林家寶,孫雨豪,王 建*,高彥征
土壤中鄰苯二甲酸酯的高效液相色譜檢測(cè)方法
林家寶1,2,孫雨豪1,王 建1*,高彥征1
(1.南京農(nóng)業(yè)大學(xué)資源與環(huán)境科學(xué)學(xué)院,土壤有機(jī)污染控制與修復(fù)研究所,江蘇 南京 210095;2.江蘇省環(huán)保集團(tuán)有限公司,江蘇省環(huán)境工程技術(shù)有限公司,江蘇 南京 210019)
為了更加高效、快捷、經(jīng)濟(jì)地檢測(cè)土壤中的鄰苯二甲酸酯(PAEs),本文構(gòu)建并優(yōu)化了超聲萃取-高效液相色譜(UE-HPLC)檢測(cè)方法.選取美國(guó)環(huán)保署優(yōu)先控制的鄰苯二甲酸二甲酯、鄰苯二甲酸二乙酯、鄰苯二甲酸二正丁酯、鄰苯二甲酸丁基芐基酯、鄰苯二甲酸二(2-乙基己基)酯、鄰苯二甲酸二正辛酯為實(shí)驗(yàn)對(duì)象,通過對(duì)6種PAEs的最大紫外吸收波長(zhǎng)值進(jìn)行測(cè)定、優(yōu)化高效液相色譜運(yùn)行條件,進(jìn)而構(gòu)建了土壤中6種PAEs的HPLC檢測(cè)方法,具體參數(shù)如下:檢測(cè)時(shí)間為30min;進(jìn)樣量為20μL;分離系統(tǒng)以乙腈-UP水為流動(dòng)相、初始流速為1.0mL/min,采用梯度洗脫的方式分離PAEs,柱溫為40℃;檢測(cè)系統(tǒng)采用紫外檢測(cè)器檢測(cè)、開啟波長(zhǎng)切換模式,波長(zhǎng)分別為205和290nm.采用線性回歸方程及相關(guān)系數(shù)、加標(biāo)回收率、相對(duì)標(biāo)準(zhǔn)偏差和檢出限對(duì)方法進(jìn)行評(píng)價(jià).結(jié)果表明,該方法具有較寬的線性范圍,最大質(zhì)量濃度范圍在0.1~100mg/L,相關(guān)系數(shù)均在0.999以上.1和5mg/kg的6種PAEs加標(biāo)回收率范圍分別為73.03%~91.89%和72.59%~90.70%,相對(duì)標(biāo)準(zhǔn)偏差范圍分別為1.78%~12.46%和0.30%~7.56%.采用3倍噪音值法、液相色譜儀檢定規(guī)程所得的6種PAEs檢出限濃度范圍分別為0.99~19.80和9.49~25.11μg/kg.
高效液相色譜;鄰苯二甲酸酯;土壤;檢測(cè)方法;超聲萃取
鄰苯二甲酸酯(PAEs),廣泛應(yīng)用于塑料制品的生產(chǎn)和加工環(huán)節(jié),也可以作為油漆、化妝品、潤(rùn)滑劑、粘合劑和殺蟲劑的添加劑[1-2].據(jù)報(bào)道,全球PAEs年消耗量大約為600~800萬t,此外,全球固體塑料年產(chǎn)量約為3億t,其中大約50%會(huì)被拋棄,由于PAEs與塑料產(chǎn)品是通過非共價(jià)鍵形式結(jié)合,其穩(wěn)定性差,容易從塑料產(chǎn)品中釋放并遷移到環(huán)境中,造成環(huán)境污染[3-6].目前,PAEs在土壤[7]、水體[8]、大氣[9]、沉積物[10]和生物體[11-12]等環(huán)境介質(zhì)中廣泛存在.
PAEs可以通過塑料薄膜、農(nóng)藥、化肥、污水灌溉、污泥資源化利用、大氣沉降等方式進(jìn)入土壤,造成土壤污染[13].研究發(fā)現(xiàn),我國(guó)土壤及農(nóng)田土壤中PAEs濃度高達(dá)1232,157.62mg/kg,其中DEHP和DnBP是主要的PAEs污染物[14].PAEs是一類內(nèi)分泌干擾物,即使在極低濃度下也存在致癌、致畸、致突變的可能性[15-17].鑒于PAEs對(duì)人類健康的潛在危害,美國(guó)環(huán)保署(US EPA)已將鄰苯二甲酸二甲酯(DMP)、鄰苯二甲酸二乙酯(DEP)、鄰苯二甲酸二正丁酯(DnBP)、鄰苯二甲酸丁基芐基酯(BBP)、鄰苯二甲酸二(2-乙基己基)酯(DEHP)、鄰苯二甲酸二正辛酯(DnOP)等6種PAEs列為優(yōu)先污染物,并制定了相應(yīng)的控制及治理標(biāo)準(zhǔn);我國(guó)也將DMP、DnBP、DnOP等PAEs列入優(yōu)先污染物控制黑名單[18].
