亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        各向異性對(duì)IC10高溫合金磨削表面完整性的影響

        2023-02-07 07:46:40朱志成楊昭潘博張帥奇楊忠學(xué)王賽張長春郭江
        表面技術(shù) 2023年1期
        關(guān)鍵詞:塑性變形晶面單晶

        朱志成,楊昭,潘博,張帥奇,楊忠學(xué),王賽,張長春,郭江

        精密與超精密加工

        各向異性對(duì)IC10高溫合金磨削表面完整性的影響

        朱志成1,楊昭2,潘博1,張帥奇3a,楊忠學(xué)3a,王賽3a,張長春3b,郭江1

        (1.大連理工大學(xué) 高性能精密制造全國重點(diǎn)實(shí)驗(yàn)室,遼寧 大連 116024;2.陸軍裝備部駐北京地區(qū)航空軍代室,北京 100037;3.北京航空材料研究院 a.先進(jìn)高溫結(jié)構(gòu)材料國防科技重點(diǎn)實(shí)驗(yàn)室 b.高溫材料研究所,北京 100095;)

        探究IC10單晶高溫合金緩進(jìn)磨削表面完整性的影響因素,提高關(guān)鍵零件的使用性能。通過制備不同晶面、同一晶面不同晶向試塊,采用剛玉砂輪在同一工藝參數(shù)下開展緩進(jìn)磨削實(shí)驗(yàn),研究各向異性對(duì)工件表面粗糙度、表面形貌、顯微硬度和塑性變形層的影響。在s= 20 m/s,w= 150 mm/min,p= 0.2 mm條件下,不同晶面磨削后的平均表面粗糙度為0.3~0.4 μm,其中(001)晶面加工后的平均表面粗糙度為0.32 μm,加工紋理均勻且輪廓起伏變化程度最小,(011)晶面的平均表面粗糙度為0.35 μm,(111)晶面的平均表面粗糙度為0.39 μm,其表面出現(xiàn)了深的犁溝及凹坑等現(xiàn)象;不同晶面加工后工件表面均發(fā)生了硬化,硬化程度由強(qiáng)到弱依次為(001)、(011)、(111)晶面;不同晶面磨削后表面存在微米級(jí)厚度的塑性變形層,其中(111)晶面塑性變形層最厚,厚度為3.6 μm,(011)和(001)晶面的厚度分別為2.8、2 μm。(001)晶面在不同晶向磨削后工件的表面粗糙度、表面形貌、顯微硬度和塑性變形層則無明顯的規(guī)律性變化。IC10單晶高溫合金各向異性對(duì)磨削后工件表面完整性具有一定影響,不同晶面由于塑性變形難度存在差異,導(dǎo)致磨削后其表面完整性存在規(guī)律性變化,其中(001)晶面加工后的表面粗糙度最低,加工紋理最平整,顯微硬度最大,塑性變形層厚度最小。由于顯微組織呈現(xiàn)隨機(jī)分布的圓形、方形、三角形等形態(tài),且不規(guī)則,導(dǎo)致同一晶面不同晶向?qū)δハ骱蠊ぜ砻嫱暾缘挠绊憻o明顯規(guī)律。

        IC10單晶高溫合金;緩進(jìn)磨削;各向異性;表面粗糙度;表面形貌;顯微硬度;塑性變形層

        作為“現(xiàn)代工業(yè)皇冠上的明珠”,航空發(fā)動(dòng)機(jī)的發(fā)展水平是一個(gè)國家國防和科技實(shí)力的重要體現(xiàn)。隨著國家對(duì)自主研發(fā)的新一代戰(zhàn)機(jī)和民航客機(jī)性能要求的不斷提高,航空領(lǐng)域?qū)Υ笸浦乇群痛蠛辣群娇瞻l(fā)動(dòng)機(jī)的需求日益迫切[1-2]。高溫合金因其優(yōu)異的高溫性能被廣泛用于航空發(fā)動(dòng)機(jī)?燃?xì)廨啓C(jī)的關(guān)鍵零部件材料,其用量占據(jù)發(fā)動(dòng)機(jī)總質(zhì)量的40%~60%[3]。其中,IC10高溫合金具有密度小、高溫強(qiáng)度大、抗蠕變等優(yōu)異性能,已被應(yīng)用于制造高推重比航空發(fā)動(dòng)機(jī)渦輪葉片[4-5]。目前,IC10高溫合金的研究主要集中在材料制備?組織性能表征和疲勞性能測(cè)試等方面[6-9],對(duì)于機(jī)械加工工藝研究較少。Yue等[10]通過在中間層添加B和Hf作為降低熔點(diǎn)的元素,開展了IC10高溫合金瞬態(tài)液相結(jié)合實(shí)驗(yàn),探究了溫度對(duì)焊接接頭組織演變的影響。Yang等[11]研究了電子束的輪廓和冷卻條件對(duì)IC10高溫合金激光鍍層幾何形貌和顯微組織的影響,并通過激光沉積熱過程數(shù)值模擬揭示了影響機(jī)理。高奇等[12-13]通過正交實(shí)驗(yàn),研究了IC10單晶高溫合金微銑削加工工藝參數(shù)對(duì)表面質(zhì)量的影響,并通過優(yōu)化獲得了理想的工藝參數(shù)組合。

