張亮永,盧?強(qiáng),梁旭斌,李鵬毅,方厚林,曾新吾
某多孔彈性場(chǎng)地地面爆炸聲傳播特性和當(dāng)量反演分析
張亮永1, 2,盧?強(qiáng)2,梁旭斌2,李鵬毅2,方厚林2,曾新吾1
(1. 國(guó)防科技大學(xué)氣象海洋學(xué)院,長(zhǎng)沙 410073;2. 西北核技術(shù)研究所,西安 710024)
準(zhǔn)確預(yù)測(cè)地面爆炸威力對(duì)生產(chǎn)生活安全和武器性能測(cè)試具有重要意義.為獲取雪和半灌木混合覆蓋地表場(chǎng)地的地面爆炸聲傳播特性,解決該場(chǎng)地地面爆炸當(dāng)量反演問題,在實(shí)測(cè)數(shù)據(jù)基礎(chǔ)上分析了該場(chǎng)地的聲傳播特性,之后采用有限邊界阻抗聲傳播理論和四參量阻抗模型建立該場(chǎng)地聲傳播模型并進(jìn)行討論.最后,基于以上聲傳播模型,建立了多孔場(chǎng)地地面爆炸當(dāng)量估計(jì)的折合聲沖量法(簡(jiǎn)稱多孔場(chǎng)地折合聲沖量法)和以多孔場(chǎng)地折合聲沖量法為聲學(xué)模型的聲震分析方法,對(duì)該多孔場(chǎng)地地面爆炸當(dāng)量進(jìn)行了反演和分析.結(jié)果表明,雪和半灌木覆蓋地表場(chǎng)地的地面爆炸聲信號(hào)能量集中在低頻(20Hz以內(nèi)),受到多孔地表和空氣吸收影響,超壓幅值隨距離增加快速衰減,其衰減系數(shù)1.25明顯大于球面波幾何擴(kuò)展系數(shù)1.基于有限邊界阻抗波傳播理論和四參量阻抗模型建立的聲傳播模型可以準(zhǔn)確描述該多孔場(chǎng)地波傳播特性,其預(yù)測(cè)波形和實(shí)測(cè)波形基本重合.基于以上聲傳播模型建立的多孔場(chǎng)地折合聲沖量法,通過考慮聲震能量分配過程可以獲得較高的當(dāng)量反演精度,當(dāng)量相對(duì)誤差不超過7%.而采用折合聲沖量法并聯(lián)合地震波數(shù)據(jù)進(jìn)行聲震分析,可以準(zhǔn)確獲取多孔彈性地面附近未知爆炸事件的當(dāng)量和爆高,當(dāng)量和爆高相對(duì)誤差分別不超過7%和19%.
地面爆炸;有限邊界阻抗;四參量模型;折合聲沖量;聲震分析
工業(yè)爆炸事故[1]和恐怖襲擊事件[2]涉及生產(chǎn)生活安全,通常發(fā)生在地表附近,屬于典型的地面爆炸事件,對(duì)其爆炸威力監(jiān)測(cè)有助于毀傷快速評(píng)估和迅速救援.戰(zhàn)斗部打擊地面目標(biāo)[3]也屬于典型的地面爆炸事件,在靶場(chǎng)試驗(yàn)中進(jìn)行爆炸威力監(jiān)測(cè)有助于武器性能評(píng)估和未爆彈排除.因此,準(zhǔn)確預(yù)測(cè)地面爆炸威力對(duì)生產(chǎn)生活安全[1-2]和武器性能測(cè)試[3]具有重要意義.由于地面爆炸能量會(huì)耦合到空氣中,并產(chǎn)生明顯聲擾動(dòng),一般通過遠(yuǎn)場(chǎng)聲學(xué)數(shù)據(jù)利用超壓峰值、正向聲沖量和正向脈寬等波形特征量來預(yù)測(cè)地面爆炸當(dāng)量[4-12].為建立波形特征量和爆炸當(dāng)量之間關(guān)系,相繼提出ANSI模型[6,13]、KG85標(biāo)準(zhǔn)模型[14]、BOOM模型[6,15]、IPM聲學(xué)模型[10]、地面爆炸聲學(xué)模型[2]和近地面爆炸聲學(xué)模型[9,16-17]等經(jīng)驗(yàn)或半經(jīng)驗(yàn)?zāi)P?,以及超壓波形匹配法、?jīng)驗(yàn)聲源模型法等全波形當(dāng)量反演方法[5,7,11,17].Kim等[5]基于線性聲學(xué)理論反演爆源等效源時(shí)間函數(shù),以KG85模型折合聲沖量作為參考函數(shù),提出一種地面爆炸當(dāng)量反演新思路(本文稱為折合聲沖量法),并將其應(yīng)用在剛性地面爆炸當(dāng)量反演上,具有較高的當(dāng)量預(yù)測(cè)精度.