為了人群健康,精準(zhǔn)測(cè)定土壤中PAEs的種類和濃度水平至關(guān)重要.氣相色譜(GC)和高效液相色譜(HPLC)由于具有良好的分離能力,被廣泛應(yīng)用于PAEs的檢測(cè)[19].GC存在對(duì)樣品純度要求高、靈敏度偏差大、易受到待測(cè)組分干擾等不足,雖然將其與質(zhì)譜(MS)聯(lián)用可以更好地進(jìn)行分離和定性,但GC-MS成本昂貴,許多實(shí)驗(yàn)室不具備使用該儀器的條件[20-21].HPLC具有準(zhǔn)確度高、精密度高、測(cè)定快速、具有大批量測(cè)試能力、成本相對(duì)低的優(yōu)點(diǎn),具有大規(guī)模應(yīng)用的潛力.基于對(duì)PAEs污染土壤大批量檢測(cè)的需求,本文旨在建立一種經(jīng)濟(jì)、高效、精確的超聲萃取-高效液相色譜(UE-HPLC)檢測(cè)方法,以期為土壤中PAEs檢測(cè)提供技術(shù)支持.
LC-20AT HPLC儀器、5μm×4.6mm×250mm Inertsil ODS-P液相色譜柱、萬分之一分析天平(島津,日本);5μm×4.6mm×250mm Venusil MP C18(2)色譜柱(博納艾杰爾,中國(guó));冷凍干燥機(jī)(CHRIST,德國(guó));759S紫外-可見分光光度計(jì)(棱光,中國(guó));RV10旋轉(zhuǎn)蒸發(fā)儀(艾卡,中國(guó));KQ-500DE超聲波清洗儀(超聲儀器,中國(guó));TD5A-WS離心機(jī)(盧湘儀,中國(guó)); NUIII-20T超純水機(jī)(優(yōu)普,中國(guó)).
DMP、DEP、DnBP、BBP、DEHP、DnOP標(biāo)準(zhǔn)品(百靈威,中國(guó));無水硫酸鈉(南試,中國(guó));300目硅膠(鼎康,中國(guó));丙酮、正己烷、甲醇(國(guó)藥,中國(guó)),乙腈(TEDIA,美國(guó)),均為色譜級(jí);實(shí)驗(yàn)用水均為超純水(UP水).
標(biāo)準(zhǔn)儲(chǔ)備液的配制:分別稱取6種PAEs標(biāo)準(zhǔn)品,用甲醇溶解并定容到100mL棕色容量瓶中,配置成1000mg/L的標(biāo)準(zhǔn)儲(chǔ)備液,置于4℃冰箱中保存.
標(biāo)準(zhǔn)工作溶液的配制:使用甲醇將標(biāo)準(zhǔn)儲(chǔ)備液稀釋成0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100mg/L梯度濃度標(biāo)準(zhǔn)工作溶液,分別以PAEs的峰高對(duì)濃度進(jìn)行線性回歸分析,得到PAEs的標(biāo)準(zhǔn)工作曲線及線性范圍.
供試土壤:采自南京市秦淮區(qū)南京農(nóng)業(yè)大學(xué)牌樓實(shí)驗(yàn)基地某試驗(yàn)田表層(0~20cm).將采集的土壤樣品平鋪于牛皮紙上,剔除礫石、動(dòng)植物殘?bào)w等雜質(zhì),陰涼處風(fēng)干2周以上.將風(fēng)干后的土樣再次去除雜質(zhì),充分打散混勻,并研磨過20目篩.向制備好的土壤樣品中添加6種PAEs的丙酮溶液,并充分混勻,待丙酮揮發(fā)完全后,老化土壤3個(gè)月以上,保存?zhèn)溆?
樣品前處理方法:樣品的前處理方法包括提取、凈化和濃縮.(1)提取:取2g制備好的土壤樣品于20mL玻璃螺口瓶中,添加15mL體積比為1:1的正己烷-丙酮溶液,蓋緊瓶蓋后置于渦旋振蕩儀上渦旋混勻0.5~1min,充分振蕩后轉(zhuǎn)移至超聲波清洗儀中,在100Hz、常溫條件下水浴超聲萃取45min,隨后將樣品放置于離心機(jī)中,以2000r/min離心10min,取上清液.(2)凈化:將上清液傾倒入已活化(預(yù)先采用10mL正己烷分兩次淋洗層析柱)的層析柱中,層析柱上層為2g無水硫酸鈉,下層為2g硅膠(200~300目),層析柱下方放置100mL旋轉(zhuǎn)蒸發(fā)瓶,洗脫之后再分3次添加總體積為15mL的體積比為9:1的正己烷-丙酮溶液,萃取液和洗脫液收集至100mL旋轉(zhuǎn)蒸發(fā)瓶.(3)濃縮:在旋轉(zhuǎn)蒸發(fā)儀處于40℃、100r/min條件下濃縮至干,移取2mL甲醇潤(rùn)洗定容,隨后倒入帶有0.22μm有機(jī)相濾頭(濾頭經(jīng)過甲醇浸泡處理并瀝干)的玻璃注射器,過濾進(jìn)2mL液相小瓶,使用HPLC分析.
