亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        NiCrAl-NiC封嚴(yán)涂層在鹽霧環(huán)境下的腐蝕行為研究

        2023-02-07 07:40:08劉天孫杰宋佳楊國昊孫海靜王保杰
        表面技術(shù) 2023年1期
        關(guān)鍵詞:鹽霧耐蝕性電化學(xué)

        劉天,孫杰,宋佳,楊國昊,孫海靜,王保杰

        NiCrAl-NiC封嚴(yán)涂層在鹽霧環(huán)境下的腐蝕行為研究

        劉天1,孫杰1,宋佳2,楊國昊1,孫海靜1,王保杰1

        (1.沈陽理工大學(xué),沈陽 110159;2.中國航發(fā)沈陽黎明航空發(fā)動(dòng)機(jī)有限責(zé)任公司,沈陽 110043)

        通過鹽霧試驗(yàn),研究NiCrAl-NiC封嚴(yán)涂層在高濕度、高鹽分的環(huán)境中工作的腐蝕行為及機(jī)理。使用熱噴涂的方法,在GH907基體上,以NiAl作為粘結(jié)層,噴涂制備NiCrAl-NiC封嚴(yán)涂層,并針對該涂層進(jìn)行連續(xù)鹽霧試驗(yàn)。對不同鹽霧試驗(yàn)時(shí)間得到的試樣進(jìn)行電化學(xué)(極化曲線以及電化學(xué)阻抗譜)測試、XPS測試、SEM觀察及EDS測試,研究涂層的腐蝕行為。在500倍電子顯微鏡下觀察得涂層表面腐蝕在表面孔隙附近發(fā)生,且腐蝕產(chǎn)物隨腐蝕時(shí)間的增加而不斷增加。EDS結(jié)果顯示,腐蝕前期O元素含量增加,在連續(xù)鹽霧時(shí)間達(dá)到72 h后,觀察到Cl、Fe元素,且涂層表面的腐蝕產(chǎn)物出現(xiàn)裂隙。這個(gè)結(jié)果說明電解質(zhì)溶液已侵入涂層內(nèi)部,使基體發(fā)生腐蝕。涂層在鹽霧試驗(yàn)前期,極化曲線所得腐蝕電流密度有所下降,說明涂層耐蝕性增強(qiáng)。鹽霧腐蝕后期,腐蝕電流密度增加,涂層耐蝕性下降。試驗(yàn)前期,腐蝕產(chǎn)物的積累使得涂層的耐蝕性提高,由于腐蝕速率隨時(shí)間逐漸增加,試驗(yàn)后期涂層內(nèi)部已經(jīng)發(fā)生腐蝕,腐蝕產(chǎn)物為金屬氧化物和氫氧化物。

        NiCrAl-NiC封嚴(yán)涂層;鹽霧試驗(yàn);電化學(xué)測試;腐蝕

        隨航空發(fā)動(dòng)機(jī)技術(shù)的發(fā)展,氣路密封技術(shù)對航空發(fā)動(dòng)機(jī)機(jī)械效率的不斷提高起到了重要的作用。據(jù)文獻(xiàn),發(fā)動(dòng)機(jī)葉片與機(jī)匣的間隙每增加1%,其效率就會(huì)減小1.5%,相應(yīng)地耗油率就增加3%[1]。針對氣路密封技術(shù)的研究,航空發(fā)動(dòng)機(jī)用密封技術(shù)有蜂窩封嚴(yán)技術(shù)[2]、刷式封嚴(yán)技術(shù)[3]、熱噴涂封嚴(yán)涂層技術(shù)[4]等,由于熱噴涂封嚴(yán)涂層維修方便,制造工藝簡單,耐磨性與抗沖蝕性配合最佳,熱穩(wěn)定性好等而被廣泛應(yīng)用[5-11]。

        當(dāng)封嚴(yán)涂層在高濕度、高鹽分的環(huán)境中工作時(shí),會(huì)因?yàn)橥繉优c環(huán)境之間相互作用而導(dǎo)致比較嚴(yán)重的腐蝕,因此,封嚴(yán)涂層在環(huán)境中的腐蝕破壞行為就成為一個(gè)比較嚴(yán)峻的挑戰(zhàn)[12-16]。Ni等[17]針對CuAl-NiC耐磨封嚴(yán)涂層的腐蝕失效機(jī)制,以5%(質(zhì)量分?jǐn)?shù))NaCl溶液為腐蝕介質(zhì)長時(shí)間浸泡,試驗(yàn)發(fā)現(xiàn),涂層的孔隙率是腐蝕發(fā)生的關(guān)鍵,其提供了腐蝕介質(zhì)進(jìn)入不同層之間界面的路徑,進(jìn)而誘導(dǎo)各層間電偶腐蝕的發(fā)生,甚至?xí)霈F(xiàn)一個(gè)大陰極–小陽極電池,大大加快腐蝕惡化速度。Lei等[18]以Al-BN為研究對象,進(jìn)行浸泡試驗(yàn),在Al-BN涂層系統(tǒng)的腐蝕過程中,面層的Al-BN層、粘結(jié)層和基體之間發(fā)生了電偶相互作用。Al-BN層作為陽極,NiAl層和基體作為陰極。涂層體系中Al-BN層的鋁基體由于電偶相互作用而發(fā)生自發(fā)點(diǎn)蝕。在后續(xù)研究中,Al-BN涂層的電偶腐蝕速率由低到高再到最后穩(wěn)定可分為3個(gè)階段,沉淀腐蝕產(chǎn)物Al(OH)3的空間位阻效應(yīng)可能是最重要的腐蝕速率控制機(jī)制,包括Al(OH)3在孔隙的沉淀,限制了O2向陰極的傳輸,以及堵塞孔內(nèi)的局部酸化[19]。李垚等[20]發(fā)現(xiàn),NiCrAl涂層在鹽霧環(huán)境腐蝕156 h后,表面發(fā)生嚴(yán)重腐蝕,腐蝕產(chǎn)物在涂層表面堆積,且存在裂隙,為腐蝕介質(zhì)深入涂層內(nèi)部致使粘結(jié)層發(fā)生腐蝕提供了前提,電化學(xué)結(jié)果顯示,涂層的耐蝕性有所下降。

