亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于UKF 優(yōu)化多三角加權(quán)定位算法的UWB 室內(nèi)定位系統(tǒng)設(shè)計(jì)

        2023-03-17 07:28:44繆坤坤FELIXManirankunda
        無(wú)線電工程 2023年3期
        關(guān)鍵詞:三邊協(xié)方差定位精度

        陳 靜, 繆坤坤, FELIX Manirankunda

        (安徽理工大學(xué) 電氣與信息工程學(xué)院, 安徽 淮南 232001)

        0 引言

        超寬帶(Ultra-Wideband,UWB)具有時(shí)間分辨率高、穿透力強(qiáng)、覆蓋范圍廣、系統(tǒng)復(fù)雜度低和抗多徑效應(yīng)良好等優(yōu)勢(shì),測(cè)距精度可達(dá)到cm 級(jí)[1]。 相對(duì)于過(guò)去常用的紅外線定位、超聲波定位、WiFi 定位、藍(lán)牙定位和ZigBee 定位等技術(shù),基于UWB 技術(shù)的定位精度要高得多[2]。 目前,基于UWB[3-4]技術(shù)的室內(nèi)定位系統(tǒng)得到了廣泛應(yīng)用。

        很多學(xué)者對(duì)視距(Line-of-Sight,LOS)環(huán)境下的UWB 定位算法進(jìn)行了研究,如三邊定位算法[5]、Chan 算法[6]和Taylor 算法[7-8],但是上述方法都沒有考慮到在室內(nèi)復(fù)雜環(huán)境下UWB 定位系統(tǒng)容易受到非視距(Non-Line-of-Sight,NLOS)環(huán)境影響的問(wèn)題。 信號(hào)在穿過(guò)障礙物時(shí)產(chǎn)生的附加延時(shí)會(huì)降低定位精度[9]。

        近些年來(lái),一些學(xué)者將傳統(tǒng)算法與濾波算法結(jié)合,或改進(jìn)傳統(tǒng)算法以減少多徑效應(yīng)與NLOS 環(huán)境對(duì)定位精度的影響,或提高LOS 下的定位精度。 文獻(xiàn)[10]提出了一種簡(jiǎn)單到達(dá)時(shí)間差(Time Difference of Arrival,TDOA)算法,將TDOA 定位方程轉(zhuǎn)化為最小二乘形式,然后通過(guò)迭代方法計(jì)算出標(biāo)簽的收斂坐標(biāo)。 文獻(xiàn)[11]改進(jìn)了Taylor-UKF 算法,改進(jìn)Taylor 算法初值計(jì)算,并將Taylor 算法的計(jì)算值作為無(wú)跡卡爾曼濾波(Unscend Kalman Filter,UKF)觀測(cè)值進(jìn)行再次計(jì)算得到最優(yōu)標(biāo)簽坐標(biāo)。 文獻(xiàn)[12]提出了Chan-UKF 定位算法,利用Chan 算法進(jìn)行初步定位,再使用簡(jiǎn)化UKF 算法對(duì)篩選出符合條件的測(cè)量值再次進(jìn)行計(jì)算得到最優(yōu)坐標(biāo)。

        上述文獻(xiàn)針對(duì)NLOS 環(huán)境下定位精度低的問(wèn)題都提出了相應(yīng)的解決方法,但是精度仍不夠高。 為了進(jìn)一步提高NLOS 環(huán)境下的定位精度,本文提出了一種多三角加權(quán)定位算法。 通過(guò)多三角加權(quán)算法獲得更精確可靠的標(biāo)簽坐標(biāo),并對(duì)所得坐標(biāo)數(shù)據(jù)進(jìn)行UKF,進(jìn)而得到最優(yōu)的坐標(biāo)結(jié)果,提高了定位精度。

        1 多三角加權(quán)定位算法

        多三角加權(quán)定位算法的基礎(chǔ)是傳統(tǒng)的三邊定位算法[13]。 三邊定位算法基于3 個(gè)基站獲得標(biāo)簽到基站的距離,利用三角形算法計(jì)算出標(biāo)簽坐標(biāo)。 多三角加權(quán)算法使用了4 個(gè)基站,每3 個(gè)基站分為一組,共4 組排列組合,每組基站使用三邊定位算法計(jì)算出標(biāo)簽初始坐標(biāo),對(duì)4 個(gè)標(biāo)簽初始坐標(biāo)進(jìn)行加權(quán)計(jì)算得到標(biāo)簽坐標(biāo)。