        渦輪葉片在鑄造成型后需要去除一定的余量,以保證緣板?榫齒等裝配部位的尺寸精度和形位精度,然而高溫合金在切削時(shí)刀具容易發(fā)生黏附,磨損嚴(yán)重,致使生產(chǎn)成本過高。緩進(jìn)磨削具有高效率?高精度的優(yōu)勢(shì),廣泛應(yīng)用于航空領(lǐng)域的精密加工[14-16]。楊忠學(xué)等[17]研究了IC10高溫合金在緩進(jìn)給磨削過程中工藝參數(shù)對(duì)磨削表面完整性的影響,并獲得了較好表面質(zhì)量的參數(shù)域。Zhang等[18]研究了緩進(jìn)磨削工藝參數(shù)對(duì)IC10定向凝固高溫合金磨削力?磨削溫度?表面粗糙度及表面硬化層的影響,進(jìn)一步揭示了表面粗糙度和表面硬化層對(duì)疲勞壽命的影響。實(shí)驗(yàn)結(jié)果表明,表面粗糙度是疲勞壽命的主要影響因素,且表面粗糙度越高,疲勞壽命越低,而表面硬化有利于疲勞壽命的提高。Zhu等[19]研究了磨削工藝參數(shù)對(duì)IC10定向凝固高溫合金表面完整性的影響,實(shí)驗(yàn)結(jié)果表明,高的進(jìn)給速度或者大的切削深度會(huì)導(dǎo)致工件表面出現(xiàn)溝槽、分層或其他缺陷,并通過正交試驗(yàn)建立了工藝參數(shù)與磨削力?磨削溫度關(guān)系的經(jīng)驗(yàn)公式,驗(yàn)證了單因素實(shí)驗(yàn)的準(zhǔn)確性。

        針對(duì)IC10單晶高溫合金各向異性對(duì)緩進(jìn)磨削表面完整性方面的相關(guān)研究還未見報(bào)道。磨削作為渦輪葉片機(jī)加工的最后一道工序,其表面完整性對(duì)零件的疲勞壽命和服役性能有著重要影響[23-26],為了進(jìn)一步拓寬此種材料的工程應(yīng)用,文中針對(duì)IC10單晶高溫合金特有的各向異性開展了(001)、(001)和(111)等3個(gè)典型晶面的緩進(jìn)磨削實(shí)驗(yàn),在此基礎(chǔ)上選取(001)晶面探究了不同晶向?qū)δハ鞅砻嫱暾缘挠绊?,系統(tǒng)性地揭示了IC10單晶高溫合金各向異性對(duì)表面完整性的影響規(guī)律,并闡述了表面粗糙度?表面形貌?顯微硬度和顯微組織的演化機(jī)制。

        1 實(shí)驗(yàn)

        1.1 材料

        實(shí)驗(yàn)材料采用IC10單晶高溫合金,元素組成如表1所示。通過螺旋選晶法和定向凝固工藝澆注試棒原材料,采用晶向測(cè)量儀檢測(cè)試棒的生長方向偏差,實(shí)驗(yàn)選取的試棒生長方向與[001]晶向的偏差為4.9°(一般認(rèn)為在8°內(nèi)合格),然后進(jìn)行固溶時(shí)效處理。

        表1 IC10高溫合金化學(xué)成分組成

        1.2 方案

        采用的加工設(shè)備為Chevalier FSG–B818CNC緩進(jìn)三軸磨床,切削液為巴索乳化液(質(zhì)量分?jǐn)?shù)為3%)。砂輪為圣戈班公司諾頓系列、牌號(hào)為WA/PA80– F25VCF2的白剛玉?鉻剛玉混合磨料砂輪。實(shí)驗(yàn)裝置如圖1所示。首先使用線切割分別將試棒切出(001)?(011)和(111)等3個(gè)典型晶面的方形試塊,獲得不同晶面工件。然后選取(001)晶面制備金相樣件,選擇冰醋酸作為腐蝕液,腐蝕時(shí)間為10 s,使用光學(xué)顯微鏡觀察枝晶的生長方向,確定[100]和[010]晶向后沿與[100]方向成不同角度()切割,制作不同晶向的試塊,沿不同晶向磨削示意圖如圖2所示。為了方便表征,(001)晶面不同晶向采用與[100]方向的夾角表示。所有工件均制成20 mm×10 mm×15 mm(長×寬×高)的長方體,采用粗磨?精磨去除線切割的重熔層,以保證工件的初始表面狀態(tài)一致。

        不同晶面、(001)晶面不同晶向的削實(shí)驗(yàn)工藝參數(shù)均為砂輪線速度20 m/s、工件進(jìn)給速度150 mm/min、磨削深度0.2 mm,選用逆磨的加工方式。為了避免砂輪磨損對(duì)實(shí)驗(yàn)結(jié)果造成影響,每加工1個(gè)工件后均修整1次砂輪。

        圖1 實(shí)驗(yàn)裝置

        圖2 不同晶向磨削示意圖

        表面粗糙度采用表面輪廓儀(Talysurf CLI2000)測(cè)量,分辨率為0.8 nm,測(cè)量方向垂直于磨削紋理,在每個(gè)工件表面隨機(jī)選取5個(gè)測(cè)量位置。表面形貌采用激光共聚焦顯微鏡(OLYMPUS OLS5000)和掃描電鏡(ZEISS Sigma 300)進(jìn)行觀察。沿垂直于磨削表面剖切制作金相試樣,并觀察其顯微硬度和塑性變形層,分別采用顯微維氏硬度計(jì)(Qness)和掃描電鏡進(jìn)行檢測(cè)。在測(cè)量前,使用酒精擦拭所有加工后的工件,并用熱風(fēng)槍干燥,以保證工件表面無油污?碎屑等,確保測(cè)量的準(zhǔn)確性。

