馬平義,陳旭,韓興,劉海建,石文展,彭赫力
清洗工藝對(duì)GH4099蜂窩夾層結(jié)構(gòu)釬焊性能的影響
馬平義1,2,3,陳旭1,2,3,韓興1,2,3,劉海建1,2,3,石文展1,2,3,彭赫力1,2,3
(1.上海神劍精密機(jī)械科技有限公司,上海 201600;2.上海航天精密機(jī)械研究所,上海 201600;3.上海金屬材料近凈成形工程技術(shù)研究中心,上海 201600)
研究激光清洗和離子轟擊對(duì)GH4099蜂窩夾層結(jié)構(gòu)釬焊性能的影響,優(yōu)化GH4099蜂窩夾層結(jié)構(gòu)焊前清洗工藝。分別用400#砂紙、不同激光功率(60~200 W)、不同離子轟擊時(shí)間(1~2 h)對(duì)GH4099帶材表面進(jìn)行了砂紙打磨、激光清洗和離子轟擊試驗(yàn),分析了激光清洗和離子轟擊對(duì)GH4099表面形貌、O元素含量、BNi2釬料潤(rùn)濕性的影響,測(cè)試了不同清洗工藝下蜂窩夾層結(jié)構(gòu)釬焊接頭的拉伸性能。隨激光功率從60 W增加到100 W,GH4099表面O含量逐漸降低,表面粗糙度逐漸增大,釬料潤(rùn)濕面積百分比增加到83.5%,潤(rùn)濕性增加。當(dāng)激光功率大于100 W時(shí),表面殘留網(wǎng)狀分布的氧化物,導(dǎo)致釬料潤(rùn)濕性降低。當(dāng)激光功率進(jìn)一步增加到200 W時(shí),氧化物網(wǎng)狀分布現(xiàn)象減輕,潤(rùn)濕性隨之增加,粗糙度也有所降低;隨離子轟擊時(shí)間從1 h增加到2 h時(shí),帶材表面氧化皮逐漸去除干凈,釬料潤(rùn)濕性隨之增加,釬料對(duì)離子轟擊2 h的表面的潤(rùn)濕面積百分比達(dá)到91.2%,與400#砂紙打磨的相當(dāng)。經(jīng)離子轟擊2 h、1 020 ℃-15 min釬焊獲得的夾層結(jié)構(gòu)等效抗拉強(qiáng)度為11.9 MPa。與激光清洗相比,離子轟擊可以同時(shí)去除蜂窩型面及附近側(cè)壁部分的氧化皮,能更有效地改善釬料對(duì)蜂窩基體的潤(rùn)濕性。
GH4099;蜂窩夾層結(jié)構(gòu);激光清洗;離子轟擊;釬焊
隨著飛行器設(shè)計(jì)性能的不斷提高,其服役環(huán)境越來(lái)越惡劣,這對(duì)結(jié)構(gòu)的輕質(zhì)、高強(qiáng)、耐高溫性能提出了更高的要求。鎳基高溫合金蜂窩夾層結(jié)構(gòu)以其比強(qiáng)度和比剛度大、隔熱,同時(shí)兼具優(yōu)異的抗高溫性能,在航空航天領(lǐng)域獲得了廣泛關(guān)注,但由于高溫合金蜂窩夾層結(jié)構(gòu)的制造工藝比較復(fù)雜,目前國(guó)內(nèi)還沒(méi)有得到大規(guī)模的生產(chǎn)和應(yīng)用[1-5]。
蜂窩夾層結(jié)構(gòu)的制造主要分為蜂窩芯的成形加工以及芯體與面板的連接2個(gè)階段。高溫合金蜂窩所需型面采用常規(guī)機(jī)加工方法難以進(jìn)行[6-8],通常采用電火花或短電弧等方式加工,但會(huì)在加工面產(chǎn)生重熔層,并且在蜂窩側(cè)壁靠近端面部分產(chǎn)生氧化層[9-10]。芯體與面板通常采用釬焊連接,在釬焊前需去除重熔層及氧化層以增加釬料對(duì)基體的潤(rùn)濕性,提高釬焊接頭強(qiáng)度。由于蜂窩芯面內(nèi)剛性較差,難以直接進(jìn)行打磨,比較有效的方法是非接觸式清洗,如激光清洗和離子轟擊。目前已經(jīng)有較多學(xué)者對(duì)不同材料的激光清洗工藝開(kāi)展了研究,但對(duì)蜂窩結(jié)構(gòu)的激光清洗研究還比較少[11-15]。陳峰等[3]針對(duì)GH4099蜂窩芯提出了無(wú)保護(hù)氣氛下金屬薄壁結(jié)構(gòu)的飛秒激光冷拋光工藝,優(yōu)化了GH4099蜂窩激光清洗工藝參數(shù)。但是作者僅用粗糙度來(lái)表征激光清洗效果,未對(duì)清洗后的蜂窩進(jìn)行焊接試驗(yàn)驗(yàn)證。同時(shí)由于焦距的影響,激光僅能對(duì)蜂窩端面進(jìn)行清洗,而對(duì)蜂窩側(cè)壁的清洗效果有限,并且對(duì)型面為空間曲面的蜂窩來(lái)說(shuō)則更加難以進(jìn)行均勻清洗。