        1.1 三邊定位算法

        三邊定位法如圖1 所示。 圖1 中,3 個(gè)基站的坐標(biāo)為(x1,y1),(x2,y2),(x3,y3),標(biāo)簽坐標(biāo)為(x,y),標(biāo)簽與3 個(gè)基站的距離分別為d1,d2,d3。 構(gòu)建方程組為:

        圖1 三邊定位算法Fig.1 Trilateral localization algorithm

        室內(nèi)定位通常是求取目標(biāo)在定位區(qū)域內(nèi)的平面坐標(biāo),取平行于地面的平面作為定位面,不關(guān)注目標(biāo)高度。 硬件系統(tǒng)反饋的是三維空間的測(cè)距值而非平面測(cè)距值,需對(duì)三維測(cè)距值進(jìn)行降維處理獲得平面測(cè)距值。

        三維距離的平面投影如圖2 所示。 圖2 中,D為實(shí)際測(cè)得的三維測(cè)距值,d為三維測(cè)距值在定位面上的投影,Δh為基站與標(biāo)簽的高度差,基站安裝在室內(nèi)四周且海拔高度一致。 假設(shè)基站高度為Z,標(biāo)簽高度設(shè)定為h,則Δh=Z-h。 構(gòu)建的降維方程為:

        圖2 三維距離的平面投影Fig.2 The plane projection of three-dimensional distance

        式中,(xi,yi)為基站坐標(biāo);(x,y)為標(biāo)簽坐標(biāo)。

        由于定位過(guò)程中會(huì)對(duì)測(cè)距值進(jìn)行降維處理,后面只關(guān)注基站和標(biāo)簽的平面坐標(biāo)。

        1.2 多三角加權(quán)定位算法

        噪聲方差與距離之間呈正比關(guān)系,距離越遠(yuǎn),噪聲方差越大[14]。 UWB 信號(hào)具有較強(qiáng)穿透性[15],近距離時(shí)障礙物造成的NLOS 誤差比較小,基站與標(biāo)簽距離越近,其測(cè)距值越可靠;遠(yuǎn)距離時(shí)由于信號(hào)能量的衰減,UWB 信號(hào)的穿透性隨之減弱,造成的NLOS 誤差會(huì)嚴(yán)重影響定位精度。 而多三角加權(quán)的思想是使距離標(biāo)簽較近的基站測(cè)距值在定位計(jì)算中占有較大的權(quán)重,距離標(biāo)簽較遠(yuǎn)的基站測(cè)距值在定位計(jì)算中占有較小的權(quán)重,從而提高定位精度。

        多三角加權(quán)定位算法示意如圖3 所示。 圖中,A,B,C,D為定位基站,其坐標(biāo)分別為(xi,yi)(i=1,2,3,4;分別對(duì)應(yīng)A,B,C,D),標(biāo)簽坐標(biāo)為L(zhǎng)(x,y)。每3 個(gè)基站構(gòu)建一個(gè)三角形,這樣,可以得到△ABD,△BCA,△CDB,△DAC四個(gè)三角形。 通過(guò)三邊定位算法可以計(jì)算出該三角形的標(biāo)簽初始坐標(biāo)。

        圖3 多三角加權(quán)定位算法示意Fig.3 Schematic diagram of multi-triangular weighted positioning algorithm

        圖3 中,以△DAC為例,標(biāo)簽與A,C,D三點(diǎn)的距離分別為d1,d3,d4,r為近距離測(cè)距誤差,R為遠(yuǎn)距離測(cè)距誤差。 重構(gòu)公式如式(3)和式(4)所示:

        求解式(3),可得標(biāo)簽初始坐標(biāo):

        同理,在△BCA中用三邊定位算法求解L點(diǎn)的初始坐標(biāo):

        由式(4)和式(5)可以看出,不同三角形所得初始坐標(biāo)的誤差構(gòu)成有著較大差異,三角形中近距離點(diǎn)越多,結(jié)果越精確。 而多三角加權(quán)定位算法的作用就是找到這些精度高的坐標(biāo),并賦予其較高的權(quán)值,使其在最終結(jié)果中占據(jù)較大權(quán)重。

