邢爽,張敏,楊佳,李秀華,高悅,李亞澤,李思雨,王震
硫酸銅濃度及反應(yīng)時間對LA103Z鎂鋰合金PEO膜層熱控性能的影響
邢爽,張敏,楊佳,李秀華,高悅,李亞澤,李思雨,王震
(遼寧師范大學(xué) 物理與電子技術(shù)學(xué)院,遼寧 大連 116029)
在LA103Z鎂鋰合金表面原位生長高吸收率高發(fā)射率的黑色陶瓷膜,研究硫酸銅濃度及反應(yīng)時間對該膜層熱防護性能的影響規(guī)律,同時建立膜層的色度值與其熱控性能的聯(lián)系。采用等離子體電解氧化技術(shù)(PEO),在Na2SiO3電解液體系中,通過調(diào)節(jié)硫酸銅濃度及反應(yīng)時間優(yōu)化膜層性能。采用掃描電鏡(SEM)、X射線光電子能譜儀(XPS)、X射線衍射儀(XRD)、CIE顏色系統(tǒng)和能譜儀(EDS)研究膜層的組成和結(jié)構(gòu)。采用分光光度計和紅外發(fā)射率儀研究膜層的熱控性能。PEO膜層主要由MgO和Mg2SiO4相組成。隨反應(yīng)時間及CuSO4濃度的增加,MgO和Mg2SiO4相的衍射峰峰強增加,基體的衍射峰峰強減弱。PEO膜層主要由Mg、O、Si、Na、Cu元素組成,且Cu元素含量隨CuSO4濃度的增加而增加。XPS結(jié)果表明,膜層中銅主要以一價和二價離子形式存在,可推斷膜層中銅是以非晶氧化銅和氧化亞銅的形式存在。PEO膜層具備典型的多孔火山口形貌,孔洞周圍稍微突起,膜層與基體緊密結(jié)合,無裂縫,具有良好的膜基結(jié)合力。膜層微孔數(shù)量和孔隙率隨CuSO4濃度的增加而增加,隨反應(yīng)時間的延長而減少。隨反應(yīng)時間的延長和CuSO4濃度的增加,膜層厚度和粗糙度增大,反射率降低(0.25~2.5 μm),色度值(*)由81降低至29,膜層顏色由銀灰色逐漸變?yōu)闇\紅,最終變?yōu)楹谏?。?dāng)CuSO4質(zhì)量濃度為1.25 g/L和反應(yīng)時間為20 min時,膜層吸收率和發(fā)射率分別高達0.815 0、0.907 2,此時其熱控性能最佳。在電解液中添加CuSO4和適當(dāng)延長反應(yīng)時間,可提高LA103Z鎂鋰合金表面PEO膜層的熱控性能,為鎂鋰合金在航空航天領(lǐng)域的進一步應(yīng)用奠定了基礎(chǔ)。
硫酸銅;等離子體電解氧化;熱控涂層;LA103Z鎂鋰合金;色度值;黑色陶瓷膜
鎂鋰合金具有質(zhì)輕及機械加工性能強等優(yōu)點[1-2],已被廣泛應(yīng)用于航天[3]、汽車、通訊電子器件高度集成化等工業(yè)領(lǐng)域[4]。鎂鋰合金被稱為“超輕合金”,其密度是常規(guī)鎂合金的1/4~1/3[5]。因此將其應(yīng)用于航空航天,可直接削減飛行器的燃料燃燒及降低運輸成本。而這些航天器在軌運行時,要不斷地經(jīng)受一側(cè)太陽直射和另一側(cè)陰影下的深冷空間,這會在短時間內(nèi)產(chǎn)生較大的熱梯度,降低電子器件的效率和部件壽命。熱控涂層(Thermal Control Coating)可以解決航天器和部件的不同熱控制要求,吸收率和發(fā)射率的可控調(diào)節(jié)是熱控制涂層設(shè)計的關(guān)鍵因素[6-7]。因較大的溫度差,美國“陸地衛(wèi)星-4”內(nèi)部的聚氨酯膜層導(dǎo)線斷裂,造成巨大經(jīng)濟損失。因此應(yīng)用優(yōu)良的熱控涂層將具有重要意義。
利用等離子體電解氧化技術(shù)(PEO)制備的膜層具有硬度高、耐蝕耐磨性好[8]、與基體黏附強度強及化學(xué)性質(zhì)穩(wěn)定等特點。目前,已成功利用PEO技術(shù)在Al[9-10]、Mg[11]、Ti[12-14]合金表面制備出優(yōu)良的熱控涂層。
以往的研究[13-22]證實了通過添加有色離子可提高PEO膜層的熱控性能。研究表明,制備高吸收率、高發(fā)射率PEO膜層的電解液體系一般為PO43–和SIO32–,加入著色離子一般為WO42–、VO3–、Fe3+、Ni2+、Cu2+等。Wu等[15]研究了在0.1 mol/L NaAlO2電解液體系中添加Cu2+、Fe2+、Mn+等著色鹽,以2024鋁合金為基體,制備出高吸收率、高發(fā)射率的黑色陶瓷膜。多種著色鹽的添加使膜層顏色呈現(xiàn)黑色進而吸收大量的可見光,故膜層吸收率提高。PEO膜層的相組成為α-Al2O3和γ-Al2O3,因氧化鋁本身具有較高的發(fā)射率,故厚度最大時膜層的吸收率大于0.90,發(fā)射率大于0.77。Wang等[17]通過添加Cu(Ac)2、Na2WO4、Na3VO43種著色劑,制備出了白、紅棕、灰、黑4顏色的PEO熱控涂層。膜層主要由Mg2SiO4、MgO及MgAl2O4相組成,其中Cu2+、VO43–、WO42–的有關(guān)化合物均以非晶態(tài)形式存在。