離子轟擊是在真空及惰性氣氛下,通過(guò)輝光放電使惰性氣體電離從而產(chǎn)生大量的等離子體,在偏壓的控制下,大量的正離子高速飛向基體并產(chǎn)生轟擊作用[16]。離子轟擊可有效去除基體表面氧化膜和其他雜質(zhì)。對(duì)蜂窩來(lái)說(shuō),由于蜂窩整體浸沒(méi)在等離子體中,因此離子清洗可以同時(shí)對(duì)蜂窩端面和側(cè)壁進(jìn)行清洗。但目前關(guān)于蜂窩結(jié)構(gòu)離子清洗方面的研究還未見(jiàn)報(bào)道,因此有必要開(kāi)展蜂窩的離子轟擊清洗工藝研究。文中針對(duì)GH4099蜂窩夾層結(jié)構(gòu),對(duì)比研究了激光清洗和離子轟擊2種清洗工藝對(duì)表面形貌、釬焊效果的影響,進(jìn)而優(yōu)化蜂窩清洗工藝,為蜂窩夾層結(jié)構(gòu)的制備提供技術(shù)支持。
試驗(yàn)選用軋制并固溶處理的0.12 mm厚GH4099帶材。將帶材經(jīng)成形、電阻點(diǎn)焊后制成蜂窩芯,蜂窩芯內(nèi)切圓直徑為10 mm。面板采用GH4099鍛件。釬料選用BNi2釬料。GH4099和BNi2成分如表1所示。
表1 GH4099和BNi2的主要化學(xué)成分
首先針對(duì)GH4099帶材,分別采用400#砂紙打磨、激光清洗和離子轟擊方法去除表面氧化皮。采用砂紙打磨時(shí),砂紙沿不同方向交替打磨至帶材表面呈現(xiàn)金屬光澤。激光清洗設(shè)備采用200 W納秒光纖激光清洗機(jī)(HL200-RSP2),該設(shè)備采用國(guó)產(chǎn)納秒脈沖光纖激光器,激光波長(zhǎng)為1 064 nm,輸出功率可在20~200 W調(diào)節(jié)。清洗時(shí),固定激光頻率2 000 Hz,掃描速度7 000 mm/s,分別采用60~200 W不同激光功率對(duì)帶材表面進(jìn)行清洗。真空離子轟擊設(shè)備采用自制真空雙室表面活化/連接復(fù)合成形裝備,該裝備具備離子去膜、濺射鍍膜、焊接等功能。清洗時(shí),將試樣放入去膜室中,抽真空至5×10?3Pa以下后通入高純Ar氣體,在Ar氣氛下進(jìn)行輝光放電產(chǎn)生Ar離子,在200 V偏壓作用下,Ar離子對(duì)試樣表面進(jìn)行轟擊。激光清洗和離子轟擊清洗具體工藝參數(shù)如表2所示。將0.05 mm厚的BNi2釬料裁剪成10 mm×10 mm箔片,對(duì)不同工藝清洗后的表面進(jìn)行釬焊潤(rùn)濕試驗(yàn)。采用場(chǎng)發(fā)射掃描電鏡(FEI Nova 450)及其配備的X射線能譜儀(EDS)、表面粗糙度儀(Mitutoyo SJ-210)、ZEISS體視顯微鏡(SteREO Discovery.V8),對(duì)清洗后的帶材表面組織成分、粗糙度()、釬料潤(rùn)濕形貌進(jìn)行檢測(cè),對(duì)比分析不同清洗工藝對(duì)氧化皮和釬料潤(rùn)濕性的影響,優(yōu)化清洗參數(shù)。
表2 GH4099帶材清洗工藝參數(shù)
采用慢走絲電火花線切割將蜂窩芯切割成60 mm× 40 mm×15 mm,超聲去除蜂窩芯油污后用優(yōu)化的清洗工藝對(duì)蜂窩芯進(jìn)行清洗。將面板機(jī)加成60 mm×40 mm× 10 mm,選用3層0.05 mm厚的BNi2釬料,將面板、蜂窩芯、釬料按圖1所示裝配后入爐完成蜂窩與面板的釬焊。潤(rùn)濕試驗(yàn)和釬焊試驗(yàn)在真空雙室表面活化/連接復(fù)合成形裝備焊接室中進(jìn)行,工藝參數(shù)為1 020 ℃-15 min,升溫速度為10 ℃/min,真空度小于5×10?3Pa,保溫完成后隨爐冷卻,潤(rùn)濕試驗(yàn)和釬焊試驗(yàn)均分別在同一爐次中完成。對(duì)釬焊后的夾層結(jié)構(gòu)分別制取金相試樣和拉伸試樣,金相試樣經(jīng)鑲嵌、拋光并用硝酸酒精溶液腐蝕后,用前述掃描電鏡觀察接頭組織。每組釬焊試樣沿厚度方向制取3根拉伸試樣,試樣直徑為14 mm,橫截面如圖2所示。用CMT5504型電子萬(wàn)能試驗(yàn)機(jī)測(cè)試接頭力學(xué)性能,拉伸速度為1 mm/min,用前述體視顯微鏡和掃描電鏡對(duì)接頭斷口形貌進(jìn)行分析。
圖1 蜂窩夾層結(jié)構(gòu)釬焊裝配示意圖