        設(shè)三角形△ABD,△BCA,△CDB,△DAC中的標(biāo)簽初始坐標(biāo)為(x△1,y△1),(x△2,y△2),(x△3,y△3),(x△4,y△4),初始坐標(biāo)權(quán)值為w△1,w△2,w△3,w△4。 權(quán)值計(jì)算為:

        式中,di為標(biāo)簽到基站的距離。

        根據(jù)式(6)所得權(quán)值,進(jìn)行加權(quán)計(jì)算,得到標(biāo)簽坐標(biāo):

        2 多三角加權(quán)UKF

        UKF 的理論基礎(chǔ)是卡爾曼濾波(Kalman Filter,KF)和無(wú)跡變換(Unscented Transform,UT)。 KF 對(duì)線性函數(shù)有著優(yōu)良的預(yù)測(cè)、跟蹤效果,但無(wú)法很好地處理非線性函數(shù)。 而UKF 使用UT 完成非線性函數(shù)狀態(tài)及其協(xié)方差矩陣的處理,舍棄了擴(kuò)展卡爾曼濾波(Extended Kalman Filter,EKF)[16-17]算法的線性化過(guò)程,無(wú)需計(jì)算雅可比矩陣,減少了計(jì)算量,提高了濾波精度。

        2.1 KF

        KF 原理是根據(jù)前一時(shí)刻的最優(yōu)結(jié)果得到當(dāng)前時(shí)刻的預(yù)測(cè)值,使用當(dāng)前時(shí)刻的觀測(cè)值來(lái)修正預(yù)測(cè)值,進(jìn)而得到當(dāng)前時(shí)刻的最優(yōu)結(jié)果。 KF 方程組包括預(yù)測(cè)、觀測(cè)和更新3 個(gè)組成部分。

        KF 的預(yù)測(cè)方程如式(8)和式(9)所示。 式(8)表示算法的預(yù)測(cè)過(guò)程,式(9)表示不確定性在系統(tǒng)中傳遞過(guò)程。

        式(10)為KF 的觀測(cè)方程,表示系統(tǒng)獲取的觀測(cè)值,并給出觀測(cè)矩陣H :

        式中,zk為當(dāng)前時(shí)刻的觀測(cè)值;H 為觀測(cè)矩陣;x′k為測(cè)量狀態(tài)變量;v 為觀測(cè)系統(tǒng)誤差。

        KF 的更新方程如式(11)、式(12)和式(13)所示。 式(11)為卡爾曼增益方程,式(12)為當(dāng)前時(shí)刻最優(yōu)結(jié)果表達(dá)式,式(12)中卡爾曼增益kk決定觀測(cè)模型和預(yù)測(cè)模型之間的權(quán)重,式(13)為協(xié)方差更新方程。

        2.2 UKF

        UT 變換是用一定數(shù)量的參數(shù)集去近似一個(gè)非線性函數(shù)的高斯分布。 UT 變換在原先的狀態(tài)分布中選擇一些點(diǎn),這些點(diǎn)的均值和協(xié)方差與原狀態(tài)分布的均值和協(xié)方差相等。 將這些點(diǎn)代入非線性函數(shù)中,得到非線性函數(shù)值點(diǎn)集,進(jìn)而求取非線性函數(shù)值點(diǎn)集的均值和協(xié)方差[18-19]。

        UKF 的狀態(tài)空間模型為:

        式中,k為時(shí)間變量;Xk和Zk分別為系統(tǒng)狀態(tài)向量和觀測(cè)向量;f(·)為狀態(tài)轉(zhuǎn)移方程;h(·)為觀測(cè)方程;Wk和Vk分別為系統(tǒng)誤差和觀測(cè)誤差,它們的協(xié)方差矩陣分別為Qk,Rk。

        式中,μk為狀態(tài)向量Xk的均值;pk為狀態(tài)向量Xk的協(xié)方差;r為次級(jí)采樣因子,用于確保(n+r)pk為非負(fù)定矩陣,通常取0;是協(xié)方差矩陣pk的平方根;()i是矩陣平方根的第i列。

        式中,λ為比例參數(shù),決定了Sigma 點(diǎn)集與狀態(tài)均值的接近程度;α為離散參數(shù),決定了Sigma 點(diǎn)集的離散程度,通常取0. 01;β為狀態(tài)分布參數(shù),對(duì)于高斯分布β=2 為最優(yōu);ωm和ωc分別為均值和協(xié)方差的權(quán)重。