目前,利用PEO技術(shù)在電解液中加入著色鹽主要應(yīng)用在Ti、Al及Mg合金上,而有關(guān)鎂鋰合金表面制備高吸收率、高發(fā)射率的熱控涂層的研究很少。其中,Yao等[23]對在Mg-Li合金表面制備熱控涂層的研究較為成熟,但是其研究未引入著色離子,所制備的是低吸收率高發(fā)射率的銀白色熱控涂層(吸收率0.35、發(fā)射率0.82)。另外,也很少有人將膜層的色度值(*、*、*)與其熱控性能相聯(lián)系。為此,本工作將引入著色鹽,在Na2SiO3電解液體系中添加CuSO4,在LA103Z鎂鋰合金表面制備有色高吸收率高發(fā)射率的PEO膜層。試驗通過改變Cu2+濃度和反應(yīng)時間而進一步評價膜層結(jié)構(gòu)、色度值及熱控性能,并建立膜層顏色等宏觀特性與膜層熱控性能的聯(lián)系,為實現(xiàn)“超輕合金”進一步應(yīng)用在航空航天奠定了基礎(chǔ)。
選用LA103Z Mg-9Li合金(含鋰量為9%)作為基材,尺寸為40 mm×40 mm×1 mm,成分如表1所示。首先使用240#、500#、800#、1500#、2000#水磨砂紙順一個方向打磨,再用乙醇超聲清洗8 min后烘干。電解液主要成分為19 g/L Na2SiO3、3 g/L NaF和1 g/L NaOH,酒石酸鉀鈉(1 g/L)為絡(luò)合劑,CuSO4為著色添加劑。利用JCL-AOMSZ20微弧氧化雙極性脈沖電源,LA103Z鎂鋰合金作為陽極,不銹鋼為陰極制備膜層。采用恒流模式,反應(yīng)電參數(shù)分別設(shè)置為:電源頻率500 Hz,電流密度6.25 A/dm2,占空比20%(固定不變)。當(dāng)反應(yīng)時間為變量時,CuSO4質(zhì)量濃度為0.5 g/L,反應(yīng)時間分別為5、10、15、20 min。當(dāng)CuSO4濃度為變量時,反應(yīng)時間設(shè)置為20 min,CuSO4質(zhì)量濃度分別為0、0.25、0.5、0.75、1、1.25 g/L。另外,配制電解液時應(yīng)先將CuSO4顆粒溶于水并單獨放置,然后將Na2SiO3、NaF、NaOH及酒石酸鉀鈉完全溶解至另一燒杯中,最后將CuSO4溶液邊攪拌邊倒入此燒杯中,否則會產(chǎn)生沉淀。反應(yīng)過程中利用磁子攪拌器不斷攪拌以降低濃差極化,再利用循環(huán)冷卻水系統(tǒng)使電解液溫度保持在20~30 ℃。
表1 LA103Z鎂鋰合金的成分
采用日立TM3030臺式掃描電鏡(SEM)觀察膜層微觀形貌。采用MT-4000多功能薄膜測試儀測量PEO膜層的粗糙度。采用PANalytical的X射線衍射儀(XRD)檢測膜層的晶相組成(銅Kα靶,掃描范圍20°~80°,步長0.02°,管電壓35 kV,管電流50 mA)。采用賽默飛Esca Lab 250Xi的X射線光電子能譜儀(XPS)檢測膜層的元素化學(xué)狀態(tài)。采用EDS能譜儀檢測PEO膜層的元素組成。利用ImageJ軟件計算膜層表面孔隙的面積百分比及孔徑大小。利用Photoshop軟件的Ruler Tool計算膜層的厚度。采用Lambda-950紫外可見近紅外分光光度計測量膜層的吸收率(0.25~2.5 μm)。使用TEMP 2000A紅外發(fā)射率光譜儀測量膜層的發(fā)射率(2.5~25 μm)。再使用《1931CIE***標(biāo)準色度系統(tǒng)》[24]對膜層色度值進行表征。
圖1為不同工藝條件下PEO膜層的XRD圖譜??梢钥闯?,PEO膜層主要是由MgO及Mg2SiO4相組成。比對ASTM標(biāo)準卡片(45-0946),晶相MgO峰的2值為36.936°、42.916°、62.302°和78.628°,分別對應(yīng)MgO的(111)、(200)、(220)和(222)晶面。較為突出的晶相Mg2SiO4峰的2值為23.892°、32.349°和52.599°(標(biāo)準卡片76-0562),分別對應(yīng)Mg2SiO4的(101)、(130)和(240)晶面。此外,42.916°和62.302°處的MgO峰位相對標(biāo)準峰位向右輕微偏移,其原因可能是結(jié)晶的MgO相內(nèi)部存在應(yīng)力,進而造成XRD峰位偏移[25]。另有研究表明[26],其偏移原因可能是著色離子進入MgO晶格引起晶格畸變所致。