        2 結(jié)果及分析

        2.1 不同晶面磨削后表面完整性

        IC10單晶高溫合金屬于航空領(lǐng)域典型的難加工延塑性合金[27],晶體結(jié)構(gòu)為典型的面心立方晶體。單晶高溫合金無晶界,材料去除方式主要通過外力使晶格內(nèi)部產(chǎn)生位錯(cuò),發(fā)生滑移,直至累積到一定程度后發(fā)生斷裂,在晶格內(nèi)部遇到的主要位錯(cuò)阻力為派納力,見式(1)[28]。

        式中:為切變模量;為泊松比;為晶面間距;為滑移方向上的原子間距。

        由式(1)可知,派納力主要由晶面間距和滑移方向上的原子間距決定,晶面間距越大,滑移方向上原子間距越小,派納力越小,越容易發(fā)生剪切滑移,從而導(dǎo)致塑性變形。由于面心立方晶體結(jié)構(gòu)中棱長相等,==,晶面間距的計(jì)算見式(2)[29]。

        圖3 (111)晶面滑移系示意圖

        Fig.3 Schematic diagram of slip system of (111) crystal plane

        當(dāng)外部剪切應(yīng)力與(111)晶面存在夾角時(shí),在滑移面上的有效分切應(yīng)力如式(3)。

        因?yàn)椋?01)與(111)晶面之間的夾角大于(011)與(111)晶面之間夾角,因此以此反推可知,在同樣的加工條件下,加工(111)晶面最容易發(fā)生塑性變形,(011)晶面次之,(001)晶面最難發(fā)生塑性變形。

        如圖4所示,不同晶面加工后的平均表面粗糙度為0.3~0.4 μm,(111)晶面加工后平均表面粗糙度約為0.39 μm,(011)和(001)晶面的平均表面粗糙度依次約為0.35 μm和0.32 μm。表面粗糙度用于反映工件表面較小間距的微觀凹凸不平程度,其值與被加工表面微觀形貌的幾何高度變化和均勻程度有很大聯(lián)系。由于磨削表面微觀形貌由砂輪表面隨機(jī)分布的大量磨粒經(jīng)過多次滑擦?耕犁?切削所形成,其中滑擦僅會(huì)發(fā)生彈性變形,材料并未發(fā)生永久變形或被去除,在切削階段將工件材料進(jìn)行剝離,以形成切屑,耕犁階段在工件表面發(fā)生了永久塑性變形,材料未被去除,也不會(huì)發(fā)生彈性回復(fù),因此可以認(rèn)為常規(guī)檢測(cè)到的工件表面微觀形貌主要為材料加工后引起的永久塑性變形,即加工完成后耕犁造成工件微觀表面凹凸不平。IC10單晶高溫合金的剪切滑移面為{111}晶面族,在相同加工工藝參數(shù)下,(111)晶面最容易發(fā)生塑性變形,從而使得表面的耕犁程度最大,形成的加工紋理峰谷差異最大,加工后表面粗糙度最高。同理,(011)晶面磨削后的表面粗糙度次之,(001)晶面的最小。

        圖4 不同晶面加工后表面粗糙度

        如圖5所示,從表面形貌來看,(001)晶面在磨削后工件表面加工紋理最均勻,存在部分由磨粒耕犁引起的材料隆起現(xiàn)象;(011)晶面較(001)晶面磨削后形成的峰谷變化更大,出現(xiàn)了較深的溝壑;(111)晶面則出現(xiàn)了不規(guī)則的塑性流動(dòng)、隆起及較深的犁溝,表面加工紋理更加不規(guī)則。如圖6所示,對(duì)垂直加工紋理進(jìn)行輪廓分析發(fā)現(xiàn),不同晶面磨削后表面波峰波谷起伏程度并不相同,沿(001)晶面加工后其表面輪廓分布最均勻,(011)晶面次之,(111)晶面加工后的形貌峰谷變化幅度最大。假設(shè)同一砂輪的磨粒分布情況在磨削前后并未發(fā)生明顯的變化,由于砂輪表面的磨粒分布不均勻,大小?形狀呈現(xiàn)隨機(jī)分布狀態(tài),這會(huì)導(dǎo)致在磨削過程中部分磨粒僅發(fā)生了滑擦,另一部分磨粒發(fā)生了滑擦?耕犁,而只有發(fā)生了滑擦?耕犁?切削整個(gè)階段的磨粒才是有效的切削磨粒,因此導(dǎo)致表面輪廓出現(xiàn)了不規(guī)則的高低變化差異。(111)晶面最容易發(fā)生剪切滑移,在相同的工藝參數(shù)下發(fā)生的塑性變形最劇烈,導(dǎo)致表面塑性流動(dòng)及隆起溝壑等現(xiàn)象最嚴(yán)重,且部分區(qū)域紋理錯(cuò)亂。同理,(011)晶面加工后表面形貌次之,(001)晶面加工后表面紋理一致性最好。