但上述方法沒有考慮波傳播過程中地表結(jié)構(gòu)的影響,只是簡(jiǎn)單地將地面假設(shè)為剛性界面,而基于聲學(xué)數(shù)據(jù)預(yù)測(cè)地面爆炸當(dāng)量的精度和地表結(jié)構(gòu)以及介質(zhì)特性密切相關(guān),地面爆炸耦合到空氣中的超壓波形受到聲震能量分配[16-21]以及地表反射、散射和吸收的共同作用[22-29],使得聲衰減特性和波形特征隨地表結(jié)構(gòu)和介質(zhì)不同產(chǎn)生明顯差異.對(duì)于聲衰減特性,混泥土等硬地表對(duì)聲接近全反射[22],但多孔彈性地表如覆蓋地面的雪、草等吸收作用明顯[22,25,30],波的衰減系數(shù)明顯大于1.對(duì)于波形特征,入射波經(jīng)多孔彈性地表反射后波形會(huì)產(chǎn)生明顯變化,變化情況和覆蓋層阻抗密切相關(guān)[23,25,27-33].研究表明[23,27,31],地表覆蓋層為雪時(shí),地面附近存在聲表面波,頻域上低頻部分得到增強(qiáng),高頻部分由于雪層吸收快速衰減,時(shí)域上超壓峰值降低,波形脈寬更寬.
文獻(xiàn)[23,28,34-37]建立了有限邊界阻抗聲傳播理論,從理論上解決復(fù)雜地面結(jié)構(gòu)波傳播問題.文獻(xiàn)[38-42]建立單參量、四參量和JCAL等地表阻抗模型,用于地表附近聲傳播特性分析.而文獻(xiàn)[25,27,29-31]應(yīng)用以上理論和模型對(duì)雪、草等單一多孔介質(zhì)地表波傳播問題進(jìn)行了研究,建立了單一多孔介質(zhì)波傳播問題的基本思路.
為了獲取雪和半灌木混合覆蓋地表場(chǎng)地的地面爆炸聲傳播特性,解決該場(chǎng)地地面爆炸當(dāng)量反演問題,本文首先基于實(shí)測(cè)數(shù)據(jù)分析該場(chǎng)地聲傳播特性,之后采用有限邊界阻抗波傳播理論和四參量地表阻抗模型建立該多孔場(chǎng)地聲傳播模型并進(jìn)行討論.最后,基于以上聲傳播模型建立多孔場(chǎng)地折合聲沖量法和以多孔場(chǎng)地折合聲沖量法為聲學(xué)模型的聲震分析方法,并采用以上方法對(duì)該場(chǎng)地地面爆炸當(dāng)量反演精度進(jìn)行討論.
基于地面爆炸聲測(cè)點(diǎn)數(shù)據(jù)對(duì)雪和半灌木混合覆蓋地表場(chǎng)地的聲傳播特性進(jìn)行分析.
場(chǎng)地介質(zhì)為含砂礫的凍土,表面由積雪覆蓋,夾雜半灌木稀疏分布,如圖1所示.爆源放置地面,爆高為0.16m,當(dāng)量為30kg,傳感器對(duì)準(zhǔn)爆心依次排開(見圖2),根據(jù)測(cè)點(diǎn)距離選用不同類型傳感器(見表1).聲測(cè)點(diǎn)距離爆心最遠(yuǎn)3km,在該距離內(nèi)地勢(shì)相對(duì)平坦,基本無風(fēng),環(huán)境參數(shù)見表2.
圖1?場(chǎng)地環(huán)境
表1?傳感器參數(shù)
Tab.1?Transducer parameters
圖2?測(cè)點(diǎn)分布
表2?大氣環(huán)境參數(shù)
Tab.2?Environment parameters of the atmosphere
地面爆炸耦合到空氣中的超壓波形(見圖3),隨著傳播距離增加,其幅值、脈寬等波形特征發(fā)生明顯變化.測(cè)點(diǎn)爆心距見表3,地面爆炸最近測(cè)點(diǎn)S01的爆心距為80m,30kg當(dāng)量對(duì)應(yīng)比距離為25.7m/kg1/3.研究表明[5,14],比距離大于20m/kg1/3時(shí)波傳播滿足線性聲學(xué)變化規(guī)律,可以采用線性聲學(xué)理論進(jìn)行傳播特性分析.