秀容月明見過梨友多次了,每次見到,都不敢相信眼前之人就是以暴虐嗜血聞名的屠夫。梨友三十來歲,身材修長(zhǎng),面容清秀,笑的時(shí)候,帶著幾分羞怯,一雙手像剛剝了皮的蔥,白,嫩,滑。
為了降低實(shí)驗(yàn)條件對(duì)實(shí)驗(yàn)結(jié)果的干擾,實(shí)驗(yàn)過程中,避免塑料制品的使用,玻璃器皿均在超聲波清洗儀中超聲1h,隨后使用超純水沖洗3遍,放置于烘箱中烘干24h.實(shí)驗(yàn)過程中,每組實(shí)驗(yàn)設(shè)置3個(gè)平行樣,同時(shí)設(shè)置空白組實(shí)驗(yàn),進(jìn)而保證實(shí)驗(yàn)結(jié)果的準(zhǔn)確性.采用線性回歸方程、相關(guān)系數(shù)、準(zhǔn)確度、精密度、檢出限評(píng)價(jià)建立的PAEs檢測(cè)方法.
采用759S紫外-可見分光光度計(jì)分別對(duì)100mg/L的DMP、DEP、DnBP、BBP、DEHP、DnOP標(biāo)準(zhǔn)工作溶液進(jìn)行紫外波長(zhǎng)掃描,確定每種PAE的最大紫外吸收波長(zhǎng)值.
采用LC-20AT HPLC儀器對(duì)10mg/L的6種PAEs混合標(biāo)準(zhǔn)工作溶液進(jìn)行分離洗脫,HPLC檢測(cè)方法條件優(yōu)化過程包括:色譜柱優(yōu)選(5μm×4.6mm×250mm Inertsil ODS-P液相色譜柱、5μm×4.6mm×250mm Venusil MP C18(2)色譜柱);流動(dòng)相類型優(yōu)選(甲醇/水、乙腈/水);流動(dòng)相體積比例優(yōu)化(60/40、75/25、95/5、60/40~95/5、75/25~95/5);檢測(cè)波長(zhǎng)切換等.
采用質(zhì)量控制中各項(xiàng)指標(biāo)衡量建立的6種PAEs的HPLC檢測(cè)分析方法程序的可靠性.采用前處理方法處理兩種污染土壤,隨后采用已建立的6種PAEs的HPLC檢測(cè)分析方法對(duì)其測(cè)定.6種PAEs的HPLC檢測(cè)分析方法程序:色譜柱為4.6mm× 250mm Inertsil ODS-P液相色譜柱,檢測(cè)時(shí)間為30min;進(jìn)樣系統(tǒng)的進(jìn)樣量為20μL;分離系統(tǒng)以乙腈-UP水為流動(dòng)相、初始流速為1.0mL/min,采用梯度洗脫的方式分離PAEs,柱溫為40℃;檢測(cè)系統(tǒng)采用紫外檢測(cè)器檢測(cè),開啟波長(zhǎng)切換模式.
最大紫外吸收波長(zhǎng)值的優(yōu)選是HPLC檢測(cè)方法定量分析PAEs的重要基礎(chǔ).采用紫外-可見分光光度計(jì)分別對(duì)100mg/L的DMP、DEP、DnBP、BBP、DEHP、DnOP標(biāo)準(zhǔn)工作溶液進(jìn)行紫外波長(zhǎng)掃描,如圖1所示,6種PAEs的最大紫外吸收波長(zhǎng)處于200~ 205nm之間;其中,DMP、DEP和DnBP的最大紫外吸收波長(zhǎng)值為202nm,BBP、DEHP和DnOP的最大紫外吸收波長(zhǎng)值為203nm,如表1所示.由HPLC測(cè)定實(shí)驗(yàn)得知,紫外波長(zhǎng)值較低可能造成基線漂移的問題,因此,從PAEs的最大紫外吸收波長(zhǎng)值選擇和控制基線漂移的角度考慮,選取205nm作為6種PAEs的HPLC檢測(cè)方法程序中的最大紫外吸收波長(zhǎng)值.
表1 6種PAEs的最大紫外吸收波長(zhǎng)(nm)
6種PAEs的HPLC檢測(cè)方法條件優(yōu)化包括挑選合適的色譜柱、優(yōu)選流動(dòng)相及其比例、確定梯度洗脫的范圍、切換檢測(cè)波長(zhǎng)等.