隨反應(yīng)時間的延長和Cu2+濃度的增加,PEO膜層中Li0.92Mg4.08基體的峰減弱,晶相MgO和Mg2SiO4的峰增強。其原因是在PEO過程中火花或微弧區(qū)的瞬時溫度高,此時高溫足以導(dǎo)致Mg熔化,且隨反應(yīng)時間的延長有更多的SIO42–參與反應(yīng),有利于熔融Mg與吸附在LA103Z鎂鋰合金表面的O2–快速結(jié)合,生成MgO和Mg2SiO4。另外,Cu2+濃度增加導(dǎo)致電解液的電導(dǎo)率上升,反應(yīng)速率增加,更多的O2?與Mg結(jié)合生成MgO。膜層中并沒有發(fā)現(xiàn)Cu離子相關(guān)化合物的存在,也沒有發(fā)現(xiàn)含Li的結(jié)晶物質(zhì)及鈉鹽對應(yīng)的峰,這說明它們都以非晶態(tài)的形式存在。
圖1 不同工藝條件下PEO膜層的XRD圖譜
圖2為不同工藝條件下PEO膜層中MgO晶面(200)的X射線衍射峰,可發(fā)現(xiàn)隨反應(yīng)時間的延長及Cu2+濃度的增加,MgO相衍射峰向較低的角度移動。選用MgO晶面(200)、(220)和(222)的X射線衍射峰來確定MgO薄膜的晶格參數(shù)。表2為PEO膜層的晶格參數(shù)和晶胞體積,發(fā)現(xiàn)隨反應(yīng)時間的延長和Cu2+濃度的增加,晶胞體積及晶格參數(shù)(、、)增加。其中晶格參數(shù)采用布拉格定律計算,見式(1)—(2)。
圖3為PEO膜層的EDS成分。膜層主要由Mg、O、Si、Na、Cu元素組成,其中Mg來自基底,其他元素來自電解液。膜層由多種元素組成,擴大了太陽響應(yīng)范圍,有利于提高其光學(xué)特性。隨Cu2+濃度增加,膜層中的Mg、O、Si、Na的含量變化不明顯,這意味著膜層的基本成分非常穩(wěn)定。另外,Cu原子數(shù)分
數(shù)隨Cu2+濃度的增加而增加(圖4)。因為Cu的氧化物呈黑色或紅棕色,所以猜測膜層顏色與Cu元素的含量高度相關(guān)。圖5為PEO膜層(0.5 g/L CuSO4)的EDS mapping 結(jié)果,發(fā)現(xiàn)Mg、O、Si、Na和Cu元素均勻分布在PEO膜層表面。說明在PEO過程中,來自基體和電解液的元素同時沉積到鎂鋰合金基體上并形成PEO膜層。
圖2 不同工藝條件下PEO膜層中MgO晶面(200)的X射線衍射峰
表2 不同工藝條件對MgO晶格參數(shù)和晶胞體積的影響
圖3 PEO膜層的組成成分(1.25 g/L CuSO4)
圖4 Cu原子數(shù)分數(shù)
根據(jù)PEO過程中電壓上升的速率,將整個PEO過程分為4個階段,如圖6所示。Region 1為陽極氧化階段,此階段在外電場的作用下,電壓急劇升高,膜層表面可觀察到大量小氣泡,此階段形成很薄的鈍化膜。Region 2為多孔氧化膜的快速生長期,此階段電壓增長速率減緩,電壓達到擊穿電壓,樣品表面出現(xiàn)密集的小火花,火花放電同時在鎂鋰合金表面伴隨析氧反應(yīng)。Region 3和region 4為致密氧化膜的生長期,此階段電壓上升緩慢且保持平穩(wěn),膜層表面由微小火花變成較大、較稀疏的橘黃色火花。
圖7為不同反應(yīng)時間條件下PEO膜層(0.5 g/L CuSO4)的表面形貌。可以看出,隨反應(yīng)時間的延長,PEO膜層的小孔徑孔洞數(shù)量減少,計算出膜層表面的孔隙率從10.29%下降到5.73%,如圖8a所示。這是由于電解液的“冷淬”作用,在放電通道周圍不斷熔融—噴出—冷卻—凝固過程中形成孔洞結(jié)構(gòu),熔融物融合促使封閉孔洞,因此微孔數(shù)量減少。利用ImageJ軟件計算膜層表面孔徑,其孔徑大小由5 min時的2~8 μm增加到20 min時的5~24 μm。
圖5 PEO膜層的EDS mapping結(jié)果
圖6 電壓-時間曲線
圖9為不同CuSO4濃度條件下PEO膜層的表面形貌??梢钥闯?,隨Cu2+濃度的增加,膜層表面的微裂紋數(shù)量減少,且小孔徑孔洞數(shù)量和突起增多,孔隙率由5.4%增加到7.6%,如圖8b所示。計算圖9f膜層表面的孔徑大小為1~21 μm,觀察到膜層表面各孔洞的尺寸大小差距較大,且大孔與小孔分布不均勻,其中小孔徑集中,大孔徑分散在膜層表面。其原因是增大Cu2+濃度,使電解質(zhì)的電導(dǎo)率上升,電阻變小,成膜速率增加,更多的Cu2+進入膜層增加放電通道,所以微孔數(shù)量增多。
圖7 不同反應(yīng)時間下PEO膜層(0.5 g/L CuSO4)的微觀形貌
圖8 PEO膜層的孔隙率