圖2 蜂窩夾層結(jié)構(gòu)釬焊接頭拉伸試樣橫截面示意圖
GH4099帶材經(jīng)砂紙打磨和激光清洗前后表面SEM顯微形貌如圖3所示。圖3a是未經(jīng)清洗的GH4099帶材原始表面,其上可見(jiàn)沿軋制方向的條帶。圖3b是經(jīng)砂紙打磨后的表面,其上存在沿打磨方向的劃痕。圖3c—g分別是激光功率為60~140 W時(shí)清洗后的表面,隨激光功率增加,帶材表面未發(fā)生明顯的燒損現(xiàn)象,其上逐漸出現(xiàn)網(wǎng)格狀紋理結(jié)構(gòu)。圖3h顯示了圖3g中矩形區(qū)域的主要元素分布,可以看出矩形區(qū)域中深色部分含有較多的O和Al。圖4為不同離子轟擊時(shí)間后的帶材表面顯微形貌,可以看出,當(dāng)清洗時(shí)間僅為1 h時(shí),帶材表面氧化皮去除不均勻,仍有大面積氧化皮殘留,隨清洗時(shí)間增加,氧化皮去除量逐漸增加,當(dāng)清洗時(shí)間為2 h時(shí),氧化皮基本去除干凈,帶材表面呈現(xiàn)金屬光澤。從圖4d可見(jiàn),表面較為光滑,無(wú)明顯紋理結(jié)構(gòu)出現(xiàn)。圖4e所示表面能譜結(jié)果顯示,離子轟擊2 h后的表面與GH4099名義成分相比無(wú)新的元素出現(xiàn)。
圖5為不同清洗工藝下帶材表面平均O含量及粗糙度()變化。首先從其中O含量變化曲線可以看出,隨著激光功率的增加,帶材表面O含量逐漸下降。當(dāng)激光功率增加至80 W時(shí),帶材表面O含量顯著降低。由于當(dāng)入射激光功率密度低于激光燒蝕閾值時(shí),材料不發(fā)生去除導(dǎo)致沒(méi)有拋光效果,因此對(duì)GH4099帶材來(lái)說(shuō),在激光頻率為2 000 Hz、掃描速度為7 000 mm/s的條件下,激光燒蝕閾值在80 W左右。同時(shí)可以看出離子轟擊2 h后的表面O含量較140 W激光清洗后的更低,并且與砂紙打磨狀態(tài)的O含量接近。對(duì)圖3g中網(wǎng)格狀區(qū)域的網(wǎng)格中心(淺色區(qū)域,點(diǎn))和網(wǎng)格邊緣(深色區(qū)域,點(diǎn))成分進(jìn)行具體分析,結(jié)果如表3所示。可以看出,淺色區(qū)域O含量較低,表明此區(qū)域氧化皮大部分已去除,而深色區(qū)域部分O含量較高,表明網(wǎng)格線部分氧化皮僅部分去除,結(jié)合圖3h顯示的元素面分布結(jié)果,深色區(qū)域殘留大量Al2O3。由于高溫合金表面氧化皮由3層組成,外層為Cr2O3和TiO2,中層為致密的Cr2O3,內(nèi)層主要為Al2O3[17-18],因此深色區(qū)域表層氧化皮已經(jīng)去除,而最內(nèi)層的Al2O3殘留了下來(lái),這也說(shuō)明帶材表面氧化皮是不均勻去除的。從圖5中粗糙度變化曲線可以看到,帶材原始表面較為光滑,值約為0.08 μm,隨著激光功率增加,值逐漸增加。這可能是由于激光清洗過(guò)程中,表面氧化皮不是同步去除的,因而在材料表面留下了微結(jié)構(gòu),導(dǎo)致表面粗糙度增加,并且激光功率越高,微結(jié)構(gòu)比例越大,因此表面粗糙度隨之增加。離子轟擊2 h后,帶材表面氧化皮已均勻去除,此時(shí)值較小,約為0.13 μm。
圖3 GH4099帶材經(jīng)砂紙打磨和激光清洗前后SEM顯微形貌及相應(yīng)矩形區(qū)域元素分布
圖4 GH4099帶材離子轟擊后表面顯微形貌及能譜分析結(jié)果
圖5 不同清洗工藝下GH4099帶材表面 O元素含量和粗糙度
表3 圖3g中網(wǎng)狀組織O元素含量
目前已有較多的文獻(xiàn)提及到這種網(wǎng)狀結(jié)構(gòu),分析認(rèn)為其產(chǎn)生原因主要與激光作用下材料的蒸發(fā)、溫度梯度和表面張力有關(guān)[15,19-21]。在激光清洗過(guò)程中,光纖脈沖激光器發(fā)出的激光束是按給定頻率分布的一系列不連續(xù)圓形光斑,在圓形區(qū)域內(nèi)激光能量服從高斯分布。當(dāng)激光能量較低時(shí),光斑中心和邊緣能量差別不大,因此能相對(duì)均勻地去除材料表層氧化皮;隨著激光功率增大,光斑中心能量增加更顯著,激光脈沖能量照射材料表面后,表面溫度急劇增加,光斑中心溫度顯著高于邊緣,在溫度梯度和表面張力作用下,表面氧化皮發(fā)生多點(diǎn)破碎,在極高的脈沖能量下,材料氣化電離,處于高壓、高溫、高密度的等離子體狀態(tài)。