圖2為6種PAEs的HPLC檢測(cè)方法條件優(yōu)化,當(dāng)流動(dòng)相為甲醇-UP水(60/40)時(shí),Venusil MP C18(2)色譜柱可以洗脫出2種PAEs,而Inertsil ODS-P色譜柱可以洗脫出3種PAEs;當(dāng)流動(dòng)相為乙腈-UP水(60/40)時(shí),兩種色譜柱均可以洗脫出4種PAEs,但I(xiàn)nertsil ODS-P色譜柱分離出的PAEs吸收峰高于Venusil MP C18(2)色譜柱.因此,優(yōu)選Inertsil ODS-P色譜柱作為6種PAEs的分析色譜柱.
圖2 6種PAEs的HPLC檢測(cè)條件優(yōu)化
1DMP; 2DEP; 3DnBP; 4BBP; 5DEHP; 6DnOP.色譜柱:(a)、(b)為Venusil MP C18(2),其余均為Inertsil ODS-P.流動(dòng)相:(a)、(c)、(e)、(f)、(g)為甲醇-UP水,體積比(v/v)分別為:60/40、60/40、45/55、75/25、95/5;(b)、(d)、(h)、(i)、(j)、(k)、(l)為乙腈-UP水,體積比(v/v)分別為:60/40、60/40、45/55、75/25、95/5、60/40~95/5、75/25~95/5
利用HPLC分析PAEs時(shí),流動(dòng)相中有機(jī)相的比例影響著PAEs的洗脫及分離.如圖2所示,隨著甲醇比例由45%上升至95%,PAEs的洗脫數(shù)量由2個(gè)上升至4個(gè),但無法完全洗脫出6種PAEs;隨著乙腈比例由45%上升至95%,PAEs的洗脫數(shù)量由2個(gè)上升至6個(gè),但前4種PAEs無法完全分離,仍需要進(jìn)一步優(yōu)化方法.通過對(duì)比不同濃度的甲醇-UP水和乙腈-UP水對(duì)6種PAEs的洗脫情況可以得知,乙腈-UP水可以洗脫6種PAEs,明顯優(yōu)于甲醇-UP水,此外,乙腈-UP水作為流動(dòng)相時(shí),HPLC具有壓力低的優(yōu)點(diǎn).因此,優(yōu)選乙腈-UP水作為6種PAEs的HPLC檢測(cè)方法的流動(dòng)相.
利用梯度洗脫的方法可以有效分離6種PAEs.由圖2(d)、2(i)和2(j)可以發(fā)現(xiàn),當(dāng)乙腈比例為60%和75%時(shí),可以有效洗脫并分離前4種PAEs,當(dāng)乙腈比例為95%時(shí),可以洗脫6種PAEs.因此,采用梯度洗脫的方式可以洗脫并分離6種PAEs,圖2(k)和2(l)中乙腈比例分別從60%和75%上升至95%,之后乙腈以95%的比例運(yùn)行至6種PAEs全部洗脫,由圖可知,兩種條件下均可以有效分離6種PAEs,但在乙腈初始比例為75%時(shí),6種PAEs都出峰所需時(shí)間更短,因此,優(yōu)選乙腈-UP水初始比例為75/25.
表2 6種PAEs的HPLC/UV檢測(cè)方法程序
采用梯度洗脫的方式分離6種PAEs有可能造成基線漂移,如圖2(k)和2(l),此時(shí),可以通過更改6種PAEs出峰時(shí)間段之外區(qū)域的紫外吸收波長(zhǎng)解決此問題.
優(yōu)化之后的6種PAEs的HPLC檢測(cè)方法程序如表2所示,該方法采取梯度洗脫和紫外檢測(cè)器串聯(lián)的方式分離檢測(cè)6種PAEs,檢測(cè)時(shí)間為30min,進(jìn)樣系統(tǒng)的進(jìn)樣量為20μL;分離系統(tǒng)以乙腈-UP水為流動(dòng)相、初始流速為1.0mL/min,柱溫為40℃;檢測(cè)系統(tǒng)采用紫外檢測(cè)器檢測(cè)、開啟波長(zhǎng)切換模式,波長(zhǎng)分別為205和290nm.
采用表2中6種PAEs的HPLC檢測(cè)方法對(duì)10mg/L的6種PAEs進(jìn)行分離檢測(cè).如圖3所示, DMP、DEP、DnBP、BBP、DEHP、DnOP的出峰時(shí)間分別為3.197, 4.038, 7.638, 8.942, 23.777, 24.865min. 6種PAEs在30min內(nèi)完全出峰,峰形對(duì)稱、尖銳,分離效果好,該檢測(cè)方法具有較好的應(yīng)用性.
圖3 6種PAEs的HPLC圖
1DMP; 2DEP; 3DnBP; 4BBP; 5DEHP; 6DnOP
2.3.1 線性回歸方程 采用檢測(cè)方法對(duì)濃度范圍為0.1~100mg/L的6種PAEs進(jìn)行測(cè)定,以峰高對(duì)濃度進(jìn)行定量分析,得到6種PAEs的線性回歸方程,相關(guān)系數(shù)均大于0.999,如表3所示.