圖3?聲測(cè)點(diǎn)時(shí)域波形
圖4中紅色圓點(diǎn)為超壓幅值實(shí)測(cè)數(shù)據(jù),紅色曲線為實(shí)測(cè)數(shù)據(jù)最小二乘擬合曲線,黑色曲線為30kg當(dāng)量的KG85超壓峰值模型衰減曲線,其中擬合曲線計(jì)算式為
表3?測(cè)點(diǎn)距離
Tab.3?Measuring point distances
圖4?聲測(cè)點(diǎn)超壓幅值衰減規(guī)律
式中:1和2為待定系數(shù),擬合值分別為7.70×105和-1.25;over為超壓峰值,Pa;為距離,m. KG85超壓峰值曲線計(jì)算式[14]為
(2)
由地面爆源各測(cè)點(diǎn)數(shù)據(jù)的主頻和歸一化頻譜可知(見圖5和圖6),信號(hào)主頻位于9~14Hz之間,大于主頻之后信號(hào)能量快速衰減,整個(gè)信號(hào)能量集中在20Hz以內(nèi)(-3dB對(duì)應(yīng)的最大頻率).由圖6可知,主頻之后的信號(hào)能量衰減存在一個(gè)拐點(diǎn)頻率,在這個(gè)拐點(diǎn)頻率之后測(cè)點(diǎn)頻譜受到噪聲干擾影響發(fā)生復(fù)雜變化,且拐點(diǎn)頻率和測(cè)點(diǎn)距離有關(guān),遠(yuǎn)距離測(cè)點(diǎn)S08的拐點(diǎn)頻率最小,為80Hz.對(duì)比圖6中各測(cè)點(diǎn)的歸一化頻譜可知,大于主頻的歸一化幅值隨測(cè)點(diǎn)距離增大具有變小趨勢(shì),而小于主頻的歸一化幅值隨測(cè)點(diǎn)距離增大分為兩個(gè)階段,即近距離(230m內(nèi),S01~S03測(cè)點(diǎn))減小階段和遠(yuǎn)距離(超過230m,S03~S08測(cè)點(diǎn))增加階段.在遠(yuǎn)距離(超過230m)范圍,大于主頻的歸一化幅值隨測(cè)點(diǎn)距離增大具有變小趨勢(shì),小于主頻的歸一化幅值隨測(cè)點(diǎn)距離增大具有變大趨勢(shì),表明遠(yuǎn)距離波傳播過程中高頻(大于主頻部分)比重越來越小,低頻(小于主頻部分)比重越來越大.以上表明,聲傳播過程中聲信號(hào)以低頻(20Hz以內(nèi))為主,受到多孔地表和空氣吸收的影響,波在遠(yuǎn)距離傳播過程中低頻(小于主頻)衰減較慢,高頻(大于主頻)衰減較快,使得波的衰減系數(shù)高于理想球面波幾何擴(kuò)展系數(shù).
圖5?聲測(cè)點(diǎn)的主頻
圖6?聲測(cè)點(diǎn)的歸一化頻譜
基于有限邊界阻抗聲傳播理論和四參量阻抗模型,并結(jié)合雪和半灌木混合覆蓋地表場(chǎng)地的介質(zhì)參數(shù),建立該多孔場(chǎng)地聲傳播模型并進(jìn)行討論.
2.1.1?有限邊界阻抗聲傳播理論
建立3層介質(zhì)模型,分別為空氣層、多孔彈性覆蓋層和無孔彈性墊層,見圖7.忽略時(shí)間項(xiàng),基于球面波理論的自由場(chǎng)速度勢(shì)函數(shù)[30,36]為
式中:A為常數(shù)部分;為直達(dá)波距離;為反射波距離;k1為空氣中波數(shù);Q為無量綱虛擬源強(qiáng)度項(xiàng).
Albert等[30]和Attenborough[36]給出了的理論解,即
根據(jù)速度勢(shì)函數(shù)和聲壓關(guān)系[44]
可得
式中:0表征源特性;為角頻率;為速度勢(shì).由于空氣吸收作用也會(huì)造成聲衰減[22,30,45-46],將空氣中聲衰減系數(shù)[46]代入式(9),得到
式中:為大氣衰減系數(shù),dB/m;r,O和r,N分別為氧和氮的振動(dòng)弛豫頻率,
式中:為水蒸氣克分子濃度,%;為頻率,Hz;obs為現(xiàn)場(chǎng)環(huán)境大氣壓,Pa;obs為現(xiàn)場(chǎng)環(huán)境溫度,K;0為大氣溫度,K.由式(12)可知,空氣衰減系數(shù)與頻率平方近似成正比,頻率越高衰減越快.
當(dāng)測(cè)點(diǎn)爆心距遠(yuǎn)大于爆源和測(cè)點(diǎn)的高度之和時(shí),式(11)可簡(jiǎn)化為
2.1.2?地表阻抗模型
對(duì)于兩層地介質(zhì)構(gòu)成的地表模型(見圖7),其等效法向聲阻抗率[39, 44]為
式中:Z和Zn分別為各層介質(zhì)的聲阻抗率和法向聲阻抗率;k和k分別為各層介質(zhì)波數(shù)和法向波數(shù);為第1層地介質(zhì)層厚,m.
