journal, 2014, 106(5): 1879-1885.

        [8] BARTON L, COLMER T D. Granular wetting agents ameliorate water repellency in turfgrass of contrasting soil organic matter content[J]. Plant and Soil, 2011, 348(1/2): 411-424.

        [9] 崔敏,張志國,時連輝,等. 不同濕潤劑對草炭濕潤與再濕潤能力的影響[J]. 北方園藝,2007, 31(7):54-56.

        CUI Min, ZHANG Zhiguo, SHI Lianhui, et al. Effect of different wetting agents on the wetting and re wetting ability of peat[J]. Northern Horticulture, 2007, 31(7): 54-56. (in Chinese with English abstract)

        [10] 胡文超,易東海,孫治強,等. 不同粒徑花生殼添加濕潤劑op-10作為基質在黃瓜育苗上應用的研究[J]. 江西農業(yè)學報,2011,23(3):11-13.

        HU Wenchao, YI Donghai, SUN Zhiqiang, et al. Study on the application of peanut hull with different grain sizes and wetting agent op-10 as substrate in cucumber seedling raising[J]. Acta Agriculturae Jiangxi, 2011, 23(3): 11-13. (in Chinese with English abstract)

        [11] 孫小武,武占會,馮一新,等. “十三五”我國蔬菜育苗技術研究進展[J]. 中國蔬菜,2021(8):18-26.

        SUN Xiaowu, WU Zhanhui, FENG Yixin, et al. Research progress of vegetable seedling technology in China during the “13th Five-Year Plan”[J]. China Vegetable, 2021(8): 18-26. (in Chinese with English abstract)

        [12] 王秋玲,施凡欣,劉志鵬,等. 土壤斥水性影響土壤水分運動研究進展[J]. 農業(yè)工程學報,2017,33(24):96-103.

        WANG Qiuling, SHI Fanxin, LIU Zhipeng, et al. Research progress of soil water repellency affecting soil water movement[J]. Journal of Agricultural Engineering, 2017, 33(24): 96-103. (in Chinese with English abstract)

        [13] LOWE M, MCGRATH G, MATHES F, et al. Evaluation of surfactant effectiveness on water repellent soils using electrical resistivity tomography[J]. Agricultural Water Management, 2017, 181: 56-65.

        [14] BARTON L, COLMER T D. Ameliorating water repellency under turfgrass of contrasting soil organic matter content: Effect of wetting agent formulation and application frequency[J]. Agricultural Water Management, 2011, 99(1): 1-7.

        [15] CHANG B, WHERLEY B, AITKENHEAD-PETERSON J, et al. Effect of wetting agent on nutrient and water retention and runoff from simulated urban lawns[J]. Hortscience, 2020, 55(7): 1005-1013.

        [16] 崔敏. 濕潤劑對斥水性栽培基質基本理化性質和作物生長狀況的影響[D]. 泰安:山東農業(yè)大學,2008.

        CUI Min. Effect of Wetting Agent on Basic Physical and Chemical Properties of Water Repellent Cultivation Substrate and Crop Growth[D]. Taian: Shandong Agricultural University, 2008. (in Chinese with English abstract)

        [17] MADSEN M D, PETERSEN S L, ROUNDY B A, et al. Comparison of postfire soil water repellency amelioration strategies on bluebunch wheatgrass and cheatgrass survival[J]. Rangeland Ecology & Management, 2012, 65(2): 182-188.

        [18] XIANG M, SCHIAVON M, ORLINSKI P, et al. Identification of wetting agents for water conservation on deficit-irrigated hybrid bermudagrass fairways[J]. Agronomy Journal, 2021, 113(5): 3846-3856.

        [19] SOLDAT D J, LOWERY B, KUSSOW W R. Surfactants increase uniformity of soil water content and reduce water repellency on sand-based golf putting greens[J]. Soil Science, 2010,175(3):111-117.

        [20] DEBOER E J, KARCHER D E, MCCALLA J H, et al. Effect of late-fall wetting agent application on winter survival of ultradwarf bermudagrass putting greens[J]. Crop Forage & Turfgrass Management, 2020, 6: e20035. doi.org/10.1002/ cft2.20035 1-7.