2.3.2 準(zhǔn)確度和精密度 為了分析檢測(cè)方法的準(zhǔn)確度及精密度,分別向兩份未污染土壤中添加6種PAEs混合標(biāo)準(zhǔn)工作溶液,使得土壤中6種PAEs的理論濃度分別達(dá)到1和5mg/kg,測(cè)定其加標(biāo)回收率及相對(duì)標(biāo)準(zhǔn)偏差.
表3 6種PAEs的線性回歸方程及相關(guān)系數(shù)
表4 土壤中6種PAEs的加標(biāo)回收率
如表4所示,1mg/kg的6種PAEs的加標(biāo)回收率處于73.03%~91.89%,相對(duì)標(biāo)準(zhǔn)偏差處于1.78%~ 12.46%;5mg/kg的6種PAEs的加標(biāo)回收率處于72.59%~90.70%,相對(duì)標(biāo)準(zhǔn)偏差處于0.30%~7.56%.由GB/T 39234-2020[22]可知,土壤樣品加標(biāo)回收率范圍應(yīng)處于60%~130%,相對(duì)標(biāo)準(zhǔn)偏差應(yīng)低于15%,本研究6種PAEs加標(biāo)回收率均滿足要求,具有較好的準(zhǔn)確度,相對(duì)標(biāo)準(zhǔn)偏差均滿足要求,具有良好的精密度.
GB/T 39234-2020中1mg/kg紅壤樣品的DMP和DEP加標(biāo)回收率為70%和76%,本研究為91.89%和78.43%,加標(biāo)回收率比其更高.孫文閃等[23]采用改良QuEChERS-GC-MS測(cè)定土壤中PAEs含量,6種PAEs加標(biāo)回收率處于72.5%~92.4%,盡管與本研究相近,但該方法步驟繁瑣、檢測(cè)成本較高.郭文建等[24]采用快速溶劑萃取(ASE)-凝膠凈化(GPC)-HPLC測(cè)定土壤中6種PAEs含量,其加標(biāo)回收率處于66.5%~ 102%,其中3種不同濃度DMP的加標(biāo)回收率均在70%以下,遠(yuǎn)低于本研究的90.70%~ 91.89%.
2.3.3 檢出限 采用3倍噪音值法和液相色譜儀檢定規(guī)程兩種方法對(duì)檢測(cè)方法的檢出限進(jìn)行計(jì)算.3倍噪音值法是HPLC儀器中估算檢出限常用的方法之一[25-27].即測(cè)定信號(hào)等于空白溶液測(cè)定信號(hào)標(biāo)準(zhǔn)偏差3倍時(shí)的樣品濃度為檢出限(LOD)[28].
LOD=(3-)/(1)
式中:代表多次測(cè)定的空白響應(yīng)信號(hào)的標(biāo)準(zhǔn)偏差;代表低濃度范圍標(biāo)準(zhǔn)曲線的截距;代表低濃度范圍標(biāo)準(zhǔn)曲線的斜率.
液相色譜儀檢定規(guī)程[29]中的檢出限公式如下:
LOD=(2××)/(20×)(2)
式中:為基線噪聲峰高;為標(biāo)準(zhǔn)溶液濃度;為進(jìn)樣體積,μL;20為標(biāo)準(zhǔn)進(jìn)樣體積,μL;為標(biāo)準(zhǔn)物質(zhì)峰高.
表5 6種PAEs的檢出限
如表5所示,由3倍噪音值法和液相色譜儀檢定規(guī)程計(jì)算所得,本方法對(duì)6種PAEs的檢出限范圍分別為:0.99~19.80, 9.49~25.11μg/kg,而GB/T 39234- 2020中6種PAEs的檢出限為20~70μg/kg,其檢出限明顯高于本方法,該方法的建立為檢測(cè)土壤中較低濃度的PAEs提供技術(shù)支持.Laturnus等[30]采用GC-MS測(cè)定土壤中PAEs含量,其中DEP、DnBP、DEHP的檢出限分別為4.3, 9.3, 43.0μg/kg,均高于本研究中3倍噪音值法所得的檢出限,且GC-MS檢測(cè)價(jià)格高于HPLC.王興磊等[31]采用GC-MS檢測(cè)土壤中PAEs,該方法對(duì)6種PAEs的檢出限分別為30, 30, 20, 30, 30, 30μg/kg,明顯高于本方法6種PAEs的檢出限.綜上所述,本方法對(duì)土壤中US EPA優(yōu)先控制6種PAEs的檢出限較低、回收率較高、精密度及穩(wěn)定性較好,同時(shí)還具有周期短、操作簡(jiǎn)便等優(yōu)勢(shì),具備一定的推廣應(yīng)用潛力.