Attenborough等[23,39]提出用流阻、孔隙率、顆粒形狀因子′和孔隙形狀因子比f等4個(gè)參量表征介質(zhì)特性,建立了四參量模型,并在草、雪等多孔地表介質(zhì)上得到應(yīng)用[25,27,30-31].Attenborough四參量模型[23,39]為
空氣聲速和密度分別為330m/s和1.03kg/m3,雪的平均厚度為0.15m.由于多孔覆蓋層以雪為主,覆蓋層顆粒形狀因子、孔隙率、孔隙形狀因子參照雪取值[25,29,31],見表4.為考慮半灌木影響,流阻通過波形匹配誤差最小[31]計(jì)算得到,結(jié)果見圖8.彈性墊層參照凍土參數(shù)取值[25,29,31],見表4.
圖8?計(jì)算波形和實(shí)測(cè)波形的匹配誤差
表4?地表介質(zhì)參數(shù)
Tab.4?Surface medium parameters
將以上參數(shù)代入虛擬源強(qiáng)度項(xiàng)計(jì)算公式,得到不同距離測(cè)點(diǎn)的虛擬源強(qiáng)度項(xiàng)頻譜(見圖9).由圖可知,虛擬源強(qiáng)度項(xiàng)的幅值在低頻部分存在峰值,主頻和峰值大小與測(cè)點(diǎn)距離密切相關(guān),隨著測(cè)點(diǎn)距離增加低頻部分得到增強(qiáng),整體上呈現(xiàn)主頻隨距離增加變小、峰值隨距離增加變大的趨勢(shì).此外,虛擬源強(qiáng)度項(xiàng)的相位隨頻率變化迅速增加后趨于不變,呈現(xiàn)S函數(shù)特征,而隨測(cè)點(diǎn)距離增加相位變化更加陡峭,相位變化的拐點(diǎn)頻率隨距離增加呈現(xiàn)減小趨勢(shì),拐點(diǎn)頻率之后相位隨頻率基本保持不變.
由虛擬源強(qiáng)度項(xiàng)和S01測(cè)點(diǎn)超壓波形預(yù)測(cè)其余測(cè)點(diǎn)超壓波形,結(jié)果見圖10.圖10中紅色長(zhǎng)虛線為實(shí)測(cè)波形,黑色實(shí)線為基于有限阻抗邊界的預(yù)測(cè)波形,藍(lán)色短虛線為只考慮空氣聲吸收和幾何擴(kuò)展的預(yù)測(cè)波形.由圖可知,基于有限阻抗邊界的預(yù)測(cè)波形和實(shí)測(cè)數(shù)據(jù)重合較好,而剛性邊界預(yù)測(cè)波形和實(shí)測(cè)數(shù)據(jù)差別明顯,表明邊界阻抗對(duì)聲傳播特性影響顯著,而采用有限邊界阻抗波傳播理論和四參量阻抗模型可以準(zhǔn)確預(yù)測(cè)雪和半灌木混合覆蓋地表場(chǎng)地的波傳播特性.
圖9?虛擬源強(qiáng)度項(xiàng)
圖10 實(shí)測(cè)波形和基于S01數(shù)據(jù)和地表參數(shù)的預(yù)測(cè)波形
通過以上聲傳播模型預(yù)測(cè)地面爆炸等效聲源的源時(shí)間函數(shù),基于預(yù)測(cè)結(jié)果建立多孔場(chǎng)地折合聲沖量法和以多孔場(chǎng)地折合聲沖量法為聲學(xué)模型的聲震分析方法,并對(duì)該場(chǎng)地地面爆炸當(dāng)量反演精度進(jìn)行討論.
3.1.1?多孔場(chǎng)地折合聲沖量法
各向同性介質(zhì)中時(shí)域超壓波形和聲沖量存在以下關(guān)系[5]:
式中:為流體質(zhì)量;d為脈沖正向部分持續(xù)時(shí)間;為幾何擴(kuò)展因子,球形擴(kuò)展取4π,半球形擴(kuò)展取2π.
聲沖量和路徑密切相關(guān),為了表征源強(qiáng)度,Kim等[5]將質(zhì)量流加速度的正向部分積分定義為折合聲沖量,即源時(shí)間函數(shù)峰值,該參量和路徑無關(guān),
式中被積分項(xiàng)為源的質(zhì)量流加速度.將式(11)或式(15)代入式(25)可得折合聲沖量和源項(xiàng)關(guān)系為
由于有限邊界阻抗的聲傳播理論為點(diǎn)源假設(shè),所以上式幾何擴(kuò)展因子取4π.通過以上關(guān)系,可以得到源的折合聲沖量.