圖10為不同工藝條件下PEO膜層的厚度與粗糙度。從圖10a可以看出,隨Cu2+濃度的增加,膜層厚度和粗糙度的增加幅度較小。這是由于CuSO4濃度相對Na2SiO3濃度較低及反應(yīng)終止電壓變化較?。▓D6)所致。有研究表明[27],反應(yīng)終止電壓越高,膜層的厚度與粗糙度越高。在PEO過程中,當(dāng)反應(yīng)電壓大于起弧電壓時,使高于臨界電場強度的導(dǎo)電通道數(shù)目增加,高溫產(chǎn)生的熔融氧化物大量堆積,增加膜層厚度和粗糙度[28]。圖10b表明,隨反應(yīng)時間的增加,膜層的厚度與粗糙度均呈線性增加,厚度從22.4 μm增加到43.5 μm。這是由于反應(yīng)時間較短時,LA103Z鎂鋰合金表面只生成薄的鈍化膜,延長反應(yīng)時間相當(dāng)于延長了成膜時間,在膜層表面生成更多的金屬氧化物使膜層厚度增加。
圖9 不同CuSO4濃度條件下PEO膜層的微觀形貌
圖10 不同工藝參數(shù)條件下制備PEO膜層的厚度與粗糙度
圖11—12為不同工藝條件下PEO膜層的橫截面微觀形貌??梢钥闯觯琍EO膜層與鎂鋰合金基體結(jié)合緊密,無裂縫,說明該膜層具備優(yōu)良的膜基結(jié)合力。另外,不難看出,隨Cu2+濃度和反應(yīng)時間的增加,膜層厚度呈增加趨勢,與測量結(jié)果相符。橫截面圖中可以觀察到很多孔洞,其原因是火花放電發(fā)生在樣品、電解液、氣膜三相界面處,形成“氣膜擊穿”,如圖13所示。圖13中棕色部分為熔融氧化物,由于電解液的“冷淬”作用,其在放電通道周圍不斷熔融—噴出—冷卻—凝固,同時伴隨火花放電和氧氣逸出,最終形成孔洞和突起結(jié)構(gòu)。
圖14為(***均勻色空間。在CIE***色度系統(tǒng)中,*表示從黑色(000)到白色(100)的轉(zhuǎn)變,*表示從綠色(負值)到紅色(正值)的轉(zhuǎn)變,*表示從藍色(負值)到黃色(正值)的轉(zhuǎn)變(范圍?128~ +128)??梢杂妙伾档目偤停▅*|+|*|+|*|)(|*|+|*|+|*|)來表示黑度,顏色值越小表示黑度越高,反之亦然。***值計算方法是先利用分光光度計測量波段為250~2 500 nm的反射率,選取其中
380~780 nm的反射率數(shù)據(jù)計算出膜層的三刺激值,在由三刺激值算出色度值。具體見式(3)—(6)[24]。
三刺激值的標(biāo)準方程是:
圖11 不同CuSO4條濃度件下PEO膜層的橫截面微觀形貌
Fig.11 The cross-sectional morphology of PEO coatings under different concentrations of CuSO4
圖12 不同反應(yīng)時間下PEO膜層的截面微觀形貌
圖13 PEO過程中火花放電示意圖
***值可式(5)計算得到,其中0=109.828,0=100,0=35.547。
圖14 L*a*b*均勻色空間
圖15是所制備膜層的宏觀照片。可看出,隨Cu2+濃度的增大,膜層顏色由銀灰色—紅褐色—黑色漸變。隨反應(yīng)時間的增加,膜層顏色逐漸接近黑色。采用CIE***色度系統(tǒng)和公式(5)—(6)對PEO膜層的顏色進行定量分析,結(jié)果如表3所示。隨Cu2+濃度的增加和反應(yīng)時間的延長,*值由81降低至29,與其黑度變化一致,*和*值呈降低趨勢,說明膜層顏色向藍色和綠色過渡。
圖15 制備膜層的宏觀照片
Fig.15 Macro photos of coatings
為了進一步探究膜層的發(fā)色成分,本工作采用XPS研究了膜層中元素的化學(xué)狀態(tài),如圖16所示。圖16a為膜層的全譜圖,包含Cu 2p3/2、Cu 2p1/2、O 1s、Mg KLL、Si 2p的元素峰。在高分辨譜中,Cu 2p3/2的結(jié)合能峰值由932.3 eV和933.4 eV擬合而成,對應(yīng)膜層中Cu的氧化物為+2價和+1價[29-30]。O 1s的結(jié)合能峰值由529.6 eV和531.2 eV擬合而成,529.6 eV表示CuO的電子結(jié)合能[31],531.2 eV表示MgO的電子結(jié)合能[32]。Si 2p的結(jié)合能峰值對應(yīng)SIO32–[33]。因此,結(jié)合前述XRD和EDS結(jié)果,可以斷定膜層中銅是以非晶氧化銅和氧化亞銅形式存在,且其為膜層的主要發(fā)色成分,其中Cu2O是紅色,CuO是黑色。
表3 不同工藝條件下制備PEO膜層的色度值
吸收率和發(fā)射率是評價熱控涂層的重要因素,其中發(fā)射率體現(xiàn)了物體向外界輻射能量的能力。太陽的吸收率[34]和發(fā)射率[35]由式(7)和式(8)計算得出。