對(duì)老化3個(gè)月以上的兩種PAEs污染土壤進(jìn)行測(cè)定,測(cè)定結(jié)果如表6所示.土壤樣品1中DMP、DEP、DnBP、DEHP、DnOP均超過美國(guó)土壤中PAEs的治理標(biāo)準(zhǔn),土壤樣品2中的6種PAEs均超過美國(guó)土壤治理標(biāo)準(zhǔn).
表6 污染土壤中PAEs濃度檢測(cè)(mg/kg)
3.1 本研究建立了檢測(cè)土壤中US EPA優(yōu)先控制6種PAEs的超聲萃取-高效液相色譜法.該方法具有較寬的線性范圍,最大質(zhì)量濃度范圍在0.1~100mg/L之間,相關(guān)系數(shù)均在0.999以上;1和5mg/kg的6種PAEs加標(biāo)回收率分別處于73.03%~91.89%和72.59%~90.70%之間,相對(duì)標(biāo)準(zhǔn)偏差分別處于1.78%~12.46%和0.30%~7.56%之間;采用三倍噪音值法及液相色譜儀檢定規(guī)程計(jì)算所得的本方法對(duì)6種PAEs的檢出限濃度范圍為0.99~19.80和9.49~ 25.11μg/kg.
3.2 超聲萃取-高效液相色譜法具備較好的準(zhǔn)確度及精密度,較低的檢出限.該方法成本較低,檢測(cè)周期短,操作簡(jiǎn)便,可以快速、大批量測(cè)定土壤中6種PAEs.
[1] 楊 彥,于云江,李定龍,等.太湖流域(蘇南地區(qū))農(nóng)業(yè)活動(dòng)區(qū)人群PAEs健康風(fēng)險(xiǎn)評(píng)估 [J]. 中國(guó)環(huán)境科學(xué), 2013,33(6):1097-1105.
Yang Y, Yu Y J, Li D L, et al. PAEs health risk assessment of agriculture area in Taihu Lake Basin (Southern Jiangsu Province) [J]. China Environmetal Science, 2013,33(6):1097-1105.
[2] Peng X, Feng L, Li X. Pathway of diethyl phthalate photolysis in sea-water determined by gas chromatography-mass spectrometry and compound-specific isotope analysis [J]. Chemosphere, 2013,90(2): 220-226.
[3] Garcia J M, Robertson M L. The future of plastics recycling chemical advances are increasing the proportion of polymer waste that can be recycled [J]. Science, 2017,358(6365):870-872.
[4] 林家寶.多環(huán)芳烴、鄰苯二甲酸酯污染土壤的化學(xué)氧化修復(fù)聯(lián)合地力恢復(fù)技術(shù)研究[D]. 南京: 南京農(nóng)業(yè)大學(xué), 2022.
Lin J B. Chemical oxidation remediation combined with soil fertility restoration for soils contaminated with polycyclic aromatic hydrocarbons or phthalic acid esters [D]. Nangjing: Nangjing Agricultural University, 2022.
[5] Net S, Sempéré R, Delmont A, et al. Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices [J]. Environmental Science & Technology, 2015,49(7):4019-4035.
[6] Kong S, Ji Y, Liu L, et al. Diversities of phthalate esters in suburban agricultural soils and wasteland soil appeared with urbanization in China [J]. Environmental Pollution, 2012,170:161-168.
[7] 張小紅,王亞娟,陶 紅,等.寧夏土壤中PAEs污染特征及健康風(fēng)險(xiǎn)評(píng)價(jià)[J]. 中國(guó)環(huán)境科學(xué), 2020,40(9):3930-3941.
Zhang X H, Wang Y J, Tao H, et al. Study on pollution characteristics and health risk assessment of phthalates in soil of Ningxia [J]. China Environmental Science, 2019,40(7):3378-3387.
[8] 朱冰清,高占啟,胡冠九,等.太湖重點(diǎn)區(qū)域水環(huán)境中鄰苯二甲酸酯的污染水平及生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)[J]. 環(huán)境科學(xué), 2018,39(8):3614-3621.
Zhu B Q, Gao Z Q, Hu G J, et al. Contamination levels and ecological risk assessment of phthalate esters(PAEs) in the aquatic environment of key areas of Taihu lake [J]. Environmental Science, 2018,39(8): 3614-3621.
[9] Wang X K, Tao W, Xu Y, et al. Indoor phthalate concentration and exposure in residential and office buildings in Xi'an, China [J]. Atmospheric Environment, 2014,87:146-152.
[10] G Selvaraj K K, Sundaramoorthy G, Ravichandran P K, et al. Phthalate esters in water and sediments of the Kaveri River, India: Environmental levels and ecotoxicological evaluations [J]. Environmental Geochemistry and Health, 2015,37:83-96.