根據(jù)縮比關(guān)系,并將幾何擴(kuò)展因子取4π,折合聲沖量觀測(cè)值和KG85模型值存在以下關(guān)系[5,14]:
式中:KG85為KG85模型的參考環(huán)境壓力,Pa;KG85為KG85模型參考環(huán)境溫度,K.對(duì)于KG85模型折合聲沖量,當(dāng)比距離大于20m/kg1/3時(shí),符合線性聲學(xué)的變化規(guī)律[5,11],其值接近2466.81kg/s,從而計(jì)算出當(dāng)量.
3.1.2?聲震分析方法
地面爆炸能量會(huì)同時(shí)耦合到空氣和地介質(zhì)中形成聲波和地震波向遠(yuǎn)處傳播,通過地震數(shù)據(jù)提供額外約束進(jìn)行聲震分析可提高爆炸當(dāng)量預(yù)測(cè)精度[16-21].聲震分析方法包括聲學(xué)模型、地震波模型和數(shù)據(jù)融合方法3個(gè)部分.
對(duì)于聲學(xué)模型,在式(27)基礎(chǔ)上增加不同爆高(埋深)的聲耦合系數(shù)[17],得到基于折合聲沖量的近地面聲學(xué)模型,即
對(duì)于地震波模型,P波位移首峰值和當(dāng)量、距離存在以下關(guān)系[47]:
式中:s為比位移,m/kg1/3;1、2、3和4為待定系數(shù),對(duì)于土石混合介質(zhì)分別取值2.93、-1.62、-0.81和2.71.根據(jù)Sachs縮比關(guān)系[48],比位移為
相對(duì)誤差法是聲震數(shù)據(jù)融合的常見方法[19],綜合誤差為
式中d和i分別為地震波和聲學(xué)數(shù)據(jù)的權(quán)重,均取0.5.采用格點(diǎn)搜索法以最小誤差為準(zhǔn)則得到當(dāng)量的最優(yōu)值.
3.2.1?多孔場(chǎng)地折合聲沖量法反演爆源當(dāng)量
由虛擬源強(qiáng)度項(xiàng)和測(cè)點(diǎn)超壓波形得到等效聲源頻譜(見圖11),由圖可知,等效源時(shí)間函數(shù)的主頻位于20Hz以內(nèi),頻率超過80Hz由于受到噪聲干擾的影響,頻譜幅值變化復(fù)雜.為避免噪聲干擾,對(duì)源時(shí)間函數(shù)進(jìn)行80Hz低通濾波,濾波后源時(shí)間函數(shù)見圖12.由圖可知,各個(gè)測(cè)點(diǎn)數(shù)據(jù)預(yù)測(cè)的源時(shí)間函數(shù)波形特征基本一致.
對(duì)源時(shí)間函數(shù)正向部分進(jìn)行積分得到聲沖量峰值,代入式(26),得到折合聲沖量.將折合聲沖量代入式(27)~式(29),得到爆源當(dāng)量預(yù)測(cè)值(見表5原始數(shù)據(jù)預(yù)測(cè)值).由表5可知,當(dāng)量預(yù)測(cè)值相對(duì)真實(shí)值30kg明顯偏小,這是由于近地面爆炸存在聲震能量分配過程,部分能量耦合到地下,空氣中的聲能只表征爆源部分能量.
圖11?等效聲源頻譜
圖12?等效聲源的源時(shí)間函數(shù)
由于地介質(zhì)為凍土,并含有大量砂礫,其介質(zhì)特性和硬巖介質(zhì)特性比較接近,所以聲耦合系數(shù)中待定系數(shù)按硬巖介質(zhì)取值.Pasyanos等[17]通過大量實(shí)測(cè)數(shù)據(jù)分析得到硬巖中待定系數(shù)為5.22,本文取該值代入式(31)得到地面爆炸聲耦合系數(shù).將折合聲沖量值除以地面爆炸聲耦合系數(shù)并代入式(27)~式(29),得到爆源當(dāng)量預(yù)測(cè)值(見表5考慮聲震能量分配過程的預(yù)測(cè)值).由表可知,考慮聲震能量分配過程的當(dāng)量預(yù)測(cè)值相對(duì)原始數(shù)據(jù)當(dāng)量預(yù)測(cè)值更接近真實(shí)值,相對(duì)誤差由60%減小至7%,具有較高的當(dāng)量預(yù)測(cè)精度.
表5?基于有限邊界阻抗的源參數(shù)估計(jì)結(jié)果
Tab.5 Source parameter estimation results via finite boundary impedance theory
3.2.2?聯(lián)合地震數(shù)據(jù)的當(dāng)量反演
圖13?基于聲震分析的當(dāng)量和爆高預(yù)測(cè)結(jié)果
表6?聯(lián)合地震和聲學(xué)數(shù)據(jù)的源參數(shù)估計(jì)結(jié)果
Tab.6 Source parameter estimation results by combining seismic and acoustic data
本文對(duì)雪和半灌木混合覆蓋地表場(chǎng)地的地面爆炸聲傳播特性和當(dāng)量反演方法進(jìn)行了分析,得出結(jié)論如下.