表4為膜層的熱控性能測試結(jié)果??梢钥闯?,Cu2+濃度和反應(yīng)時間對膜層的吸收率和發(fā)射率有積極的影響,吸收率和發(fā)射率的增加可歸因于2個因素:一方面,前文推測得到Cu2+進入MgO晶格引起晶格畸變,這將降低其晶格結(jié)構(gòu)的對稱性,進而增強極性晶格的非諧振動、聲子耦合和聲子輻射作用,因此使得紅外輻射的發(fā)射和吸收得到增強[26];另一方面,是與膜層較高的粗糙度和厚度有關(guān),前文談到隨反應(yīng)時間的延長和Cu2+濃度的增加,膜層的厚度與表面粗糙度均有所增加,這將使其表面發(fā)生鏡面反射的次數(shù)減少,因此可提高膜層的發(fā)射率值。另外也有研究表明膜層的厚度和粗糙度對發(fā)射率有積極的影響[36]。
圖16 PEO膜層的XPS能譜圖
表4 不同工藝條件下膜層的熱控性能測試結(jié)果
圖17a—b為不同工藝條件下PEO膜層的反射率曲線(0.25~25 μm)。根據(jù)變化范圍可將曲線分為(0.25~2.5 μm)、(2.5~8.0 μm)、(8.0~25 μm)3段。在光線照射的條件下,膜層表面對應(yīng)尺寸大小的孔隙和突起會起到散射的作用,這可能是的反射率高于的原因。也就是說,孔隙和突起的尺寸分布約為幾微米(對應(yīng)),這對匹配波長的光具有最大的影響。圖17c—d為(0.25~2.5 μm)反射率曲線高倍圖,可以看出,隨反應(yīng)時間的延長和Cu2+濃度的增加,反射率曲線降低。此時,膜層對光的反射程度較低,從而吸收更多的光,這意味著膜層的吸收率升高,這與表4的計算結(jié)果相符合。
另外,膜層的表面結(jié)構(gòu)(圖9)也影響著膜層的熱控性能。依據(jù)基爾霍夫熱輻射定律,“在同樣的溫度下,各種不同物體對相同波長的單色輻射出射度與單色吸收比之比都相等,并等于該溫度下黑體對同一波長的單色輻射出色度”。即固定波長的,其中的范圍是遠紅外(3~35 μm)。所以,當(dāng)PEO膜層的孔隙大小為10~30 μm時,相近波長的紅外光會在膜層表面發(fā)生干涉現(xiàn)象,增加入射光在膜層表面多次反射吸收,所以其發(fā)射率也較高。本試驗中,當(dāng)硫酸銅質(zhì)量濃度為1.25 g/L、反應(yīng)時間為20 min、電源頻率為500 Hz、電流密度為6.25 A/dm2時,膜層的熱控性能最佳,吸收率高達0.815 0,發(fā)射率高達0.907 2。
圖17 不同工藝條件下制備的PEO膜層的太陽光譜反射率曲線
1)PEO膜層在微觀上具有典型的多孔結(jié)構(gòu),表面有一些突起。膜層表面孔徑大小為1~24 μm,不同尺寸微孔對膜層表面的影響是不同的,相近波長的紅外光會在膜層表面發(fā)生干涉現(xiàn)象,孔徑大小為10~ 30 μm時有利于膜層的發(fā)射率。膜層主要由MgO和Mg2SiO4相組成,并且隨反應(yīng)時間的延長及Cu2+濃度的增加,MgO相的衍射峰向較低的角度移動,其晶格參數(shù)增加。PEO膜層主要由Mg、O、Si、Na、Cu元素組成,隨Cu2+濃度的增加,PEO膜層中的Cu含量呈遞增趨勢。
2)隨反應(yīng)時間的延長和Cu2+濃度的增加,膜層厚度與粗糙度、和均增加,反射率降低(0.25~ 2.5 μm),色度值*降低,膜層顏色逐漸向黑色過渡。XPS結(jié)果表明,膜層的發(fā)色成分為Cu2O和CuO。
3)膜層表面孔隙率隨Cu2+濃度的增加而增加,隨反應(yīng)時間的延長而減小。當(dāng)硫酸銅質(zhì)量濃度為1.25 g/L和反應(yīng)時間為20 min時,膜層的熱控性能最佳,吸收率高達0.815 0,發(fā)射率高達0.907 2。
[1] YAMAUCHI N, UEDA N, OKAMOTO A, et al. DLC Coating on Mg-Li Alloy[J]. Surface and Coatings Techno-logy, 2007, 201(9-11): 4913-4918.
[2] HORNBERGER H, VIRTANEN S, BOCCACCINI A R. Biomedical Coatings on Magnesium Alloys - a Review[J]. Acta Biomaterialia, 2012, 8(7): 2442-2455.
[3] ZHANG Xue-song, CHEN Yong-jun, HU Jun-ling. Recent Advances in the Development of Aerospace Mate-rials[J]. Progress in Aerospace Sciences, 2018, 97: 22-34.