[11] 廖晨曦,劉 煒,張佳玲,等.兒童尿液中PAEs代謝物濃度與居室裝飾材料的關(guān)聯(lián) [J]. 中國(guó)環(huán)境科學(xué), 2017,37(8):3166-3174.
Liao C X, Liu W, Zhang J L, et al. Associations between urinary concentrations of PAEs metabolites and residential decoration materials [J]. China Environmental Science, 2017,37(8):3166-3174.
[12] Chang W H, Herianto S, Lee C C, et al. The effects of phthalate ester exposure on human health: A review [J]. Science of the Total Environment, 2021,786:147371.
[13] Wang J, Luo Y M, Teng Y, et al. Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film [J]. Environmental Pollution, 2013,180: 265-273.
[14] Sun J, Pan L, Tsang D C W, et al. Organic contamination and remediation in the agricultural soils of China: A critical review [J]. Science of the Total Environment, 2018,615:724-740.
[15] Becker K, Seiwert M, Angerer J, et al. DEHP metabolites in urine of children and DEHP in house dust [J]. International Journal of Hygiene and Environmental Health, 2004,207(5):409-417.
[16] Caldwell J C. DEHP: Genotoxicity and potential carcinogenic mechanisms-A review [J]. Mutation Research/Reviews in Mutation Research, 2012,751(2):82-157.
[17] Mariana M, Feiteiro J, Verde I, et al. The effects of phthalates in the cardiovascular and reproductive systems: A review [J]. Environment International, 2016,94:758-776.
[18] 周文敏,傅德黔,孫宗光.中國(guó)水中優(yōu)先控制污染物黑名單的確定[J]. 環(huán)境科學(xué)研究, 1991,4(6):9-12.
Zhou W M, Fu D Q, Sun Z G. Determination of black list of China's priority pollutants in water [J]. Research of Environmental Sciences, 1991,4(6):9-12.
[19] Guo Z, Wei D, Wang M, et al. Determination of six phthalic acid esters in orange juice packaged by PVC bottle using SPE and HPLC-UV: Application to the migration study [J]. Journal of Chromatographic Science, 2010,48(9):760-765.
[20] 張 悅,袁 騏,蔣 玫,等.鄰苯二甲酸酯類毒性及檢測(cè)方法研究進(jìn)展[J]. 環(huán)境化學(xué), 2019,38(5):1035-1046.
Zhang Y, Yuan Q, Jiang M, et al. Research progress in toxicity and detection methods of phthalic acid esters [J]. Environmental Chemistry, 2019,38(5):1035-1046.
[21] Liang P, Xu J, Li Q. Application of dispersive liquid-liquid microextraction and high-performance liquid chromatography for the determination of three phthalate esters in water samples [J]. Analytica Chimica Acta, 2008,609(1):53-58.
[22] GB/T 39234-2020 土壤中鄰苯二甲酸酯測(cè)定氣相色譜-質(zhì)譜法[S].
GB/T 39234-2020 Determination of phthalate esters in soil-Gas chromatography-mass spectrometry(GC-MS) [S].
[23] 孫文閃,董葉箐,鐘寒輝,等.改良QuEChERS-氣相色譜-串聯(lián)質(zhì)譜法同時(shí)測(cè)定土壤中17種鄰苯二甲酸酯[J]. 分析科學(xué)學(xué)報(bào), 2022,38(1): 77-82.
Sun W S, Dong Y Q, Zhong H H, et al. Simultaneous determination of 17phthalic acid esters in soil by gas chromatography-tandem mass spectrometry with improved QuEChERS [J]. Journal of Analytical Science, 2022,38(1):77-82.
[24] 郭文建,張 慧,朱 晨,等.快速溶劑萃取-凝膠凈化-高效液相色譜法測(cè)定土壤中6種鄰苯二甲酸酯[J]. 中國(guó)環(huán)境監(jiān)測(cè), 2018,34(3): 134-140.
Guo W J, Zhang H, Zhu C, et al. Determination of phthalate esters in soil samples by high performance liquid chromatography with accelerated solvent extraction and gel permeation chromatograph cleanup [J]. Environmental Monitoring in China, 2018,34(3):134-140.
[25] Zhang H, Chen X, Jiang X. Determination of phthalate esters in water samples by ionic liquid cold-induced aggregation dispersive liquid- liquid microextraction coupled with high-performance liquid chromatography [J]. Analytica Chimica Acta, 2011,689(1):137-142.
[26] Luo X, Zhang F F, Ji S L, et al. Graphene nanoplatelets as a highly efficient solid-phase extraction sorbent for determination of phthalate esters in aqueous solution [J]. Talanta, 2014,120:71-75.
[27] 曾憲遠(yuǎn),寧煥焱,尹 艷,等.高效液相色譜串聯(lián)質(zhì)譜法測(cè)定花生及制品中的五種真菌霉素[J]. 現(xiàn)代食品科技, 2014,30(1):217-221.