        式中,均值為狀態(tài)向量Xk的預(yù)測(cè)值;Pk為預(yù)測(cè)值的協(xié)方差。

        將預(yù)測(cè)值和預(yù)測(cè)值協(xié)方差Pk作為統(tǒng)計(jì)特性代入式(15)獲得新的Sigma 點(diǎn)集,將代入觀測(cè)方程h(·)得到Sigma 點(diǎn)集觀測(cè)變換結(jié)果,根據(jù)計(jì)算觀測(cè)均值k及其協(xié)方差P—Zk:

        基于式(17)和式(18),計(jì)算預(yù)測(cè)值和觀測(cè)值的互相關(guān)協(xié)方差:

        式中,i=0,1,…,2l。

        式(15)~式(19)為UT 變換過(guò)程。

        KF 算法是針對(duì)線性系統(tǒng)的最優(yōu)值估計(jì)算法,不適用于非線性系統(tǒng)。 在UKF 中,UT 替代了KF 的預(yù)測(cè)部分去計(jì)算狀態(tài)向量預(yù)測(cè)值及其協(xié)方差,有效地解決了非線性濾波中預(yù)測(cè)值獲取問(wèn)題。 所以UKF比KF 更適用于非線性濾波環(huán)境。

        EKF 也可用于非線性濾波,但是UKF 使用UT變換處理非線性濾波時(shí)能以二階或二階以上泰勒精度逼近后驗(yàn)均值和協(xié)方差,而EKF 達(dá)不到二階以上精度。 相比EKF 的線性化過(guò)程以及繁瑣的雅可比矩陣計(jì)算,UKF 比EKF 具有更高的濾波精度和更小的計(jì)算量。

        通過(guò)無(wú)跡卡爾曼增益Kk對(duì)觀測(cè)殘差(Zk-k)進(jìn)行加權(quán),進(jìn)而實(shí)現(xiàn)對(duì)預(yù)測(cè)值的修正,得到狀態(tài)向量的最優(yōu)結(jié)果Xk。 狀態(tài)更新方程為:

        協(xié)方差更新方程為:

        式中,Pk為最優(yōu)結(jié)果Xk的協(xié)方差。

        將式(21)和式(22)得到的Xk,Pk作為k時(shí)刻的狀態(tài)向量統(tǒng)計(jì)特性,計(jì)算k時(shí)刻的sigma 點(diǎn)集,進(jìn)而計(jì)算k+1 時(shí)刻狀態(tài)向量的最優(yōu)結(jié)果。

        2.3 多三角加權(quán)UKF

        為了提高定位精度,將UKF 與多三角加權(quán)定位算法結(jié)合,構(gòu)建基于UKF 的多三角加權(quán)定位算法。算法中,將多三角加權(quán)定位算法的定位坐標(biāo)作為觀測(cè)值輸入到UKF 模型中,分別對(duì)坐標(biāo)的X,Y軸數(shù)據(jù)進(jìn)行濾波處理,以獲得更高精度的定位結(jié)果。 多三角加權(quán)UKF 定位算法流程如圖4 所示。

        圖4 多三角加權(quán)UKF 定位算法流程Fig.4 The flowchart of the multi-triangular weighted positioning algorithm based on UKF

        UKF 模型如式(14)所示,狀態(tài)向量為狀態(tài)的位置和速度信息Xk=[x(k),vx(k),y(k),vy(k)]T,狀態(tài)轉(zhuǎn)移矩陣F =[1T0 0;0 1 0 0;0 0 1T;0 0 0 1](T為采樣周期)。 觀測(cè)矩陣H 為四階單位矩陣,觀測(cè)向量為多三角加權(quán)定位輸入的位置和速度信息Zk=[xz(k),vzx(k),yz(k),vzy(k)]T。

        3 仿真與實(shí)驗(yàn)

        3.1 仿真設(shè)置

        為了驗(yàn)證多三角加權(quán)UKF 定位算法性能,本文通過(guò)Matlab2021a 進(jìn)行模擬仿真。 定位區(qū)域設(shè)置為20 m×15 m 的二維平面,基站設(shè)置在矩形定位區(qū)域的4 個(gè)頂點(diǎn)處,基站的坐標(biāo)分別為(0,0),(0,20),(20,15),(0,15)。 設(shè)置測(cè)距精度為98%來(lái)模擬噪聲方差與距離之間呈正比關(guān)系,同時(shí)添加了均值為0、標(biāo)準(zhǔn)差為1 的高斯隨機(jī)變量作為噪聲。