隨著激光功率增加,等離子體能量逐漸增大,當(dāng)其超過(guò)材料內(nèi)部原有的約束力時(shí),等離子體向外噴發(fā),去除表面氧化皮。由于等離子體噴發(fā)時(shí)幾乎帶走全部熱量,并且等離子體對(duì)激光束有屏蔽效應(yīng),激光光斑作用區(qū)域內(nèi)的溫度驟然降低,氧化皮碎片之間的區(qū)域未能得到有效去除,因此材料表面產(chǎn)生了以氧化物為網(wǎng)格線的網(wǎng)格狀紋理結(jié)構(gòu)[15,20]。
對(duì)經(jīng)不同清洗工藝后的表面進(jìn)行潤(rùn)濕試驗(yàn),用體視顯微鏡觀察釬料在不同表面的潤(rùn)濕形貌如圖6所示。用Image Pro-Plus軟件對(duì)釬料面積進(jìn)行測(cè)量,并用潤(rùn)濕面積百分比(即釬料潤(rùn)濕后的面積與初始面積比值)來(lái)表征釬料對(duì)帶材表面的潤(rùn)濕性。經(jīng)測(cè)量,釬料在未清洗的原始表面潤(rùn)濕百分比為69.4%,在經(jīng)砂紙拋光的表面潤(rùn)濕面積百分比為93.3%。清洗工藝對(duì)潤(rùn)濕面積百分比的影響如圖7所示。
從圖7a可以看出,隨著激光功率增加,潤(rùn)濕面積百分比先增加后降低,在激光功率為100 W時(shí),潤(rùn)濕面積最大,為83.5%。根據(jù)圖5所示不同清洗工藝帶材表面O元素含量變化規(guī)律,當(dāng)激光功率逐漸從60 W增加到100 W時(shí),帶材表面氧化皮逐漸去除干凈,因此釬料在帶材表面的潤(rùn)濕性隨之增加;當(dāng)激光功率大于100 W時(shí),帶材表面平均O含量逐漸降低,并且出現(xiàn)網(wǎng)狀結(jié)構(gòu)。根據(jù)表3分析結(jié)果,該網(wǎng)狀結(jié)構(gòu)的網(wǎng)格中心區(qū)域是新鮮金屬,網(wǎng)格線區(qū)域存在較多的氧化物。新鮮金屬的表面能較氧化膜的大,釬料由于潤(rùn)濕特性將會(huì)自驅(qū)地沿著表面能增大的方向移動(dòng)到親和力更大的區(qū)域,即釬料由于對(duì)網(wǎng)格中心的金屬潤(rùn)濕性更好,傾向于向網(wǎng)格中心聚集,因此網(wǎng)狀分布的氧化物增大了釬料的表觀接觸角,使得釬料對(duì)帶材的潤(rùn)濕性降低[21-24]。從圖7b可見(jiàn),延長(zhǎng)離子轟擊時(shí)間,潤(rùn)濕面積百分比逐漸增加,當(dāng)清洗時(shí)間為2 h時(shí)達(dá)到最大,為91.2%,與砂紙打磨后的狀態(tài)接近。對(duì)比激光清洗和離子轟擊表面的潤(rùn)濕試驗(yàn)結(jié)果可見(jiàn),離子轟擊清洗效果較激光清洗更佳。這是由于離子轟擊在去除材料表面氧化皮的同時(shí),也會(huì)沖擊材料基體,在材料表面產(chǎn)生各種微觀缺陷,如位錯(cuò)、點(diǎn)缺陷,顯著提高材料表面能,進(jìn)而提高釬料的潤(rùn)濕性[25]。
圖6 BNi2釬料在不同清洗工藝下的GH4099帶材表面潤(rùn)濕形貌
圖7 清洗工藝對(duì)BNi2釬料在GH4099帶材表面潤(rùn)濕性的影響
從以上研究可以看出,BNi2釬料對(duì)激光清洗后的表面潤(rùn)濕性低于離子轟擊后的表面,這可能是由于激光清洗后的表面O含量高于離子轟擊后的表面。由于隨著激光功率增加,帶材表面O含量逐漸降低,因此為驗(yàn)證進(jìn)一步增加激光功率對(duì)降低O含量的可行性,提高激光功率到200 W,此時(shí)帶材表面形貌如圖8a所示。從圖8a中可以看出,氧化物網(wǎng)狀分布的現(xiàn)象已明顯減輕,測(cè)得表面粗糙度降低到0.16 μm,表面O含量為5.2%,但帶材發(fā)生了明顯的宏觀卷曲變形。因此隨著激光功率進(jìn)一步增加,O含量呈現(xiàn)繼續(xù)降低的趨勢(shì),這是由于激光功率越高,其去除氧化皮的能力越強(qiáng)。但結(jié)合圖5可以看出,當(dāng)激光功率大于80 W時(shí),O含量的降低趨勢(shì)已明顯變緩,這可能是由于激光在去除表面氧化皮的同時(shí),激光的熱效應(yīng)會(huì)導(dǎo)致材料表面發(fā)生二次氧化,激光功率越大,帶來(lái)的熱效應(yīng)越大,同時(shí)由于基材較薄,帶來(lái)的變形也越大[26]。