        圖5 不同晶面加工后表面SEM形貌

        圖6 不同晶面加工后表面三維形貌分布

        如圖7所示,不同晶面加工后表層均產(chǎn)生硬化,(001)晶面硬化程度最強(qiáng),(011)晶面次之,(111)晶面硬化程度最弱。在IC10高溫合金緩進(jìn)磨削過程中磨削溫度可達(dá)到1 000 ℃以上[18],磨削后的工件表面仍然具有很高的溫度。采用強(qiáng)力的切削液高速冷卻,使得工件表面發(fā)生了磨削淬硬現(xiàn)象。由于在磨削過程中克服材料的彈塑性變形所做的功大部分轉(zhuǎn)換為磨削熱,在同一工藝參數(shù)下材料的去除量基本一致,(111)晶面最容易塑性變形,在材料去除過程中遇到的阻力最小,去除同樣體積的材料做的功最小,釋放出的磨削熱最小,在切削液的冷卻下磨削淬硬效果最差,因此(111)晶面顯微硬度最小,而(001)晶面最難發(fā)生塑性變形,所以去除同等體積材料做功最大,釋放的磨削熱量最大,淬硬效果更嚴(yán)重,顯微硬度最大。(011)晶面顯微硬度則介于兩者之間。

        圖7 不同晶面加工后顯微硬度

        如圖8所示,磨削表面下存在微米級(jí)厚度的塑性變形層,顯微組織扭曲拉長,較基體變化明顯。這是因?yàn)樵诰忂M(jìn)磨削過程中磨粒與材料的相互作用會(huì)產(chǎn)生很大的磨削力,在磨削表面下出現(xiàn)高應(yīng)力和高應(yīng)變率梯度,致使靠近磨削表面處發(fā)生了大量位錯(cuò),導(dǎo)致材料出現(xiàn)嚴(yán)重塑性變形,隨著深度的增加,顯微組織逐漸與基體保持一致。其中,(001)晶面塑性變形層的厚度為2 μm,(011)晶面的厚度為2.8 μm,(111)晶面塑性變形層的厚度為3.6 μm。這是由于(111)晶面為IC10單晶高溫合金的剪切滑移面,在相同工藝參數(shù)下,(111)晶面更容易發(fā)生剪切滑移,塑性變形最劇烈,變形能以位錯(cuò)的形式儲(chǔ)存于材料內(nèi)部,導(dǎo)致塑性變形層厚度最大。(011)晶面發(fā)生塑性變形的難度(001)晶面更大,因此(011)晶面塑性變形層厚度次之,(001)晶面塑性變形層厚度最小。

        圖8 不同晶面塑性變形層厚度SEM形貌

        2.2 不同晶向磨削后表面完整性

        在同一工藝參數(shù)下,沿(001)晶面不同晶向加工后工件的表面粗糙度、表面形貌、顯微硬度和塑性變形層厚度如圖9—12所示。當(dāng)在0°~90°間變化時(shí),表面粗糙度在0.3~0.4 μm間波動(dòng),表面加工輪廓的起伏程度在2.7 μm內(nèi),基體硬度基本維持在400HV左右,沿=75°磨削加工后,工件的顯微硬度最大。沿=0°和=60°加工后,塑性變形層最厚,同一晶面不同晶向緩進(jìn)磨削后表面完整性并未呈現(xiàn)明顯的規(guī)律性變化。針對(duì)上述結(jié)果,對(duì)比了不同單晶高溫合金磨削后的實(shí)驗(yàn)現(xiàn)象。DD98單晶高溫合金平面磨削后在同一晶面的不同晶向的表面粗糙度呈現(xiàn)對(duì)稱趨勢(shì),在沿(001)晶面與[100]成45°晶向磨削時(shí)表面粗糙度最小,且表面加工紋理最平整[21]。為了進(jìn)一步探索實(shí)驗(yàn)現(xiàn)象的形成機(jī)制,分別制作金相樣件對(duì)比DD98和IC10單晶熱處理后的組織,發(fā)現(xiàn)其顯微組織形態(tài)并不相同,如圖13所示。DD98熱處理后,?相呈現(xiàn)較規(guī)則的方形,而IC10熱處理后其?相呈現(xiàn)隨機(jī)分布的圓形、方形、三角形等形態(tài)。由于單晶高溫合金熱處理后,?相作為加強(qiáng)相其體積分?jǐn)?shù)會(huì)占60%以上,其組織形態(tài)嚴(yán)重影響了力學(xué)性能。由此,當(dāng)沿IC10同一晶面不同晶向進(jìn)行緩進(jìn)磨削時(shí),加強(qiáng)相?形態(tài)隨機(jī)分布導(dǎo)致沿不同方向加工時(shí)在顯微組織的角度來觀察并無明顯差異,因此同一晶面不同晶向加工后表面完整性并未呈現(xiàn)明顯的周期性變化。實(shí)驗(yàn)結(jié)果表明,鎳基單晶高溫合金力學(xué)性能各向異性,在一定程度上會(huì)受到顯微組織形態(tài)的影響。