[4] LIU Jin-hui, SONG Ying-wei, CHEN Jia-chen, et al. The Special Role of Anodic Second Phases in the Micro-Gal-vanic Corrosion of EW75 Mg Alloy[J]. Electrochimica Acta, 2016, 189: 190-195.
[5] 馮凱, 李丹明, 何成旦, 等. 航天用超輕鎂鋰合金研究進展[J]. 特種鑄造及有色合金, 2017, 37(2): 140-144.
FENG Kai, LI Dan-ming, HE Cheng-dan, et al. Progress in Superlight Mg-Li Alloys for Aerospace Industry[J]. Special Casting & Nonferrous Alloys, 2017, 37(2): 140- 144.
[6] 羅列超, 趙榮根, 孟佳, 等. 航天器用鋁光亮陽極氧化涂層特性研究[J]. 無機材料學(xué)報, 2002, 17(6): 1269- 1276.
LUO Lie-chao, ZHAO Rong-gen, MENG Jia, et al. White Anodic Coating on Aluminium Surface for Spacecraft[J]. Journal of Inorganic Materials, 2002, 17(6): 1269-1276.
[7] KIOMARSIPOUR N, SHOJA RAZAVI R, GHANI K. Improvement of Spacecraft White Thermal Control Coa-tings Using the New Synthesized Zn-MCM-41 Pigment[J]. Dyes and Pigments, 2013, 96(2): 403-406.
[8] 李小晶, 文帥, 符博洋, 等. 負電壓對2A50鋁合金微弧氧化陶瓷層微觀結(jié)構(gòu)和耐磨性能的影響[J]. 表面技術(shù), 2019, 48(7): 135-141.
LI Xiao-jing, WEN Shuai, FU Bo-yang, et al. Effect of Negative Voltage on Microstructure and Wear Resistance of MAO Ceramic Coatings on 2A50 Aluminum Alloy[J]. Surface Technology, 2019, 48(7): 135-141.
[9] WU Xiao-hong, QIN Wei, CUI Bo, et al. The Influence of the Oxidation Time on the Optical Properties of the Ceramic Thermal Control Coating Prepared by Micro- Plasma Oxidation[J]. Journal of Materials Science, 2007, 42(17): 7251-7255.
[10] WU Xiao-hong, QIN Wei, CUI Bo, et al. White Anodized Thermal Control Coating on LY12 Aluminum Alloy[J]. Journal of Materials Processing Technology, 2008, 200(1-3): 405-409.
[11] WU Xiao-hong, SU Pei-bo, JIANG Zhao-hua, et al. In-fluences of Current Density on Tribological Characteris-tics of Ceramic Coatings on ZK60 Mg Alloy by Plasma Electrolytic Oxidation[J]. ACS Applied Materials & Interfaces, 2010, 2(3): 808-812.
[12] YAO Zhong-ping, SHEN Qiao-xiang, NIU Ao-xiang, et al. Preparation of High Emissivity and Low Absorbance Thermal Control Coatings on Ti Alloys by Plasma Elec-trolytic Oxidation[J]. Surface and Coatings Technology, 2014, 242: 146-151.
[13] YAO Zhong-ping, HU Bing, SHEN Qiao-xiang, et al. Pre-paration of Black High Absorbance and High Emissivity Thermal Control Coating on Ti Alloy by Plasma Elec-trolytic Oxidation[J]. Surface and Coatings Technology, 2014, 253: 166-170.
[14] XIA Qi-xing, WANG Jian-kang, LIU Guan-jie, et al. Effects of Electric Parameters on Structure and Thermal Control Property of PEO Ceramic Coatings on Ti Al-loys[J]. Surface and Coatings Technology, 2016, 307: 1284-1290.
[15] WU Xiao-hong, QIN Wei, CUI Bo, et al. Black Ceramic Thermal Control Coating Prepared by Microarc Oxida-tion[J]. International Journal of Applied Ceramic Techno-logy, 2007, 4(3): 269-275.
[16] LU Song-tao, QIN Wei, WU Xiao-hong, et al. Effect of Fe3+Ions on the Thermal and Optical Properties of the Ceramic Coating Grown In-Situ on AZ31 Mg Alloy[J]. Materials Chemistry and Physics, 2012, 135(1): 58-62.
[17] WANG Ling-qian, ZHOU Jian-song, LIANG Jun, et al. Thermal Control Coatings on Magnesium Alloys Prepared by Plasma Electrolytic Oxidation[J]. Applied Surface Science, 2013, 280: 151-155.
[18] LI Guo-qiang, WANG Ya-ping, QIAO Li-ping, et al. Pre-pa-ration and Formation Mechanism of Copper Incorpo-rated Micro-Arc Oxidation Coatings Developed on Ti- 6Al-4V Alloys[J]. Surface and Coatings Technology, 2019, 375: 74-85.
[19] ZHU Yuan-yuan, GAO Wei-dong, HUANG Hua-de, et al. Investigation of Corrosion Resistance and Formation Mechanism of Calcium-Containing Coatings on AZ31B Magnesium Alloy[J]. Applied Surface Science, 2019, 487: 581-592.