(1) 實(shí)測(cè)數(shù)據(jù)表明,雪和半灌木混合覆蓋地表場(chǎng)地的地面爆炸聲信號(hào)能量集中在低頻(20Hz以內(nèi)),主頻位于9~14Hz,受到多孔地表和空氣吸收影響,超壓幅值隨距離增加快速衰減,其衰減系數(shù)1.25明顯大于球面波幾何擴(kuò)展系數(shù)1.
(2) 基于有限邊界阻抗波傳播理論和四參量阻抗模型建立的聲傳播模型可以準(zhǔn)確描述該多孔場(chǎng)地波傳播特性,其預(yù)測(cè)波形和實(shí)測(cè)波形基本重合.
(3) 基于有限邊界阻抗波傳播理論和四參量阻抗模型建立的多孔場(chǎng)地折合聲沖量法,通過考慮聲震能量分配過程可以獲得較高的當(dāng)量反演精度,當(dāng)量相對(duì)誤差為7%.
(4) 采用以上聲學(xué)反演方法并聯(lián)合地震波數(shù)據(jù)進(jìn)行聲震分析可以準(zhǔn)確預(yù)測(cè)多孔彈性地面附近未知爆炸事件的當(dāng)量和爆高,其相對(duì)誤差分別不超過7%和19%.
西北核技術(shù)研究所王占江研究員、唐仕英副研究員、劉赟哲工程師在炸藥起爆方面提供了幫助和指導(dǎo),謹(jǐn)致謝意!
[1] 江文彬,陳?颙,彭?菲. 2019年3月江蘇響水化工廠爆炸當(dāng)量的估計(jì)[J]. 地球物理學(xué)報(bào),2020,63(2):541-550.
Jiang Wenbin,Chen Yong,Peng Fei. The yield estimation fo the explosion at the Xiangshui,Jiangsu chemical plant in March 2019[J]. Chinese Journal of Geophysics,2020,63(2):541-550(in Chinese).
[2] Koper K D,Wallace T C,Reinke R E,et al. Empirical scaling laws for truck bomb explosions based on seismic and acoustic data[J]. Bulletin of the Seismological Society of America,2002,92(2):527-542.
[3] Driels M R. Weaponeering:Conventional Weapon Sys-tem Effectiveness[M]. 2nd ed. Virginia:American Institute of Aeronautics Astronautics,Inc.,2012.
[4] Golden P,Negraru P,Howard J. Infrasound Studies for Yield Estimation of HE Explosions[R]. USA:Air Force Research Laboratory,2011-03.
[5] Kim K,Rodgers A. Waveform inversion of acoustic waves for explosion yield estimation[J]. Geophysical Research Letters,2016,43:6883-6890.
[6] Arrowsmith S J,Whitaker R W,Maccarthy J K,et al. A sources-of-error model for acoustic/infrasonic yield estimation for above-ground single-point explosions[J]. InfraMatics,2012,1:1-9.
[7] Arrowsmith S,Bowman D. Explosion yield estimation from pressure wave template matching[J]. The Journal of the Acoustical Society of America,2017,141(6):EL519-EL525.
[8] Kim K,Rodgers A,Wright M. Uncertainty analysis for infrasound waveform inversion:Application to explo-sion yield estimation[J]. The Journal of the Acoustical Society of America,2018,144(6):3351-3363.
[9] Bowman D C. Yield and emplacement depth effects on acoustic signals from buried explosions in hard rock[J]. Bulletin of the Seismological Society of America,2019,109(3):944-958.
[10] Schnurr J,Kim K,Garces M A,et al. Improved para-metric models for explosion pressure signals derived from large datasets[J]. Seismological Research Letters,2020,91(3):1752-1762.
[11] Kim K,Rodgers A R,Garces M A,et al. Empirical acoustic source model for chemical explosions in air[J]. Bulletin of the Seismological Society of America,2021,DOI: 10.1785/0120210030.
[12] Blom P S,Dannemann F K,Marcillo O E. Bayesian characterization of explosive sources using infrasonic signals[J]. Geophysical Journal International,2018,215(1):240-251.
[13] American National Standards on Acoustics. ANSI S2.20—1983(ASA 20—1983)Estimating Airblast Characteristics for Single Point Explosions in Air,with a Guide to Evaluation of Atmospheric Propagation and Effects[S]. New York:American Institute of Physics for the Acoustical Society of America,1983.
[14] Kinney G F,Graham K J. Explosive Shocks in Air[M]. New York:Springer Science+Business Media,1985.