        圖9 不同晶向加工后表面粗糙度

        圖10 不同晶向加工后表面形貌

        圖11 不同晶向加工后顯微硬度

        圖12 不同晶向加工后塑性變形層厚度

        圖13 不同單晶高溫合金顯微組織形態(tài)SEM形貌

        3 結(jié)論

        通過對(duì)IC10單晶高溫合金不同晶面和(001)晶面不同晶向的緩進(jìn)磨削實(shí)驗(yàn),探究了上述因素對(duì)表面完整性的影響規(guī)律,并對(duì)其出現(xiàn)的現(xiàn)象進(jìn)行了討論,得到如下結(jié)論。

        1)IC10單晶高溫合金晶格為典型的面心立方結(jié)構(gòu),材料去除以晶格剪切滑移的形式進(jìn)行,其中{111}晶面族為滑移面。由于相同工藝參數(shù)下沿不同晶面磨削時(shí)發(fā)生塑性變形的難易程度不同,進(jìn)而對(duì)加工后工件表面完整性會(huì)產(chǎn)生一定影響。實(shí)驗(yàn)結(jié)果表明,(001)晶面加工后具有最優(yōu)的表面質(zhì)量,且顯微硬度最大,塑性變形層厚度最小。

        2)IC10單晶高溫合金顯微組織呈現(xiàn)隨機(jī)分布的圓形、方形、三角形等多種狀態(tài),導(dǎo)致同一晶面不同晶向磨削后工件表面完整性未呈現(xiàn)周期性變化。

        單晶渦輪葉片的服役環(huán)境通常在1 000 ℃以上,且伴隨著復(fù)雜的應(yīng)力環(huán)境,其高溫下的疲勞壽命與表面完整性有著重要聯(lián)系。磨削是渦輪葉片機(jī)加工的最后一道工序,文中探究了緩進(jìn)給磨削中各向異性對(duì)IC10單晶高溫合金表面完整性的影響,(001)晶面磨削后有較好的表面質(zhì)量及較薄的塑性變形層,有利于零件獲得更高的疲勞壽命,對(duì)渦輪葉片機(jī)械加工前工序鑄造的定向生長方向可以提供一定參考,以實(shí)現(xiàn)零件更優(yōu)異的服役性能。后期的研究方向?qū)⒕劢褂诮⒐ぜ砻嫱暾耘c零件服役過程中的斷裂或疲勞破壞的系統(tǒng)性聯(lián)系。

        [1] 劉大響, 金捷, 彭友梅, 等. 大型飛機(jī)發(fā)動(dòng)機(jī)的發(fā)展現(xiàn)狀和關(guān)鍵技術(shù)分析[J]. 航空動(dòng)力學(xué)報(bào), 2008, 23(6): 976-980.

        LIU Da-xiang, JIN Jie, PENG You-mei, et al. Summa-rization of Development Status and Key Technologies for Large Airplane Engines[J]. Journal of Aerospace Power, 2008, 23(6): 976-980.

        [2] GOHARDANI A S, DOULGERIS G, SINGH R. Chall-enges of Future Aircraft Propulsion: A Review of Distri-buted Propulsion Technology and Its Potential Application for the All Electric Commercial Aircraft[J]. Progress in Aerospace Sciences, 2011, 47(5): 369-391.

        [3] 丁文鋒, 苗情, 李本凱, 等. 面向航空發(fā)動(dòng)機(jī)的鎳基合金磨削技術(shù)研究進(jìn)展[J]. 機(jī)械工程學(xué)報(bào), 2019, 55(1): 189-215.

        DING Wen-feng, MIAO Qing, LI Ben-kai, et al. Review on Grinding Technology of Nickel-Based Superalloys Used for Aero-Engine[J]. Journal of Mechanical Engin-eering, 2019, 55(1): 189-215.

        [4] 趙希宏, 黃朝暉, 譚永寧, 等. 新型Ni3Al基定向高溫合金IC10[J]. 航空材料學(xué)報(bào), 2006, 26(3): 20-24.

        ZHAO Xi-hong, HUANG Zhao-hui, TAN Yong-ning, et al. New Ni3Al-Based Directionally-Solidified Superalloy IC10[J]. Journal of Aeronautical Materials, 2006, 26(3): 20-24.

        [5] 張宏建, 溫衛(wèi)東, 崔海濤, 等. IC10合金的高溫拉伸性能[J]. 機(jī)械工程材料, 2008, 32(3): 52-56.

        ZHANG Hong-jian, WEN Wei-dong, CUI Hai-tao, et al. Tensile Behaviors of IC10 Alloy at High Temperatures[J]. Materials for Mechanical Engineering, 2008, 32(3): 52-56.

        [6] 周靜怡, 趙文俠, 鄭真, 等. 硼含量對(duì)IC10高溫合金凝固行為的影響[J]. 材料工程, 2014, 42(8): 90-96.

        ZHOU Jing-yi, ZHAO Wen-xia, ZHENG Zhen, et al. Effect of Boron Content on Solidification Behavior of IC10 Superalloy[J]. Journal of Materials Engineering, 2014, 42(8): 90-96.

        [7] 柴祿, 侯金保, 張勝. 工藝參數(shù)對(duì)IC10單晶TLP接頭組織和性能的影響[J]. 焊接學(xué)報(bào), 2018, 39(8): 114-118.

        CHAI Lu, HOU Jin-bao, ZHANG Sheng. Influence of Process Parameters on Microstructure and Properties of IC10 Single Crystal TLP Joints[J]. Transactions of the China Welding Institution, 2018, 39(8): 114-118.