[20] SHI Xiao-ting, WANG Yu, LI Hong-yu, et al. Corrosion Resistance and Biocompatibility of Calcium-Containing Coatings Developed in Near-Neutral Solutions Contai-ning Phytic Acid and Phosphoric Acid on AZ31B Alloy[J]. Journal of Alloys and Compounds, 2020, 823: 153721.
[21] LI Hang, LU Song-tao, WU Xiao-hong, et al. Influence of Zr4+Ions on Solar Absorbance and Emissivity of Coatings Formed on AZ31 Mg Alloy by Plasma Electro-lytic Oxida-tion[J]. Surface and Coatings Technology, 2015, 269: 220-227.
[22] 李航, 盧松濤, 秦偉, 等. 電流密度對MgO-ZnO陶瓷薄膜結(jié)構(gòu)和熱控性能的影響[J]. 無機材料學(xué)報, 2017, 32(12): 1292-1298.
LI Hang, LU Song-tao, QIN Wei, et al. Current Density on Microstructure and Thermal Control Performances of MgO-ZnO Ceramic Coatings[J]. Journal of Inorganic Materials, 2017, 32(12): 1292-1298.
[23] YAO Zhong-ping, XIA Qi-xing, JU Peng-fei, et al. Investigation of Absorptance and Emissivity of Thermal Control Coatings on Mg–Li Alloys and OES Analysis during PEO Process[J]. Scientific Reports, 2016, 6: 29563.
[24] 荊其誠. 色度學(xué)[M]. 北京: 科學(xué)出版社, 1979. JING Qi-cheng. Colorimetry[M]. Beijing: Science Press, 1979.
[25] 顧艷紅, 蔡曉君, 寧成云, 等. 不同處理時間所得鎂合金微弧氧化膜的殘余應(yīng)力分析[J]. 材料保護, 2013, 46(4): 19-22, 7.
GU Yan-hong, CAI Xiao-jun, NING Cheng-yun, et al. Residual Stress Analysis of Micro-Arc Oxidation Coa-tings Prepared on Magnesium Alloy Substrate at Different Duration[J]. Materials Protection, 2013, 46(4): 19-22, 7.
[26] WANG Shu-ming. Effects of Fe on Crystallization and Properties of a New High Infrared Radiance Glass-Cera-mics[J]. Environmental Science & Technology, 2010, 44(12): 4816-4820.
[27] 趙晴, 章志友, 陳寧. 終止電壓對MB8鎂合金微弧氧化膜耐蝕性的影響[J]. 表面技術(shù), 2007, 36(4): 4-6.
ZHAO Qing, ZHANG Zhi-you, CHEN Ning. Effect of Final Voltage on Corrosion Resistance of MB8 Mg Alloys by Micro-Arc Oxidation[J]. Surface Technology, 2007, 36(4): 4-6.
[28] 陳明, 馬躍洲, 馬穎, 等. 電壓增幅對鎂合金微弧氧化膜層性能的影響[J]. 稀有金屬材料與工程, 2010, 39(11): 1943-1947.
CHEN Ming, MA Yue-zhou, MA Ying, et al. Effects of Voltage Increment on Performances of Micro-Arc Oxidation Coatings of Magnesium Alloys[J]. Rare Metal Materials and Engineering, 2010, 39(11): 1943-1947.
[29] GHIJSEN J, TJENG L H, VAN E J, et al. Electronic Structure of Cu2O and CuO[J]. Physical Review B, Condensed Matter, 1988, 38(16): 11322-11330.
[30] CAPECE F M, CASTRO V D, FURLANI C, et al. “Copper Chromite” Catalysts: XPS Structure Elucidation and Correlation with Catalytic Activity[J]. Journal of Electron Spectroscopy and Related Phenomena, 1982, 27(2): 119-128.
[31] NEFEDOV V I, FIRSOV M N, SHAPLYGIN I S. Elec-tronic Structures of MRhO2, MRh2O4, RhMO4and Rh2MO6on the Basis of X-Ray Spectroscopy and ESCA Data[J]. Journal of Electron Spectroscopy and Related Phenomena, 1982, 26(1): 65-78.
[32] AIKA K. Support and Promoter Effect of Ruthenium Catalyst II. Ruthenium/Alkaline Earth Catalyst for Activation of Dinitrogen[J]. Journal of Catalysis, 1985, 92(2): 305-311.
[33] YANG Wen, LIU Huan, REN Zhuang-he, et al. A Novel Multielement, Multiphase, and B-Containing SiOx Com-po-site as a Stable Anode Material for Li-Ion Batteries[J]. Advanced Materials Interfaces, 2019, 6(5): 1801631.
[34] KATUMBA G, OLUMEKOR L, FORBES A, et al. Op-tical, Thermal and Structural Characteristics of Carbon Nanoparticles Embedded in ZnO and NiO as Selective Solar Absorbers[J]. Solar Energy Materials and Solar Cells, 2008, 92(10): 1285-1292.
[35] 張敏, 梁卉, 張志丹, 等. W-AlN高溫太陽光譜選擇吸收涂層的結(jié)構(gòu)優(yōu)化與實驗驗證[J]. 中國科學(xué): 技術(shù)科學(xué), 2016, 46(1): 46-53.
ZHANG Min, LIANG Hui, ZHANG Zhi-dan, et al. Structural Optimization and Experimental Verification of W-AlN High Temperature Solar Spectrum Selective Ab-sor-bing Coatings[J]. Scientia Sinica (Technologica), 2016, 46(1): 46-53.