此時(shí)釬料對(duì)帶材表面的潤(rùn)濕形貌如圖8b所示,測(cè)得潤(rùn)濕面積百分比為76.3%,釬料潤(rùn)濕性較140 W時(shí)有所增加,這是因?yàn)榧す夤β蔬M(jìn)一步增加時(shí),光斑整體能量密度增加,光斑邊緣去除氧化膜的能力及其整體透過(guò)等離子體屏蔽的能力均增加,因而能更均勻地去除氧化膜,氧化物網(wǎng)狀分布現(xiàn)象得以減輕,粗糙度也有所降低。因此隨著激光功率進(jìn)一步增加,帶材表面O含量繼續(xù)降低,釬料潤(rùn)濕性有所增加。
分別采用100 W激光清洗和2 h離子轟擊工藝清洗線切割的蜂窩端面后進(jìn)行釬焊試驗(yàn),圖9為釬焊接頭SEM顯微組織。從圖9a可以看出,釬料對(duì)直接線切割蜂窩端面潤(rùn)濕角大于90°,潤(rùn)濕性較差。根據(jù)圖9b,蜂窩端面經(jīng)激光清洗后釬料潤(rùn)濕性有所增加,但對(duì)蜂窩側(cè)壁潤(rùn)濕還不明顯;根據(jù)圖9c所示離子轟擊后接頭組織,釬料對(duì)蜂窩側(cè)壁的潤(rùn)濕性也有所增加。
對(duì)獲得的釬焊接頭進(jìn)行拉伸測(cè)試,測(cè)得線切割、100 W激光清洗和2 h離子轟擊試樣的平均抗拉力分別為510、1 509、1 837 N,拉伸曲線如圖10所示。因此直接線切割后僅經(jīng)超聲去油清洗的釬焊接頭性能較差,經(jīng)100 W激光清洗后,抗拉力有所提升,而經(jīng)離子轟擊2 h后平均抗拉力最大,此時(shí)夾層結(jié)構(gòu)等效抗拉強(qiáng)度為11.9 MPa。拉伸斷口如圖11所示,可以看出,所有接頭均斷于蜂窩與面板釬焊連接處。根據(jù)圖11a可知,直接線切割后的夾層結(jié)構(gòu)蜂窩側(cè)斷口處基本無(wú)釬料粘連,說(shuō)明釬料對(duì)線切割的表面潤(rùn)濕性較差。根據(jù)圖11b可知,當(dāng)采用100 W激光清洗后,有部分釬料粘連在斷口上,斷口釬料處分布有解理面和解理臺(tái)階,說(shuō)明釬料對(duì)蜂窩結(jié)合力有所增加。根據(jù)圖11c可知,當(dāng)采用離子轟擊2 h后,斷口上粘連釬料明顯增加,說(shuō)明釬料潤(rùn)濕性顯著增加,斷面上可見(jiàn)明顯晶粒,為沿晶脆性斷裂,這是由于釬料中的B、Si等降熔元素沿晶界分布,導(dǎo)致晶界性能降低。因此根據(jù)釬焊試驗(yàn)結(jié)果,與激光清洗相比,離子轟擊對(duì)改善釬料潤(rùn)濕性、提高接頭性能更明顯,這與前述潤(rùn)濕試驗(yàn)結(jié)果一致。
圖8 GH4099帶材經(jīng)200W激光清洗后表面(a)和BNi2釬料潤(rùn)濕形貌(b)
圖9 不同清洗工藝下釬焊接頭SEM顯微組織
圖10 不同清洗工藝下釬焊接頭拉伸曲線
圖11 蜂窩夾層結(jié)構(gòu)釬焊接頭斷口宏觀光鏡形貌及相應(yīng)SEM形貌
1)隨著激光清洗功率的增加,GH4099帶材表面的平均O含量逐漸降低,釬料潤(rùn)濕性隨之增加,當(dāng)激光功率大于100 W時(shí),帶材表面殘留網(wǎng)格狀分布的氧化物,導(dǎo)致釬料潤(rùn)濕性降低,當(dāng)激光功率進(jìn)一步增加到200 W時(shí),氧化物網(wǎng)狀分布現(xiàn)象減輕,釬料潤(rùn)濕性又有所增加。
2)隨著離子轟擊時(shí)間增加,GH4099帶材表面氧化皮逐漸清洗干凈,當(dāng)清洗時(shí)間為2 h時(shí),氧化皮基本清洗干凈,呈現(xiàn)金屬光澤,釬料潤(rùn)濕性隨之增加。
3)與激光清洗相比,離子轟擊可同時(shí)對(duì)蜂窩端面和附近側(cè)壁部分進(jìn)行清洗,能更好地改善釬料潤(rùn)濕性,經(jīng)離子轟擊2 h、1 020 ℃-15 min釬焊獲得的GH4099蜂窩夾層結(jié)構(gòu)等效抗拉強(qiáng)度為11.9 MPa。
[1] 王琦, 童國(guó)權(quán), 陳峰, 等. 缺陷對(duì)高溫合金蜂窩板彎曲力學(xué)性能的影響[J]. 航空制造技術(shù), 2017, 60(S1): 106-111.