        [8] 王樹志, 劉廣華, 王本志, 等. IC10單晶高溫合金葉片熒光滲透檢測(cè)的缺陷顯示[J]. 無損檢測(cè), 2017, 39(1): 35-37.

        WANG Shu-zhi, LIU Guang-hua, WANG Ben-zhi, et al. The Defect Indication of Fluorescent Penetrating Inspection for IC10 Single Crystal Super Alloy Blade[J]. Nondestructive Testing Technologying, 2017, 39(1): 35-37.

        [9] 楊碩, 常保華, 邢彬, 等. 強(qiáng)制冷卻對(duì)IC10合金激光熔覆組織與硬度的影響[J]. 焊接學(xué)報(bào), 2018, 39(3): 31-35.

        YANG Shuo, CHANG Bao-hua, XING Bin, et al. Influ-ences of Forced Cooling on the Microstructure and Microhardness in Laser Metal Deposition of IC10 Super Alloy[J]. Transactions of the China Welding Institution, 2018, 39(3): 31-35.

        [10] YUE Xiong, LIU Feng-mei, CHEN He-xing, et al. Effect of Bonding Temperature on Microstructure Evolution during TLP Bonding of a Ni3Al Based Superalloy IC10[J]. MATEC Web of Conferences, 2018, 206: 03004.

        [11] YANG Shuo, DU Dong, CHANG Bao-hua. Studies of the Influence of Beam Profile and Cooling Conditions on the Laser Deposition of a Directionally-Solidified Superalloy[J]. Materials (Basel, Switzerland), 2018, 11(2): 240.

        [12] 高奇, 鞏亞東, 周云光. 單晶Ni3Al基高溫合金微銑削表面粗糙度試驗(yàn)研究[J]. 中國機(jī)械工程, 2016, 27(6): 801-804.

        GAO Qi, GONG Ya-dong, ZHOU Yun-guang. Experimental Study on Surface Roughness in Micro-Milling of Single Crystal Ni3Al-Based Superalloy[J]. China Mechanical Engineering, 2016, 27(6): 801-804.

        [13] GAO Qi, GONG ya dong, ZHOU yun guang. Experi-mental Study on Surface Quality in Micro-Milling of Single Crystal Superalloy[J]. Advanced Materials Research, 2016, 1136: 196-202.

        [14] 馮克明, 趙金墜. 先進(jìn)磨削技術(shù)應(yīng)用現(xiàn)狀與展望[J]. 軸承, 2020(4): 60-67.

        FENG Ke-ming, ZHAO Jin-zhui. Present Situation and Prospect of Advanced Grinding Technology Application[J]. Bearing, 2020(4): 60-67.

        [15] 徐九華, 張志偉, 傅玉燦. 鎳基高溫合金高效成型磨削的研究進(jìn)展與展望[J]. 航空學(xué)報(bào), 2014, 35(2): 351-360.

        XU Jiu-hua, ZHANG Zhi-wei, FU Yu-can. Review and Prospect on High Efficiency Profile Grinding of Nickel- Based Superalloys[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 351-360.

        [16] 張浩, 劉吉川. 渦輪葉片榫齒加工方法分析[J]. 內(nèi)燃機(jī), 2019(4): 31-33.

        ZHANG Hao, LIU Ji-chuan. Analysis of Machining Method of Turbine Blade Tenon Tooth[J]. Internal Comb-ustion Engines, 2019(4): 31-33.

        [17] 楊忠學(xué), 張帥奇, 張強(qiáng). IC10定向凝固高溫合金緩進(jìn)給磨削表面完整性研究[J]. 航空制造技術(shù), 2019, 62(6): 62-70.

        YANG Zhong-xue, ZHANG Shuai-qi, ZHANG Qiang. Surface Integrity of IClO Directionally Solidified Supe-ralloy in Creep Feed Grinding[J]. Aeronautical Manufa-cturing Technology, 2019, 62(6): 62-70.

        [18] ZHANG Shuai-qi, YANG Zhong-xue, JIANG Rui-song, et al. Effect of Creep Feed Grinding on Surface Integrity and Fatigue Life of Ni3Al Based Superalloy IC10[J]. Chinese Journal of Aeronautics, 2021, 34(1): 438-448.

        [19] ZHU Xiao-xiang, WANG Wen-hu, JIANG Rui-song, et al. Performances of Ni3Al-Based Intermetallic IC10 in Creep-Feed Grinding[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(3): 809- 820.

        [20] 張健, 王莉, 王棟, 等. 鎳基單晶高溫合金的研發(fā)進(jìn)展[J]. 金屬學(xué)報(bào), 2019, 55(9): 1077-1094.

        ZHANG Jian, WANG Li, WANG Dong, et al. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. Acta Metallurgica Sinica, 2019, 55(9): 1077-1094.

        [21] CAI Ming, GONG Ya-dong, SUN Yao, et al. Exper-imental Study on Grinding Surface Properties of Nickel- Based Single Crystal Superalloy DD5[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(1): 71-85.

        [22] ZHOU Yun-guang, GONG Ya-dong, CAI Ming, et al. Study on Surface Quality and Subsurface Recrystallization of Nickel-Based Single-Crystal Superalloy in Micro- Grinding[J]. The International Journal of Advanced Man-ufacturing Technology, 2017, 90(5): 1749-1768.