        [21] 李風珍,張小梅,梁斌,等. 水分調節(jié)劑DY-ET100對番茄產量、品質及水氮在土壤中擴散的影響[J]. 水土保持學報,2020,34(4):185-192.

        LI Fengzhen, ZHANG Xiaomei, LIANG Bin, et al. Effects of water regulator DY-ET100 on tomato yield, quality and diffusion of water and nitrogen in soil[J]. Journal of Soil and Water Conservation, 2020, 34(4): 185-192. (in Chinese with English abstract)

        [22] BARATELLA V, TRINCHERA A. Organosilicone surfactants as innovative irrigation adjuvants: Can they improve water use efficiency and nutrient uptake in crop production?[J]. AGRICULTURAL WATER MANAGEMENT, 2018, 204: 149-161.

        [23] 高慶月.潤濕劑、發(fā)酵驢糞對盆栽花卉生長發(fā)育的影響[D]. 聊城:聊城大學,2018.

        GAO Qingyue. Effects of Wetting Agents and Fermented Donkey Dung on the Growth and Development of Potted Flowers[D] Liaocheng: Liaocheng University, 2018. (in Chinese with English abstract)

        [24] URRESTARAZU M, GUILLEN C, MAZUELA P C, et al. Wetting agent effect on physical properties of new and reused rockwool and coconut coir waste[J]. Scientia Horticulturae, 2008, 116(1): 104-108.

        [25] MINGYAN J, FLEETWOOD M C, ANDERSON S H, et al. Wetting agent effects on plant available water for hydrophobic USGA root zones[J]. European Journal of Turfgrass Science, 2020, 51(2): 30-31.

        [26] ABAGANDURA G O, PARK D, BRIDGES W C. Surfactant and irrigation impacts on soil water content and leachate of soils and greenhouse substrates[J]. Agrosystems Geosciences & Environment, 2021, 4:e20153. doi.org/10.1002/agg2.20153.

        [27] 馮曉燕,彭琴,張英,等. 基于園林植物廢棄物的無土栽培基質研究及應用[J]. 浙江農業(yè)科學,2017,58(8):1485-1488.

        FENG Xiaoyan, PENG Qin, ZHANG Ying, et al. Research and application of soilless culture substrate based on garden plant waste[J]. Journal of Zhejiang Agricultural Sciences, 2017, 58(8): 1485-1488. (in Chinese with English abstract)

        [28] DU Q J, XIAO H J, LI J Q, et al. Screening of wetting agent for peat substrate and its effect on cucumber seedlings[C]. IOP Conference Series: Earth and Environmental Science, 2020, Guangdong. doi:10.1088/1755-1315/453/1/012079.

        [29] LEE S K. Germination enhancer and wetting agent for quick establishment of kentucky bluegrass cultivars[J]. Weed & Turfgrass Science, 2017, 6(4): 313-321.

        [30] 張婷婷. 復合潤濕劑的配方篩選及其在基質栽培中的應用[D]. 北京:北京林業(yè)大學,2013.

        ZHANG Tingting. Formula Screening of Compound Wetting Agent and its Application in Substrate Culture[D]. Beijing: Beijing Forestry University, 2013. (in Chinese with English abstract)

        [31] TRINCHERA A, BARATELLA V. Use of a Non-ionic water surfactant in lettuce fertigation for optimizing water use, improving nutrient use efficiency, and increasing crop quality[J]. Water, 2018, 10(5):613.

        [32] YEAP S G H, BELL R W, SCANLAN C, et al. Soil water repellence increased early wheat growth and nutrient uptake[J]. Plant and Soil, 2022, 473(1/2): 273-289.

        [33] LASKOWSKI K, FRANK K, MEREWITZ E. Surfactant effects on creeping bentgrass and annual bluegrass exposed to different irrigation and traffic stress treatments[J]. Agronomy Journal, 2018, 110(1): 193-199.