WANG Qi, TONG Guo-quan, CHEN Feng, et al. Effect of Defects on Bending Mechanical Property of High Temperature Alloy Honeycomb Panels[J]. Aeronautical Manufacturing Technology, 2017, 60(S1): 106-111.
[2] 劉艷輝, 童國(guó)權(quán), 王輝, 等. GH99高溫合金蜂窩板的制備及力學(xué)性能[J]. 機(jī)械工程材料, 2013, 37(2): 82-85.
LIU Yan-hui, TONG Guo-quan, WANG Hui, et al. Prepa-ration and Mechanical Properties of GH99 High Tempe-rature Alloy Honeycomb Plates[J]. Materials for Mecha-nical Engineering, 2013, 37(2): 82-85.
[3] 陳峰, 劉巧沐, 杜鵬, 等. GH4099蜂窩芯飛秒激光拋光試驗(yàn)研究[J]. 航空制造技術(shù), 2019, 62(S2): 46-51.
CHEN Feng, LIU Qiao-mu, DU Peng, et al. Experimental Research on Femtosecond Laser Polishing of GH4099 Honeycomb Core[J]. Aeronautical Manufacturing Tech-nology, 2019, 62(S2): 46-51.
[4] PAN Bing, YU Li-ping, WU Da-fang. Thermo-Mechani-cal Response of Superalloy Honeycomb Sandwich Panels Subjected to Non-Steady Thermal Loading[J]. Materials & Design, 2015, 88: 528-536.
[5] ZHANG Qiu-ming, HE Xiao-dong. Microstructural Evo-lution and Mechanical Properties of a Nickel-Based Honeycomb Sandwich[J]. Materials Characterization, 2009, 60(3): 178-182.
[6] DEVADULA S, NICOLESCU M. Issues in Machining of Hollow Core Honeycomb Sandwich Structures by Abra-sive Waterjet Machining[J]. Journal of Machine Enginee-ring, 2013, 13(1): 117-125.
[7] WANG Yong-qing, GAN Yong-quan, LIU Hai-bo, et al. Surface Quality Improvement in Machining an Aluminum Honeycomb by Ice Fixation[J]. Chinese Journal of Mec-hanical Engineering, 2020, 33(1): 20.
[8] 王鳳彪, 侯博, 袁凱, 等. TC4合金蜂窩冰固持低溫銑削研究[J]. 稀有金屬材料與工程, 2018, 47(1): 326-332.
WANG Feng-biao, HOU Bo, YUAN Kai, et al. Cryogenic Milling of TC4 Alloy Honeycomb in Ice Fixation[J]. Rare Metal Materials and Engineering, 2018, 47(1): 326-332.
[9] 許燕, 王博, 周建平. 鎳基高溫合金短電弧加工工藝參數(shù)優(yōu)化[J]. 機(jī)床與液壓, 2018, 46(11): 106-110.
XU Yan, WANG Bo, ZHOU Jian-ping. Optimization of Process Parameters for Short Arc Machining of Nickel Base Superalloy[J]. Machine Tool & Hydraulics, 2018, 46(11): 106-110.
[10] MOHAMED A R, ASFANA B, ALI M Y. Investigation of Recast Layer of Non-Conductive Ceramic Due to Micro- EDM[J]. Advanced Materials Research, 2013, 845: 857-861.
[11] 萬(wàn)壯, 楊學(xué)鋒, 夏國(guó)峰, 等. 激光頻率對(duì)激光干式清洗機(jī)理及表面性能的影響[J]. 表面技術(shù), 2021, 50(5): 70-77.
WAN Zhuang, YANG Xue-feng, XIA Guo-feng, et al. Effect of Laser Frequency on the Mechanism and Perfor-mance of Laser Dry Cleaning[J]. Surface Technology, 2021, 50(5): 70-77.
[12] 徐子法, 焦俊科, 張正, 等. 鎳基高溫合金激光修復(fù)工藝研究[J]. 材料導(dǎo)報(bào), 2019, 33(19): 3196-3202.
XU Zi-fa, JIAO Jun-ke, ZHANG Zheng, et al. Research on Laser Repair Process of Ni-Based Superalloy[J]. Mate-rials Reports, 2019, 33(19): 3196-3202.
[13] 李剛卿, 趙延強(qiáng), 劉永剛, 等. 301不銹鋼焊后氧化物激光清洗工藝研究[J]. 應(yīng)用激光, 2019, 39(2): 256-262.
LI Gang-qing, ZHAO Yan-qiang, LIU Yong-gang, et al. Laser Cleaning Process of Post-Weld Oxide on 301 Stainless Steel[J]. Applied Laser, 2019, 39(2): 256-262.
[14] 胡太友, 喬紅超, 陸瑩, 等. 激光除漆對(duì)Ti17合金表面組織性能的影響[J]. 表面技術(shù), 2018, 47(3): 7-12.