        [23] 丁文鋒, 李敏, 李本凱, 等. 難加工金屬材料磨削加工表面完整性研究進(jìn)展[J]. 航空材料學(xué)報(bào), 2021, 41(4): 36-56.

        DING Wen-feng, LI Min, LI Ben-kai, et al. Recent Progress on Surface Integrity of Grinding Difficult-to-Cut Metal Materials[J]. Journal of Aeronautical Materials, 2021, 41(4): 36-56.

        [24] QUAN Fang, CHEN Zhi-tong, LI Qian-tong, et al. Effects of Process Combinations of Milling, Grinding, and Poli-shing on the Surface Integrity and Fatigue Life of GH4169 Components[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2020, 234(3): 538-548.

        [25] 羅學(xué)昆, 吳小燕, 王科昌, 等. 表面完整性對(duì)FGH95合金高溫疲勞性能的影響[J]. 航空材料學(xué)報(bào), 2020, 40(2): 53-60.

        LUO Xue-kun, WU Xiao-yan, WANG Ke-chang, et al. Effect of Surface Integrity Evolution on High-Temperature Fatigue Property of FGH95 Alloy[J]. Journal of Aerona-utical Materials, 2020, 40(2): 53-60.

        [26] GUO Jiang, GOH M H, WANG Pan, et al. Investigation on Surface Integrity of Electron Beam Melted Ti-6Al-4 V by Precision Grinding and Electropolishing[J]. Chinese Journal of Aeronautics, 2021, 34(12): 28-38.

        [27] 高賓華, 保文成, 陳超群, 等. 延塑性航空合金磨削砂輪粘附及粘附抑制技術(shù)的研究現(xiàn)狀與展望[J]. 航空制造技術(shù), 2021, 64(7): 53-71.

        GAO Bin-hua, BAO Wen-cheng, CHEN Chao-qun, et al. Research Status and Future Development of Wheel Loading and Suppressed in Grinding of Ductility Aeronautical Alloys[J]. Aeronautical Manufacturing Technology, 2021, 64(7): 53-71.

        [28] 陳日曜. 金屬切削原理[M]. 2版. 北京:機(jī)械工業(yè)出版社, 2012: 196-203.

        CHEN Ri-yao. The Theory of Metal Cut[M]. 2nded. Beijing: China Machine Press, 2012: 196-203.

        [29] 周云光. 鎳基單晶高溫合金微磨削工藝?yán)碚撆c關(guān)鍵技術(shù)研究[D]. 沈陽: 東北大學(xué), 2017: 21-25.

        ZHOU Yun-guang. Study on the Technological Theory and Key Technology in Micro Grinding Nickel-based Single Crystal Superalloy[D]. Shenyang: Northeastern University, 2017: 21-25.

        Effect of Anisotropy on Surface Integrity of IC10 Superalloy after Grinding

        1,2,1,3a,3a,3a,3b,1

        (1. State Key Laboratory of High-Performance Precision Manufacturing, Department of Mechanical Engineering, Dalian University of Technology, Liaoning Dalian 116024, China; 2. Military Representative Office of Army Equipment Department in Beijing, Beijing 100037, China; 3. Beijing Institute of Aeronautical Materials, a. Key Laboratory of Advanced High Temperature Structural Materials, b. Institute of High Temperature Materials, Beijing 100095, China)

        IC10 superalloy has been used to manufacture turbine blades of high thrust-to-weight ratio aero-engine due to its excellent properties such as small specific gravity, high strength and creep resistance under high-temperature environment. Creep feed grinding which has the characteristics of high efficiency and high precision is applied for precision machining after blade casting. Surface integrity after processing has an important impact on the fatigue life and service performance of the parts. Owing to the difficult-to-machine characteristics of superalloy, it is difficult to ensure the surface integrity of the workpiece after grinding. Specifically, surface integrity of single crystal superalloy is affected not only by the grinding process parameters, but also by anisotropy. Therefore, the work aims to systematically study the effect of the anisotropy of IC10 single crystal superalloy on the surface roughness, surface morphology, microhardness and plastic deformation layer after grinding and explore its engineering application.The sticks of IC10 single crystal superalloy were poured by the spiral crystal selection method and the directional solidification process. The stick of which growth direction from the [001] crystal orientation was 4.9° was selected (generally considered to be qualified within 8°), and then subject to solid solution process and the aging treatment. The workpieces with three typical crystal planes (001), (011) and (111) were cut by wire cutting, and the (001) crystal plane was selected to make metallographic samples to determine [100] and [010] crystal orientation according to dendrite direction. The workpieces with different crystal orientations were cut along the [100] crystal orientation every 15°. All workpieces were cut into 20 mm×10 mm×15 mm cuboid. Before the experiment, the surface of the workpieces was finely ground to remove the remelted layer caused by the wire cutting to ensure that workpieces were consistent. Creep feed grinding experiments were carried out along different crystal planes and different crystal directions under the same process parameter (grinding wheel linear speed of 20 m/s, workpiece feed speed of 150 mm/min, and grinding depth of 0.2 mm). The experimental equipment was a three-axis creep feed grinder (Chevalier FSG-B818CNC), the coolant was an emulsion (Basso) with a concentration of 3wt.%, and the grinding wheel was mixed abrasive grinding wheel with white corundum and chromium corundum (Norton WA/PA80-F25VCF2). The surface profiler (Talysurf CLI2000) was used to measure the surface roughness of the workpiece after grinding and the laser confocal microscope (OLYMPUS OLS5000) and the scanning electron microscope (ZEISS Sigma 300) were used to observe the surface morphology. The micro Vickers hardness tester (Qness) was used to test the microhardness, and the scanning electron microscope was used to observe the plastic deformation layer. The surface roughnessof different crystal planes after grinding was between 0.3-0.4 μm. The surface roughnessof (001) crystal plane after processing was 0.32 μm. The surface processing texture was uniform and the degree of contour fluctuation was minimal. The surface roughnessof (011) crystal surface after processing was 0.35 μm. The surface roughnessof (111) crystal plane after grinding was 0.39 μm, and deep furrows and pits appeared on the surface of the workpiece. The surface of different crystal planes hardened after processing, and the degree of hardening was (001), (011) and (111) from strong to weak. There was plastic deformation layer with micron-sized thickness under the grinding surface. The (111) crystal plane had the thickest plastic deformation layer at 3.6 μm, and the thickness of (011) and (001) crystal planes were respectively 2.8 μm and 2 μm. The surface roughness, surface morphology, microhardness and plastic deformation layer of (001) crystal plane with different crystal orientations after grinding did not show obvious regular changes. The anisotropy of IC10 single crystal superalloy has a certain effect on the surface integrity of workpiece after grinding. The surface integrity of different crystal planes after grinding changes regularly due to difference in plastic deformation of different crystal planes. The surface roughness of (001) crystal plane is the lowest after processing, the surface processing texture is the smoothest, the microhardness is the largest, and the thickness of plastic deformation layer is the smallest. However, the status of microstructure is randomly distributed such as circles, squares, triangles, etc., which results in no obvious regularity for the surface integrity of workpiece with different crystal orientations on the same crystal plane.