        [34] WOLFGANG H, HORN C, MORHARD J, et al. Hydrophobic soil, local dry spots (LDS) and its control with wetting agents[J]. Rasen-Turf-Gazon, 2007, 38(4): 228-240.

        [35] SONG E, PAN X, KREMER R J, et al. Influence of repeated application of wetting agents on soil water repellency and microbial community[J]. Sustainability, 2019, 11(16): 4505.

        [36] NEMATI M R, JEONG K Y. Wetting agent effects on plant growth[J]. Acta Horticulturae, 2017(1168): 63-70.

        Effects of wetting agent application on substrate water absorption and Chinese cabbage plug seedlings

        ZHENG Xu1, ZHANG Zongjian2, DUAN Yundan1, ZHANG Aiai1, ZHANG Diting1, SHANG Qingmao1,3※

        (1. The Institute of Vegetables and Flowers, Chinese Academy of Agriculture Science, Beijing 100081, China; 2. Beijing Guangyuanyinong Chemical Co. Ltd, Beijing 100083, China; 3. National Nanfan Research Institute, Chinese Academy of Agriculture Science, Sanya 572024, China)

        Plug seedling has been the primary way to raise the vegetable seedlings on a large scale in China. The hydrophobicity and surface tension of the seedling substrate surface can be used to prevent the water from the rapid and uniform wetting of the substrate. A direct impact can also be obtained on the growth of vegetable plug seedlings during production. Taking the Chinese cabbage plug seedlings as the research objects, this experiment was carried out to clarify the effect of wetting agents on the substrate water absorption, together with the plant growth and development. Specifically, the experiment was conducted in a glass greenhouse from October 2021 to March 2022. Three wetting agents were selected, including the SP, GY-S903, and KT. Four additions were set as 0, 0.15, 0.30, and 0.60 mL/L in a total of 10 treatments. A gravity sensor was used to record the weight change of the plug trays in real time, which was adopted to represent the water content of the substrate. Finally, the change curve was plotted for the substrate moisture after measurement. The seedlings were sown in the 50-hole plug trays. The morphological indexes of Chinese cabbage seedlings were then measured after 30 days of growth. The test results show that the water absorption of the substrate increased by 23.90%-74.70%, the water absorption height increased by 46.03%-94.28%, and the water absorption rate increased by 60.57%-116.26%, compared with the substrate without the wetting agents. The best effect was found in the GY-S903 among the three wetting agents. Specifically, the higher the amount of wetting agent was added, the more the water absorption capacity of the substrate increased. The water absorption rate of 0.60 mL/L wetting agent GY-S903 was 12.33 and 24.56 g/min higher than that of 0.30 and 0.15 mL/L, respectively. Moreover, the addition of wetting agents failed to slow down the rate of water evaporation from the seedling substrate, whereas, there was an improved water retention of the substrate to maintain a high-water content. Meanwhile, the addition of a wetting agent was enhanced the uniformity of water absorption in the substrate between plug trays in the ebb-flow irrigation seedbeds, where the coefficient of variation in the water absorption was only 0.68%. Further determination was then obtained on the growth and development parameters of Chinese cabbage plug seedlings after wetting agent addition. It was found that there was no adverse effect of the appropriate addition of wetting agent on the growth of Chinese cabbage plug seedlings, but the excessive addition of wetting agent was limited the root development of seedlings. Except for the KT at 0.6 mL//L additive amount, other wetting agents and additive amounts, compared with the control Chinese cabbage seedling emergence rate, the total leaf area of plug seedling, stem and root dry matter accumulation, and root to shoot ratio all failed to reach a significant difference level. In summary, firstly, the wetting agent can represent an essential means to improve the water inhomogeneity of the substrate, in order to significantly improve the water absorption and absorption rate of the substrate, with the amount of wetting agent exerting a significant influence on the improvement of the water absorption capacity of the substrate. Secondly, the addition of a wetting agent can make no change in the rate of water evaporation from the substrate, but an improvement can be found in the water retention of the substrate and the relative water content of the substrate after evaporation. Thirdly, an adequate addition of wetting agent presented no adverse effect on the growth of Chinese cabbage plug seedlings. This finding can provide a theoretical basis and reference for the performance improvement of plug seedling substrate under ebb-flow irrigation.