HU Tai-you, QIAO Hong-chao, LU Ying, et al. Effects of Laser De-Painting on Microstructure and Properties of Ti17 Alloy[J]. Surface Technology, 2018, 47(3): 7-12.
[15] HE Hai-dong, QU Ning-song, ZENG Yong-bin. Lotus- Leaf-Like Microstructures on Tungsten Surface Induced by One-Step Nanosecond Laser Irradiation[J]. Surface and Coatings Technology, 2016, 307: 898-907.
[16] 王付勝, 何鵬, 郁佳琪, 等. 氬離子轟擊對(duì)中頻-直流磁控濺射鋁薄膜耐蝕性能的影響[J]. 表面技術(shù), 2019, 48(3): 185-194.
WANG Fu-sheng, HE Peng, YU Jia-qi, et al. Effects of Argon Ion Bombardment on Corrosion Resistance of Al Film Deposited by Medium Frequency Direct Current Magnetron Sputtering[J]. Surface Technology, 2019, 48(3): 185-194.
[17] 郝文慧, 薛紹展. 新型鎳基高溫合金的高溫氧化行為研究[J]. 稀有金屬材料與工程, 2015, 44(2): 419-423.
HAO Wen-hui, XUE Shao-zhan. High Temperature Oxi-dation Behavior of a New Nickel-Base Superalloy[J]. Rare Metal Materials and Engineering, 2015, 44(2): 419-423.
[18] ARCHANA M, RAO C J, NINGSHEN S, et al. High- Temperature Air and Steam Oxidation and Oxide Layer Characteristics of Alloy 617[J]. Journal of Materials Engi-neering and Performance, 2021, 30(2): 931-943.
[19] 朱明, 周建忠, 孟憲凱, 等. 基于響應(yīng)面的Q345C鋼銹層激光清洗工藝參數(shù)優(yōu)化[J]. 表面技術(shù), 2019, 48(11): 381-391.
ZHU Ming, ZHOU Jian-zhong, MENG Xian-kai, et al. Optimization of Laser Cleaning Process Parameters for Q345C Steel Rust Layer Based on Response Surface[J]. Surface Technology, 2019, 48(11): 381-391.
[20] 張偉, 馮強(qiáng), 程光華, 等. 飛秒激光對(duì)鎳基合金的損傷機(jī)制和閾值行為[J]. 光學(xué)學(xué)報(bào), 2014, 34(12): 348-354.
ZHANG Wei, FENG Qiang, CHENG Guang-hua, et al. Femtoseoncd Laser-Induced Ablation Regimes and Thres-holds in a Nickel-Based Superalloy[J]. Acta Optica Sini-ca, 2014, 34(12): 348-354.
[21] 連峰, 張會(huì)臣, 龐連云. Ti6Al4V表面紋理制備及其潤(rùn)濕性[J]. 功能材料, 2011, 42(S3): 464-467.
LIAN Feng, ZHANG Hui-chen, PANG Lian-yun. Fabri-cation of Surface Texture on Ti6Al4V Alloy and Its Wet-tability[J]. Journal of Functional Materials, 2011, 42(S3): 464-467.
[22] 楊煥, 曹宇, 李峰平, 等. 激光制備超疏水表面研究進(jìn)展[J]. 光電工程, 2017, 44(12): 1160-1168, 1252.
YANG Huan, CAO Yu, LI Feng-ping, et al. Research Pro-gress in Superhydrophobic Surfaces Fabricated by Laser[J]. Opto-Electronic Engineering, 2017, 44(12): 1160-1168, 1252.
[23] JIANG Tao, KOCH J, UNGER C, et al. Ultrashort Pico-second Laser Processing of Micro-Molds for Fabricating Plastic Parts with Superhydrophobic Surfaces[J]. Applied Physics A, 2012, 108(4): 863-869.
[24] 丁雅玉, 蘇亞輝, 陳亮. 納秒激光加工(超)疏水/(超)親水鋁膜的潤(rùn)濕性和霧水收集實(shí)驗(yàn)研究[J]. 激光與光電子學(xué)進(jìn)展, 2020, 57(11): 144-150.
DING Ya-yu, SU Ya-hui, CHEN Liang. Experimentally Investigating Wettability and Fog Collection Characte-ristics of (Super) Hydrophobic/(Super)Hydrophilic Alu-minum Membranes Processed by Nanosecond Laser[J]. Laser & Optoelectronics Progress, 2020, 57(11): 144-150.
[25] NIU Chao-nan, HAN Jiang-yue, HU Sheng-peng, et al. Surface Modification and Structure Evolution of Alumi-num under Argon Ion Bombardment[J]. Applied Surface Science, 2021, 536: 147819.
[26] 馬玉山, 王鑫林, 何濤, 等. 金屬表面腐蝕層及涂層的激光干式清洗研究進(jìn)展[J]. 表面技術(shù), 2020, 49(2): 124-134.
MA Yu-shan, WANG Xin-lin, HE Tao, et al. Research Progress in Dry Laser Cleaning on Corrosion and Coating Layers of Metal Surfaces[J]. Surface Technology, 2020, 49(2): 124-134.