[15] Douglas D A. Blast Operational Overpressure Model (BOOM):An Airblast Prediction Method[R]. USA:Air Force Weapons Laboratory,Kirtland AFB,1987-04.
[16] Ford S R,Rodgers A J,Xu H,et al. Partitioning of seismoacoustic energy and estimation of yield and height-of-burst/depth-of-burial for near-surface explosions[J]. Bulletin of the Seismological Society of America,2014,104(2):608-623.
[17] Pasyanos M E,Kim K. Seismoacoustic analysis of chemical explosions at the Nevada National Security Site[J]. Journal of Geophysical Research:Solid Earth,2018,124:908-924.
[18] Arrowsmith S J,Johnson J B,Drob D P,et al. The seismoacoustic wavefield:A new paradigm in studying geophysical phenomena[J]. Reviews of Geophysics,2010,48(RG4003):1-23.
[19] Bonner J,Waxler R,Gitterman Y,et al. Seismo-acoustic energy partitioning at near-source and local dis-tances from the 2011 Sayarim explosions in the Negev Desert,Israel[J]. Bulletin of the Seismological Society of America,2013,103(2A):741-758.
[20] Zhang L,Li X,Liang X,et al. Improved seis-moacoustic analysis model and its application to source parameter inversion of near-surface small-yield chemical explosions[J]. Applied Geophysics,2021,18(1):17-30.
[21] Ford S R,Bulaevskaya V,Ramirez A,et al. Joint bayesian inference for near-surface explosion yield and height-of-burst[J]. Journal of Geophysical Research:Solid Earth,2021,126(2):e2020JB020968.
[22] Ford R D,Saunders D J,Kerry G. The acoustic pres-sure waveform from small unconfined charges of plastic explosive[J]. The Journal of the Acoustical Society of America,1993,94(1):408-417.
[23] Attenborough K,Renterghem T V. Predicting Outdoor Sound[M]. 2nd ed. Boca Raton and Oxon:CRC Press,2021.
[24] Kaynia A M,L?vholt F,Madshus C. Effects of a multi-layered poro-elastic ground on attenuation of acoustic waves and ground vibration[J]. Journal of Sound and Vibration,2011,330:1403-1418.
[25] Albert D G,Decato S N,Carbee D L. Snow cover effects on acoustic sensors[J]. Cold Regions Science and Technology,2008,52:132-145.
[26] Crocker M J. Handbook of Noise and Vibration Control[M]. Hoboken,New Jersey:John Wiley & Sons,Inc.,2007.
[27] Albert D G. Observations of acoustic surface waves in outdoor sound propagation[J]. The Journal of the Acous-tical Society of America,2003,113(5):2495-2500.
[28] Attenborough K,Taherzadeh S. Propagation from a point source over a rough finite impedance[J]. The Jour-nal of the Acoustical Society of America,1995,98(3):1717-1722.
[29] Albert D G,Hole L R. Blast noise propagation above a snow cover[J]. The Journal of the Acoustical Society of America,2001,106(6):2675-2681.
[30] Albert D G,Orcutt J A. Acoustic pulse propagation above grassland and snow:Comparison of theoretical and experimental waveforms[J]. The Journal of the Acoustical Society of America,1990,87(1):93-100.
[31] Albert D G. Acoustic waveform inversion with applica-tion to seasonal snow covers[J]. The Journal of the Acoustical Society of America,2001,109(1):91-101.
[32] Attenborough K. Ground parameter information for propagation modeling[J]. The Journal of the Acoustical Society of America,1992,92(1):418-427.
[33] Attenborough K. Review of ground effects on outdoor sound propagation from continuous broadband sources [J]. Applied Acoustics,1988,24:289-319.
[34] Pao S P,Evans L B. Sound attenuation over simulated ground cover[J]. The Journal of the Acoustical Society of America,1971,49:1069-1075.
[35] Donato R J. Propagation of a spherical wave near a plane boundary with a complex impedance[J]. The Journal of the Acoustical Society of America,1976,60(1):34-39.
[36] Attenborough K. Propagation of sound above a porous half-space[J]. The Journal of the Acoustical Society of America,1980,68(5):1493-1501.
[37] Nicolas J,Berry J L,Daigle G A. Propagation of sound above a finite layer of snow[J]. The Journal of the Acoustical Society of America,1984,77(1):67-73.
[38] Delany M E,Bazley E N. Acoustical properties of fi-brous absorbent materials[J]. Applied Acoustics,1970,3(2):105-116.
[39] Attenborough K. Acoustical impedance models for out-door ground surfaces[J]. Journal of Sound and Vibration,1985,99(4):521-544.
[40] Johnson D L,Koplik J,Dashen R. Theory of dynamic permeability and tortuosity in fluid-saturated porous me-dia[J]. Journal of Fluid Mechanics. 1987,176:379-402.