        substrate; irrigation; seedling; wetting agent; water absorbtion; Chinese cabbage plug seedling

        10.11975/j.issn.1002-6819.202210043

        S626

        A

        1002-6819(2023)-01-0188-07

        鄭旭,張宗儉,段韞丹,等. 濕潤劑對基質水分吸持和白菜穴盤苗生長的影響[J]. 農業(yè)工程學報,2023,39(1):188-194.doi:10.11975/j.issn.1002-6819.202210043 http://www.tcsae.org

        ZHENG Xu, ZHANG Zongjian, DUAN Yundan, et al. Effects of wetting agent application on substrate water absorption and Chinese cabbage plug seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(1): 188-194. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202210043 http://www.tcsae.org

        2022-10-08

        2022-11-17

        國家重點研發(fā)計劃資助項目(2020YFD1000300);國家大宗蔬菜技術體系(CARS-23-B10);三亞中國農業(yè)科學院國家南繁研究院南繁專項(2022);山東省重點研發(fā)計劃項目(LJNY202106);海南省重大科技計劃項目(ZDKJ2021005)

        鄭旭,研究方向為蔬菜栽培與生理學。Email:82101205061@caas.cn

        尚慶茂,研究員,研究方向為蔬菜種苗發(fā)育調控與繁育技術。Email:shangqingmao@caas.cn

        猜你喜歡
        穴盤苗穴盤潮汐
        “紅顏”草莓穴盤苗在溫室栽培中的應用效果
        園藝與種苗(2023年7期)2023-08-11 04:52:24
        潮汐與戰(zhàn)爭(上)
        基于高速攝影技術穴盤苗拋投運動試驗與分析
        桑樹穴盤育苗組合配套技術要點
        絕美海灘
        立體花壇穴盤苗工藝用植物的應用與發(fā)展
        不同移栽苗對甜葉菊生長及產量的影響
        潮汐式灌溉控制系統(tǒng)的設計及應用
        電子制作(2017年9期)2017-04-17 03:00:56
        干法紙的潮汐
        生活用紙(2016年6期)2017-01-19 07:36:25
        蔬菜穴盤育苗基質選擇及配制
        蔬菜(2016年8期)2016-10-10 06:49:04
        97成人精品国语自产拍| 麻豆人妻无码性色AV专区| 国产高清不卡在线视频| 人人爽亚洲aⅴ人人爽av人人片| 午夜视频在线观看国产| 午夜人妻久久久久久久久| 小宝极品内射国产在线| āV第三区亚洲狠狠婷婷综合久久| 和少妇人妻邻居做爰完整版| 精品亚洲第一区二区三区| 玩中年熟妇让你爽视频| 欧美亚洲日本在线| 少妇极品熟妇人妻高清| 一区二区三区视频在线观看免费 | 国产精品短视频| 丰满人妻一区二区三区精品高清 | 久久综合九色综合久久久| 日日噜噜夜夜狠狠久久丁香五月| 国产精品久久久久久久久免费 | 人妻少妇精品中文字幕av| 久久永久免费视频| 精品人妻一区二区三区av| 久久日日躁夜夜躁狠狠躁| 日本aⅴ大伊香蕉精品视频| 欧美成人免费看片一区| 看一区二区日本视频免费| 97精品人人妻人人| 精品性影院一区二区三区内射| 蜜桃一区二区免费视频观看| 国内揄拍国内精品人妻久久| 日韩国产成人无码av毛片蜜柚| 色综合另类小说图片区| 天堂av国产一区二区熟女人妻 | 一本一道波多野结衣av中文| 五月丁香六月综合激情在线观看| 男女性生活视频免费网站| 欧洲多毛裸体xxxxx| 亚洲欧美国产日韩天堂在线视 | 亚洲精品国偷拍自产在线| 人妻熟妇乱又伦精品视频app | 久久精品国产亚洲av高清色欲|