        由于多三角加權(quán)UKF 算法會(huì)對(duì)坐標(biāo)中X,Y軸的數(shù)據(jù)分別濾波,需要計(jì)算X,Y軸的數(shù)據(jù)的誤差Ex,Ey來(lái)判斷濾波效果,定位誤差Ep來(lái)衡量定位精度,即:

        式中,(xk,yk)為k時(shí)刻標(biāo)簽真實(shí)坐標(biāo);(,)為k時(shí)刻定位算法算出的坐標(biāo)估計(jì)值。

        3.2 仿真過(guò)程及定位結(jié)果

        3.2.1 仿真過(guò)程

        設(shè)置4 個(gè)基站的坐標(biāo)分別為A(0,0),B(0,20),C(20,15),D(0,15);設(shè)置位標(biāo)簽的起點(diǎn)為(3,11),標(biāo)簽的移動(dòng)速度為1 m/s,標(biāo)簽的起點(diǎn)和移動(dòng)速度也是UKF 算法的初值,標(biāo)簽按設(shè)定的八邊形路徑順時(shí)針?lè)较蜻\(yùn)動(dòng),采樣周期為500 ms,采樣總時(shí)長(zhǎng)為43 s。 采用了傳統(tǒng)三邊定位算法、多三角加權(quán)定位算法與多三角加權(quán)UKF 定位算法對(duì)標(biāo)簽進(jìn)行定位跟蹤,其中三邊定位算法使用基站A,B,D,其余2 種算法使用基站A,B,C,D。 定位結(jié)果如圖5 所示。

        圖5 定位軌跡Fig.5 Positioning track

        3.2.2X,Y方向軌跡濾波分析

        由圖5 的定位軌跡可以得到3 種算法的X軸,Y軸在時(shí)間軸上的軌跡數(shù)據(jù),如圖6 和圖7 所示。圖中,采樣周期為500 ms,共86 個(gè)周期43 s。

        圖6 X 坐標(biāo)軌跡Fig.6 X coordinate track

        圖7 Y 坐標(biāo)軌跡Fig.7 Y coordinate track

        由圖6 和圖7 可以看出:

        ① 傳統(tǒng)三邊定位算法的坐標(biāo)軌跡基本上跟隨著真實(shí)軌跡,但存在較大波動(dòng);② 多三角加權(quán)定位算法跟隨效果和波動(dòng)都有所改善;③ 多三角加權(quán)UKF 算法跟隨真實(shí)軌跡效果最好,減少了很多毛刺,軌跡曲線更加光滑平穩(wěn)。 3 種算法在X和Y軸上的坐標(biāo)誤差Ex,Ey如圖8 和圖9 所示。

        圖8 X 軸數(shù)據(jù)誤差Fig.8 X-axis data error

        圖9 Y 軸數(shù)據(jù)誤差Fig.9 Y-axis data error

        根據(jù)圖8 和圖9 可以得到3 種算法在X和Y軸上的平均定位誤差,如表1 所示。

        表1 X 和Y 坐標(biāo)定位誤差Tab.1 The positioning error of X coordinate and Y coordinate單位:m

        由表1 可知:

        ① 3 種算法在X軸軌跡上的平均誤差分別為0.421,0. 266,0. 167 m;Y軸軌跡平均誤差分別為0.427,0.254,0.152 m。

        ② 多三角形加權(quán)定位算法在X和Y軸上的平均定位誤差分別比三邊定位算法降低了38. 2%和40.4%;基于UKF 的多三角形加權(quán)定位算法在X和Y軸上的平均定位誤差分別比多三角形加權(quán)定位算法降低了38.4%和39.6%,比三邊定位算法分別降低了65.2%和64.1%。

        結(jié)果表明,多三角加權(quán)UKF 算法可以獲得更好的濾波精度。

        3.2.3 定位誤差分析

        定位誤差Ep如圖10 所示。

        圖10 定位誤差Fig.10 Positioning error

        由圖10 可以得到3 種算法的平均定位誤差,如表2 所示。

        表2 定位誤差Tab.2 Positioning errors單位:m

        由表2 可知:

        ① 邊定位、多三角加權(quán)和多三角加權(quán)UKF 的平均定位誤差分別為0.613,0.366,0.224 m。

        ② 基于UKF 的多三角加權(quán)定位算法的平均定位誤差比多三角加權(quán)定位算法降低了38. 7%,比三邊定位算法降低了63.3%;多三角加權(quán)定位算法的平均定位誤差比三邊定位算法降低了40.2%。

        3.3 實(shí)驗(yàn)部分

        3.3.1 實(shí)驗(yàn)環(huán)境

        為了驗(yàn)證多三角加權(quán)UKF 算法在NLOS 環(huán)境下的定位性能,選取如圖11 所示的實(shí)驗(yàn)環(huán)境,2 根水泥支柱作為障礙物為NLOS 測(cè)距干擾提供條件,地面上0.6 m×0.6 m 的方形瓷磚提供參考,選取2 根柱子外圍的一圈瓷磚地板網(wǎng)格點(diǎn)進(jìn)行測(cè)距采樣。 UWB 基站設(shè)置在采樣點(diǎn)外圍的一圈瓷磚網(wǎng)格四周。

        圖11 定位環(huán)境Fig.11 The environment of positioning experiment

        定位環(huán)境的布局如圖12 所示。 基站坐標(biāo)分別為A0(6.6,0.6),A1(0.6,0.6),A2(0.6,3.6),A3(6.6,3.6)。 基站A0 與PC 相連上傳測(cè)距信息。 2 根柱子的尺寸為0.65 m×0.65 m 和0.75 m×0.75 m。 起始點(diǎn)坐標(biāo)為(1.2,1. 2),順時(shí)針?lè)较蛞苿?dòng),移動(dòng)步長(zhǎng)為0.6 m,圍繞雙柱選取了23 個(gè)測(cè)距點(diǎn)(起點(diǎn)和終點(diǎn)在同一位置)。 部分測(cè)距數(shù)據(jù)如表3 所示。

        圖12 定位平面Fig.12 Positioning plane

        表3 部分測(cè)距數(shù)據(jù)Tab.3 Partial ranging data單位:m

        3.3.2 實(shí)驗(yàn)結(jié)果分析

        將測(cè)距數(shù)據(jù)輸入Matlab 算法腳本進(jìn)行位置計(jì)算,分別計(jì)算了基于三邊定位算法、三邊定位UKF算法、多三角加權(quán)定位算法和多三角加權(quán)UKF 算法的定位結(jié)果,其中三邊定位算法和三邊定位UKF 算法所用的基站為A0,A1,A2;4 種算法的定位結(jié)果如圖13 所示。

        圖13 定位結(jié)果Fig.13 Positioning results

        對(duì)比圖13 中三邊定位算法、三邊定位UKF 算法、多三角加權(quán)定位算法的定位結(jié)果。 由于遠(yuǎn)距離測(cè)距誤差和NLOS 測(cè)距誤差的干擾,三邊定位算法在遠(yuǎn)離基站A0,A1,A2 組成的三角形的一側(cè)有著較大的定位誤差,使用UKF 對(duì)三邊定位算法的結(jié)果進(jìn)行濾波也無(wú)法有效減小該類定位誤差。 而多三角加權(quán)算法使用了4 個(gè)基站,通過(guò)距離倒數(shù)因子加權(quán)各個(gè)三角形的定位結(jié)果,可以有效規(guī)避大部分NLOS誤差(例如在基站A3 附近的定位點(diǎn),這些點(diǎn)與基站A0,A2,A3 沒有NLOS 誤差,與A1 存在NLOS 誤差,根據(jù)多三角加權(quán)算法由基站A0,A2,A3 組成的三角形定位結(jié)果會(huì)在最終結(jié)果中占有很大比重),同時(shí)也不會(huì)出現(xiàn)當(dāng)標(biāo)簽遠(yuǎn)離4 個(gè)基站的其中3 個(gè)基站時(shí)定位結(jié)果產(chǎn)生較大偏離的情況。

        4 種算法的定位誤差如圖14 所示。 根據(jù)圖中數(shù)據(jù)獲得定位誤差表(圖中三邊UKF 與多三角UKF最小值為0 m 是由于濾波算法的初值設(shè)置導(dǎo)致的,不作為最小值)。

        圖14 定位誤差Fig.14 Positioning error

        定位誤差如表4 所示。 由表4 可知:

        表4 定位誤差Tab.4 Positioning errors單位:m

        ① 三邊定位、三邊定位UKF、多三角加權(quán)和多三角加權(quán)UKF 的平均定位誤差分別為0. 198,0.155,0.148,0.083 m。

        ② 4 種定位算法的定位誤差最小值相差很小,說(shuō)明在理想的測(cè)距值下使用簡(jiǎn)單的算法也能獲得很好的定位效果。

        ③ 定位最大誤差相比于三邊定位的最大誤差有了明顯降低,同時(shí)多三角加權(quán)算法配合UKF 顯著地降低了最大誤差值,提高了定位精度。

        結(jié)果表明多三角加權(quán)UKF 算法可以獲得更好的定位精度。

        4 結(jié)束語(yǔ)

        本文基于UKF 優(yōu)化多三角加權(quán)方法進(jìn)行UWB室內(nèi)定位,有效解決了室內(nèi)UWB 定位中的由NLOS導(dǎo)致的定位誤差過(guò)大問(wèn)題。

        針對(duì)由NLOS 導(dǎo)致的定位誤差過(guò)大問(wèn)題,提出了多三角加權(quán)定位算法,通過(guò)4 個(gè)三角形計(jì)算出標(biāo)簽初始坐標(biāo),根據(jù)標(biāo)簽到4 個(gè)基站的距離計(jì)算初始坐標(biāo)的權(quán)值,并進(jìn)行加權(quán)計(jì)算得到標(biāo)簽的坐標(biāo),提高了近距離測(cè)距值在標(biāo)簽坐標(biāo)中的比重。

        為了進(jìn)一步提高定位精度,提出了多三角加權(quán)定位算法與UKF 相結(jié)合的算法。 基于UKF 的多三角形加權(quán)定位算法明顯提高了定位精度,但算法具有較高的復(fù)雜度,實(shí)時(shí)性有待進(jìn)一步提升。 此外,多三角加權(quán)定位的加權(quán)方式也是進(jìn)一步的研究方向。

        猜你喜歡
        三邊協(xié)方差定位精度
        北斗定位精度可達(dá)兩三米
        軍事文摘(2023年4期)2023-04-05 13:57:35
        三角形中線與高之間的三個(gè)幾何不等式
        九點(diǎn)圓圓心關(guān)于三邊的對(duì)稱點(diǎn)的性質(zhì)
        走三邊
        GPS定位精度研究
        組合導(dǎo)航的AGV定位精度的改善
        不確定系統(tǒng)改進(jìn)的魯棒協(xié)方差交叉融合穩(wěn)態(tài)Kalman預(yù)報(bào)器
        三 邊 柳
        一種基于廣義協(xié)方差矩陣的欠定盲辨識(shí)方法
        縱向數(shù)據(jù)分析中使用滑動(dòng)平均Cholesky分解對(duì)回歸均值和協(xié)方差矩陣進(jìn)行同時(shí)半?yún)?shù)建模
        伊伊人成亚洲综合人网香| 午夜毛片不卡免费观看视频| 蜜臀精品一区二区三区| 久久精品这里只有精品| 最新亚洲人成网站在线观看 | 久久狠狠第一麻豆婷婷天天| 国产成人精品久久一区二区三区| 亚洲av一区二区三区蜜桃| 日韩Va亚洲va欧美Ⅴa久久| 中文字幕无码免费久久| 久久精品无码一区二区三区免费 | 9久久婷婷国产综合精品性色 | 人妻献身系列第54部| 日韩av天堂一区二区| 久久精品国产亚洲av热一区| 老熟女多次高潮露脸视频| 99精品久久精品一区二区| 青青草成人免费在线观看视频| 欧美综合自拍亚洲综合百度| 在线看亚洲十八禁网站 | 狼人av在线免费观看| 国产成人精品三级91在线影院 | 久久久精品亚洲人与狗| 色偷偷av一区二区三区人妖| 欧美亚洲综合另类| 国产成熟人妻换╳╳╳╳| 神马影院午夜dy888| 久久一区二区av毛片国产| 成人av天堂一区二区| 国产高清无码91| 亚洲一本到无码av中文字幕| 精品人妻伦一二三区久久| 久久精品国产黄片一区| 精品国产你懂的在线观看| 福利一区视频| 人人妻人人澡人人爽久久av| 麻豆国产精品va在线观看不卡| 美女被内射很爽的视频网站| 国产精品久久久亚洲第一牛牛 | 视频一区二区不中文字幕| 免费看欧美日韩一区二区三区|