[41] Champoux Y,Stinson M R,Daigle G A. Air-based system for the measurement of porosity[J]. The Journal of the Acoustical Society of America,1991,89(2):910-916.
[42] Lafarge D,Lemarinier P,Allard J F,et al. Dynamic compressibility of air in porous structures at audible frequencies[J]. The Journal of the Acoustical Society of America,1997,102(4):1995-2006.
[43] Rudnick I. The propagation of an acoustic wave along a boundary[J]. The Journal of the Acoustical Society of America,1947,19(2):348-356.
[44] Brekhovskikh L M. Waves in Layered Media[M]. New York:Academic Press,1980.
[45] Kim K,Rodgers A. Influence of low-altitude meteoro-logical conditions on local infrasound propagation invest-tigated by 3-D full-waveform modeling[J]. Geophysical Journal International,2017,210:1252-1263.
[46] 全國(guó)聲學(xué)標(biāo)準(zhǔn)化技術(shù)委員會(huì). GB/T 17247.1—2000 聲學(xué)戶外聲傳播衰減第1部分:大氣聲吸收的計(jì)算[S]. 北京:中國(guó)國(guó)家標(biāo)準(zhǔn)化管理委員會(huì),2000.
National Technical Committee on Acoustics of Standardization Administration of China. GB/T17247.1—2000 Acoustics—Attenuation of Sound During Propagation Outdoors—Part 1:Calculation of the Absorption of Sound by the Atmosphere[S]. Beijing:Standardization Administration of China,2000(in Chinese).
[47] Zhang Liangyong,Tang Shiying,Lu Qiang,et al. Yield estimation model and its accuracy analysis for near-surface explosions of soil-rock-mixture site[C]//Ahmad H B. 2021 5th International Conference on Mechanics,Mathmatics and Applied Physics(ICMMAP 2021). UK:IOP Publishing,2021:012076.
[48] Sachs R G. The Dependence of Blast on Ambient Pressure and Temperature[R]. USA:Army Ballistic Research Laboratories,1944.
Sound Propagation Characteristics and Yield Inversion Analysis of Surface Explosion at the Specific Poroelastic Site
Zhang Liangyong1, 2,Lu Qiang2,Liang Xubin2,Li Pengyi2,F(xiàn)ang Houlin2,Zeng Xinwu1
(1. College of Meteorology and Oceanology,National University of Defense Technology,Changsha 410073,China;2. Northwest Institute of Nuclear Technology,Xi’an 710024,China)
Surface explosion power prediction is critical in production and living safety and weapon performance tests. To solve the yield prediction problem of surface explosions at the specific poroelastic site where the ground is covered by snow and sparsely distributed subshrubs, the sound propagation characteristics of surface explosions at the poroelastic site were examined using experimental data. Then, using the finite boundary impedance theory and a four-parameter model, the acoustic propagation model was established to understand the sound attenuation characteristics. Based on the aforementioned acoustic propagation model, the surface explosion yield of a poroelastic site was predicted using the reduced acoustic impulse (RAI) method, and a seismoacoustic analysis method using the RAI acoustic model of a poroelastic site was established to inverse and analyze the surface explosion yield of the poroelastic site. The results show that the signal energy of the surface explosion at the specific poroelastic site is concentrated at low frequencies with the maximum frequency < 20Hz, overpressure amplitude decaying rapidly with distance, and the attenuation coefficient exceeding 1.25, which is higher than the spherical-wave geometrical attenuation coefficient of 1 owing to the influence of the poroelastic surface and air absorption. The poroelastic-site wave propagation model established by the wave propagation theory of finite boundary impedance and four-parameter model exhibits excellent performance in predicting waveforms that substantially coincide with the measured waveforms. Based on the aforementioned model, the RAI method is applied to the prediction of surface explosion yield, which is proved to have high prediction accuracy of yield whose relative error is no more than 7% with consideration of seismoacoustic coupling. Seismoacoustic analysis by integrating seismic data and the aforementioned acoustic method is discussed and found that the yield and height-of-burst of an unknown explosion event near the poroelastic ground can be predicted accurately with the relative errors of no more than 7% and 19%, respectively.
surface explosion;finite boundary impedance;four-parameter model;reduced acoustic impulse (RAI);seismoacoustic analysis
O389
A
0493-2137(2023)01-0037-10
10.11784/tdxbz202112037
2021-12-24;
2022-03-28.
張亮永(1990—??),男,碩士,助理研究員,zhangliangyong18@nudt.edu.cn.
曾新吾,xinwuzeng@nudt.edu.cn.
國(guó)家自然科學(xué)基金資助項(xiàng)目(12072290).
Supported by the National Natural Science Foundation of China(No. 12072290).
(責(zé)任編輯:田?軍)