        IC10 single crystal superalloy; creep feed grinding; anisotropy; surface roughness; surface morphology; microhardness; plastic deformation layer

        V261.2+5

        A

        1001-3660(2023)01-0222-10

        10.16490/j.cnki.issn.1001-3660.2023.01.023

        2021–12–28;

        2022–04–25

        2021-12-28;

        2022-04-25

        國家自然科學(xué)基金(51975096)

        National Natural Science Foundation of China (51975096)

        朱志成(1997—),男,碩士,主要研究方向?yàn)槌芗庸ぁ?/p>

        ZHU Zhi-cheng (1997-), Male, Master, Research focus: ultra-precision machining.

        郭江(1982—),男,博士,教授,主要研究方向?yàn)槌芗庸ぁ?/p>

        GUO Jiang (1982-), Male, Doctor, Professor, Research focus: ultra-precision machining.

        朱志成, 楊昭, 潘博, 等.各向異性對(duì)IC10高溫合金磨削表面完整性的影響[J]. 表面技術(shù), 2023, 52(1): 222-231.

        ZHU Zhi-cheng, YANG Zhao, PAN Bo, et al. Effect of Anisotropy on Surface Integrity of IC10 Superalloy after Grinding[J]. Surface Technology, 2023, 52(1): 222-231.

        責(zé)任編輯:彭颋

        猜你喜歡
        塑性變形晶面單晶
        乙酸乙酯與ε-CL-20不同晶面的微觀作用機(jī)制
        劇烈塑性變形制備的納米金屬材料的力學(xué)行為
        NaCl單晶非切割面晶面的X射線衍射
        (100)/(111)面金剛石膜抗氧等離子刻蝕能力
        不同硅晶面指數(shù)上的類倒金字塔結(jié)構(gòu)研究與分析?
        高速切削Inconel718切屑形成過程中塑性變形研究
        空化水噴丸工藝誘導(dǎo)塑性變形行為的數(shù)值模擬
        大尺寸低阻ZnO單晶襯弟
        大尺寸低阻ZnO單晶襯底
        大尺寸低阻ZnO 單晶襯底
        国产午夜无码片在线观看影院| 国产内射一级一片高清内射视频| 91露脸半推半就老熟妇| 中国女人做爰视频| 欧美日韩亚洲成人| 国产不卡一区在线视频| 亚洲精品一区三区三区在线 | 国产精品欧美一区二区三区| 国产精品11p| 亚洲老女人区一区二视频| 国产夫妻自拍视频在线播放| 日韩人妻无码精品久久 | 99热在线播放精品6| 日韩女优视频网站一区二区三区 | 蜜桃视频在线看一区二区三区| 婷婷中文字幕综合在线| 国产福利酱国产一区二区| 精品av一区二区在线| 亚洲日韩国产精品乱-久 | 国产高清女人对白av在在线 | 台湾佬中文网站| 日日干夜夜操高清视频| 久久中文字幕久久久久91| 久久亚洲精品国产av| 日产亚洲一区二区三区| 国产a级网站| 日本一二三区在线视频观看| 亚洲成av人片在www鸭子| 国产人与禽zoz0性伦| 久久精品中文字幕久久| 全亚洲最大的私人影剧院在线看| 又色又爽又高潮免费视频国产| 亚洲天堂在线视频播放| 成年男人午夜视频在线看| 黑人巨大精品欧美| 成人欧美一区二区三区a片| 中文字幕午夜AV福利片| 日韩一区二区三区久久精品 | 蜜桃一区二区免费视频观看| 中文字幕亚洲一区二区不下| 久久久久亚洲精品无码网址色欲|