[36] LI Hang, LU Song-tao, QIN Wei, et al. In-Situ Grown MgO-ZnO Ceramic Coating with High Thermal Emit-tance on Mg Alloy by Plasma Electrolytic Oxidation[J]. Acta Astronautica, 2017, 136: 230-235.
Effect of CuSO4Concentration and Reaction Time on the Thermal Control Performance of PEO Coatings on LA103Z Mg-Li Alloy
,,,,,,,
(School of Physics and Electronic Technology, Liaoning Normal University, Liaoning Dalian 116029, China)
In this work, the black ceramic coatings with high absorption and high emission were grown in situ on the surface of LA103Z magnesium-lithium alloy. The influences of CuSO4concentration and reaction time on the thermal protection performance of the coatings were studied, and the relationship between the chromaticity value of the coating and its thermal control performance was established. Using plasma electrolytic oxidation technology (PEO), in Na2SiO3electrolyte system, the coating performance was optimized by adjusting CuSO4concentration and reaction time. The composition and microstructure of the coatings were determined by using scanning electron microscopy (SEM), X-ray photoelectron spectrometer (XPS), X-ray diffraction (XRD), CIE color system and energy spectrometer (EDS). The thermal control performance of the coatings was investigated by using the Perkin Elmer Lambda ultraviolet-visible near infrared spectrophotometer and TEMP 2000 solar absorption reflectometer. The coatings prepared were mainly composed with MgO and Mg2SiO4phases. The copper-related compounds, lithium crystalline substances and sodium salts in the coatings all exist in amorphous form. With the increasing of reaction time and CuSO4concentration, the intensity of diffraction peaks for crystalline phase MgO and Mg2SiO4in the coatings increased, and that of the matrix Li0.92Mg4.08decreased. The reason is that the ceramic coatings became thicker. And the position of MgO peak at 42.916° is slightly shifted to the right relative to the standard peak position. The lattice parameter and cell volume corresponding to the (200), (220) and (222) planes of MgO phase increase. The main elements of the PEO coatings are Mg, O, Si, Na, Cu, and the Cu content increases with the increase of CuSO4concentration. XPS results show that copper exists in the form of monovalent and bivalent ion, indicating that amorphous Cu2O and CuO exist in the coatings. The PEO coatings have a typical porous crater-like structure, with a slight prominent terrace around the pores. The coating is tightly adherent to the substrate without cracks, indicating a higher adhesion force. The number and porosity of micro pores increased with the increase of CuSO4concentration, but decreased with the prolongation of the reaction time. With the increasing of reaction time and CuSO4concentration, the thickness and roughness of the coatings increased and the reflectivity decreased (0.25-2.5 μm). The chromaticity value (*) decreased from 81 to 29, and accordingly the coating color gradually transformed from silver gray to light red, finally into black.It is found that the increasing of the thickness and roughness of the PEO coating has a positive effect on the thermal control performance. When the CuSO4concentration is 1.25 g/L and the reaction time is 20 min, the absorptivity and emissivity of the coating are as high as 0.815 0 and 0.907 2. At this time, the thermal control performance of the coating is the best. Adding CuSO4into the electrolyte and extending the reaction time appropriately can improve the thermal control performance of the PEO coatings on the surface of LA103Z magnesium lithium alloy, which lays an experimental foundation for the further application of the magnesium-lithium alloy in the aerospace field.
CuSO4; plasma electrolytic oxidation; thermal control coating; LA103Z Mg-Li alloy; chroma value; black ceramic coatings
TG174
A
1001-3660(2023)01-0285-13
10.16490/j.cnki.issn.1001-3660.2023.01.029
2021–12–15;
2022–04–14
2021-12-15;
2022-04-14
國家自然科學(xué)基金(51101080);興遼英才計劃青年拔尖人才項目(XYLC1807170);遼寧省百千萬人才工程資助項目;大連市科技創(chuàng)新基金項目(2021JJ13FG97)
The National Natural Science Foundation of China (51101080); Xingliao Talent Program (XLYC1807170); Liaoning BaiQianWan Talents Program; Dalian Science and Technology Innovation Fund Project (2021JJ13FG97)
邢爽(1996—),女,碩士研究生,主要研究方向為輕合金表面熱控涂層。
XING Shuang (1996-), Female, Postgraduate, Research focus: thermal control coatings on light alloys.
張敏(1978—),男,博士,教授,主要研究方向為太陽能選擇吸收涂層、表面耐蝕耐磨強化涂層。
ZHANG Min (1978-), Male, Doctor, Professor, Research focus: solar selective absorbing coatings, corrosion and wear resistant coating.
邢爽, 張敏, 楊佳, 等. 硫酸銅濃度及反應(yīng)時間對LA103Z鎂鋰合金PEO膜層熱控性能的影響[J]. 表面技術(shù), 2023, 52(1): 285-297.
XING Shuang, ZHANG Min, YANG Jia, et al. Effect of CuSO4Concentration and Reaction Time on the Thermal Control Performance of PEO Coatings on LA103Z Mg-Li Alloy[J]. Surface Technology, 2023, 52(1): 285-297.
責(zé)任編輯:萬長清