Effect of Cleaning Process on Brazing Property of GH4099 Honeycomb Sandwich Structure
1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3
(1. Shanghai Shenjian Precision Machinery Technology Co., Ltd., Shanghai 201600, China; 2. Shanghai Spaceflight Precision Machinery Institute, Shanghai 201600, China; 3. Shanghai Engineering Technology Research Center of Near-Net Shape Forming for Metallic Materials, Shanghai 201600, China)
Pre-welding cleaning process is of great importance for honeycomb sandwich structure to gain a satisfactory brazed joint. Due to the poor stiffness in plane direction of honeycomb core, the more effective cleaning method for honeycomb is non-contact cleaning, including laser cleaning and ion bombardment cleaning. The work aims to study the effects of laser cleaning and ion bombardment cleaning methods on brazing property of GH4099 honeycomb sandwich structure, and optimize the pre-welding cleaning process of honeycomb sandwich structure.
The GH4099 strips were cleaned to remove oxide layers by polishing with 400-grit sandpaper, laser cleaning and ion bombardment respectively. Laser cleaning was performed on 200 W nanosecond fiber laser cleaning machine (HL200- RSP2) with the frequency of 2 000 Hz, and scanning speed of 7 000 mm/s, and laser power varying from 60 w to 200 W. Ion bombardment cleaning was performed on homemade surface activation/joining combined forming equipment. The cleaning time was varied from 1 h to 2 h with cleaning power of 100 W and acceleration voltage of 200 V and vacuum pressure of 1.6 Pa. Characters of morphology, roughness and O element content of the cleaned strip surface were detected by using stereo microscope (ZEISS, SteREO Discovery.V8), surface roughness measuring instrument (Mitutoyo SJ-210) and scanning electron microscope (FEI Nova 450); BNi2 brazing filler metal foil with thickness of 0.05 mm was cut into squares with size of 10 mm×10 mm, and wettabilities of BNi2 foils on cleaned surfaces with different cleaning processes were characterized by brazing wetting test. The cleaning parameters were optimized by the comparative analysis of these test results. Then honeycombs were cleaned at the optimized parameters of laser cleaning and ion bombardment respec-tively, and honeycomb sandwich structures were brazed. Both wetting test and brazing process were performed in the joining chamber of surface activation/joining combined forming equipment at the temperature of 1 020 ℃ for 15 min with vacuum pressure less than 5×10?3Pa and heating rate of 10 ℃ per minute. And samples were cooled to room tem-pe-rature with furnace after brazing. Tensile properties of brazed joints of honeycomb sandwich structure with different cleaning methods were tested on CMT 5504 tensile test machine at tensile speed of 1 mm/min. Microstructures of brazed joints and fracture morphologies of tensile test specimens were examined by using stereo microscope and SEM respectively.
Results show that the mean content of O element of surface decreased and wettability of filler metal increased with the increasing of laser power, and wetting area fraction increased to 83.5% when laser power increased to 100 W. While the wettability of filler metal decreased since there were residual reticulated oxide on the strip surface when laser power higher than 100 W. With the laser power increased to 200 W, residual reticulated oxide was reduced. With the cleaning time of ion bombardment increased from 1 h to 2 h, oxide layer on the strip surface was gradually removed, and wetting area fraction reached to 91.2% with the cleaning time of 2 h, which was corresponding to that on the surface polished by 400-grit sandpaper. Honeycomb sandwich structure cleaned by ion bombardment for 2 h and brazed at 1 020 ℃ for 15 min had the highest tensile force, and the equivalent tensile strength was 11.9 MPa.
Compared to laser cleaning, ion bombardment can remove the oxides on the honeycomb surface and the nearby side wall simultaneously, and improve the wettability of filler metal to the honeycomb matrix more effectively.
GH4099; honeycomb sandwich structure; laser cleaning; ion bombardment; brazing
V261.8
A
1001-3660(2023)01-0372-09
10.16490/j.cnki.issn.1001-3660.2023.01.038
2021–12–30;
2022–03–11
2021-12-30;
2022-03-11
上海市優(yōu)秀學(xué)術(shù)/技術(shù)帶頭人計(jì)劃項(xiàng)目(21XD1433900);航天八院產(chǎn)學(xué)研合作基金項(xiàng)目(USCAST2020-3)
Program of Shanghai Academic/Technology Research Leader (21XD1433900); Industry University Research Cooperation Fund Project of the Eighth Academy of Astronautics (USCAST2020-3)
馬平義(1992—),男,碩士,工程師,主要研究方向?yàn)椴牧霞庸ぁ?/p>
MA Ping-yi (1992-), Male, Master, Engineer, Research focus: materials manufacturing.
彭赫力(1986—),男,博士,研究員,主要研究方向?yàn)椴牧霞庸ぁ?/p>
PENG He-li (1986-), Male, Doctor, Researcher, Research focus: materials manufacturing.
馬平義, 陳旭, 韓興, 等. 清洗工藝對(duì)GH4099蜂窩夾層結(jié)構(gòu)釬焊性能的影響[J]. 表面技術(shù), 2023, 52(1): 372-380.
MA Ping-yi, CHEN Xu, HAN Xing, et al. Effect of Cleaning Process on Brazing Property of GH4099 Honeycomb Sandwich Structure[J]. Surface Technology, 2023, 52(1): 372-380.
責(zé)任編輯:萬(wàn)長(zhǎng)清