Zeng X Y, Ning H Y, Yin Y, et al. Determination of five mycotoxins in peanuts and products by HPLC-MS/MS [J]. Modern Food Science and Technology, 2014,30(1):217-221.
[28] 賈離離,祁志紅,彭立軍,等.超高效液相色譜儀器檢出限計(jì)算方法的比較分析[J]. 現(xiàn)代食品科技, 2018,34(2):212-217.
Jia L L, Qi Z H, Peng L J. et al. Comparison analysis of the calculation methods of detection limit for UPLC [J]. Modern Food Science and Technology, 2018,34(2):212-217.
[29] JJG 705-2014 液相色譜儀[S].
JJG 705-2014 Liquid chromatographs [S].
[30] Laturnus F, Gron C. Organic waste products in agriculture-Monitoring the waste constituents phthalate esters in soil-crop system by gas chromatography and ion trap tandem mass spectrometry [J]. Journal of Environmental Engineering and Landscape Management, 2007,15(4): 253-260.
[31] 王興磊,李 芳,劉云慶,等.快速溶劑萃取/氣相色譜-質(zhì)譜聯(lián)用法測(cè)定土壤中15種鄰苯二甲酸酯類增塑劑[J]. 環(huán)境化學(xué), 2018,37(5): 1157-1164.
Wang X L, Li F, Liu Y Q, et al. Determination of 15phthalate esters residues in soil by accelerated solvent extraction/gas chromatography- mass spectrometry [J]. Environmental Chemistry, 2018,37(5):1157- 1164.
[32] 蔡全英,莫測(cè)輝,李云輝,等.廣州、深圳地區(qū)蔬菜生產(chǎn)基地土壤中鄰苯二甲酸酯(PAEs)研究[J]. 生態(tài)學(xué)報(bào), 2005,25(2):283-288.
Cai Q Y, Mo C H, Li Y H, et al. The study of PAEs in soils from typical vegetable fields in areas of Guangzhou and Shenzhen, South China [J]. Acta Ecologica Sinica, 2005,25(2):283-288.
Study on the high-performance liquid chromatography detection method of phthalic acid esters in soils.
LIN Jia-bao1,2, SUN Yu-hao1, WANG Jian1*, GAO Yan-zheng1
(1.Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environment Science, Nanjing Agricultural University, Nanjing 210095, China;2.Jiangsu Environmental Engineering Technology Co., Ltd., Jiangsu Environmental Protection Group Co., Ltd., Nanjing 210019, China)., 2023,43(2):756~763
In order to detect phthalic acid esters (PAEs) in soils more efficiently, quickly and economically, an ultrasonic extraction-high-performance liquid chromatography (UE-HPLC) method was established and optimized. Dimethyl phthalate, diethyl phthalate, di-n-butyl phthalate, butyl benzyl phthalate, bis (2-ethylhexyl) phthalate, di-n-octyl phthalate were selected as experimental subjects, which were under the priority control of US Environmental Protection Agency. By measuring the maximum ultraviolet absorption wavelength of six types of PAEs and optimizing the operating conditions of high-performance liquid chromatography, the high-performance liquid chromatography detection method of six types of PAEs in soils was established. The specific parameters of the method are as follows: the detection time was 30min; the injection volume of the injection system was 20 μL; the separation system used acetonitrile and ultrapure water as mobile phases, and the initial flow rate was 1.0mL/min. PAEs was separated by gradient elution, and the column temperature was 40℃. The detection system used ultraviolet detector to detect, and the wavelength switching mode was switched on, and the wavelength was 205 and 290nm respectively. The method was evaluated by linear regression equation, correlation coefficient, recovery rate, relative standard deviation and detection limit. The results showed that the method had a wide linear range, with the maximum mass concentration ranging from 0.1 to 100mg/L, and the correlation coefficients were above 0.999. The spiked recoveries of 1 and 5mg/kg were 73.03%~91.89% and 72.59%~90.70%, respectively, and the relative standard deviations were 1.78%~12.46% and 0.30%~7.56%. The detection limits of six types of PAEs were calculated by triple signal-to-noise ratio method and verification regulation of liquid chromatographs. The detection limits of PAEs were 0.99~19.80 and 9.49~25.11μg/kg, respectively.
HPLC;phthalic acid esters (PAEs);soil;detection method;ultrasonic extraction (UE)
X830.2
A
1000-6923(2023)02-0756-08
林家寶(1996-),男,安徽阜陽(yáng)人,南京農(nóng)業(yè)大學(xué)碩士研究生,主要研究方向?yàn)橥寥烙袡C(jī)污染控制與修復(fù).
2022-06-29
國(guó)家自然科學(xué)基金資助項(xiàng)目(42007104,22161132011);江蘇省碳達(dá)峰碳中和科技創(chuàng)新專項(xiàng)資金資助項(xiàng)目(20220013)
* 責(zé)任作者, 講師, wj308119@njau.edu.cn