        NiCrAl-NiC封嚴(yán)涂層中,NiCrAl合金可保障涂層在高溫下的抗氧化性,Ni基合金具有優(yōu)秀的耐沖蝕性,采用NiC可為涂層提供良好的自潤滑性能。目前,國內(nèi)外對于NiCrAl-NiC封嚴(yán)涂層在海洋環(huán)境中的腐蝕行為,特別是對于腐蝕機(jī)制的分析研究還有待于加強(qiáng)。本文針對NiCrAl-NiC封嚴(yán)涂層在高濕度、高鹽分的環(huán)境,進(jìn)行了鹽霧試驗(yàn),并分析了其腐蝕行為及機(jī)理。

        1 試驗(yàn)

        試驗(yàn)用NiCrAl-NiC封嚴(yán)涂層由大氣等離子噴涂方法制備,主要噴涂工藝參數(shù)見表1。NiCrAl-NiC封嚴(yán)涂層面層厚1.5 mm,粘結(jié)層NiAl層約厚0.15 mm,噴涂在厚度為2 mm的 GH907基體上。試驗(yàn)前,將涂層系統(tǒng)切割為暴露面積為1 cm2的小樣品,其他5面用硅膠密封,導(dǎo)線焊接在基體未被噴涂一側(cè),確保只有涂層一面暴露在鹽霧中。試驗(yàn)按照GB/T 1012—2012進(jìn)行,溶液采用5%的NaCl溶液,試驗(yàn)設(shè)備型號為DCTC1200P鹽霧箱,試樣腐蝕時(shí)間為96 h,采用24 h連續(xù)噴霧,每24 h取出1組試樣,其他試驗(yàn)參數(shù)見表2。

        表1 噴涂主要工藝參數(shù)

        表2 鹽霧腐蝕試驗(yàn)參數(shù)

        使用CS350電化學(xué)工作站測得極化曲線及電化學(xué)阻抗譜圖,試驗(yàn)介質(zhì)為3.5%的NaCl溶液,試驗(yàn)采用三電極體系,參比電極使用飽和甘汞電極,輔助電極為鉑電極,工作電極為被測試樣。鹽霧試驗(yàn)前對試樣進(jìn)行處理,被測試面積為1 cm2,掃描速率為2 mV/s。電化學(xué)阻抗譜圖采用ZSimpWin軟件進(jìn)行擬合。

        腐蝕前后樣品利用TESCAN-MIAR4型掃描電子顯微鏡(SEM)500倍下觀察微觀形貌,以及其自帶能譜(EDS)分析腐蝕產(chǎn)物元素組成。最后利用X射線光電子能譜(XPS)分析腐蝕96 h后試片的腐蝕產(chǎn)物各元素的化學(xué)組成和狀態(tài)。

        2 結(jié)果與討論

        2.1 微觀形貌及成分分析

        圖1為500倍下測得涂層的SEM形貌。從圖1a可以看出,未經(jīng)腐蝕的原始NiCrAl-NiC涂層較為疏松,深色區(qū)域?yàn)榭紫?,多孔結(jié)構(gòu)可以有效改善涂層的可磨耗性能,在部分區(qū)域可以看到球形顆粒,這是等離子噴涂過程未充分熔融的NiCrAl-NiC粉料,主要呈現(xiàn)堆疊形貌。圖1b是經(jīng)過24 h鹽霧試驗(yàn)后的圖像,涂層孔隙明顯減少,這是因?yàn)榘l(fā)生了腐蝕,且腐蝕產(chǎn)物多在孔隙周圍生成,覆蓋了表面部分孔隙。隨著腐蝕時(shí)間的延長,涂層表面被破壞,腐蝕產(chǎn)物堆積表面逐漸趨于平整,圖像中成片白色區(qū)域?yàn)槭杷傻母g產(chǎn)物。腐蝕后期,在涂層表面出現(xiàn)裂隙,這為腐蝕介質(zhì)深入涂層提供了通道。圖1 f為涂層腐蝕96 h后裂隙處放大形貌,可以看出,腐蝕產(chǎn)物為絮狀分布在裂隙周圍。

        圖1 不同中性鹽霧腐蝕時(shí)間后NiCrAl-NiC涂層的SEM形貌

        圖1中各區(qū)域的能譜結(jié)果見表3。在未進(jìn)行腐蝕的情況下,在涂層表面發(fā)現(xiàn)微量O元素(Point1),這是因?yàn)樵跓釃娡窟^程中,涂層粉料被熔融時(shí)氧化生成的Al2O3[21]。經(jīng)過24 h鹽霧腐蝕后,O元素有增加的趨勢,表面出現(xiàn)綠色和白色腐蝕產(chǎn)物。從EDS結(jié)果元素組成可認(rèn)為是Al和Ni被腐蝕后產(chǎn)生化合物[22],且當(dāng)鹽霧時(shí)間達(dá)到72 h之后,Cl、Fe元素相繼出現(xiàn),這是腐蝕產(chǎn)物在表面積累的結(jié)果。由于面層與粘結(jié)層中都無Fe元素,故可以證明Fe元素來自基體GH907,腐蝕介質(zhì)已經(jīng)進(jìn)入涂層到達(dá)基體,并發(fā)生反應(yīng)。

        表3 圖1中區(qū)域EDS結(jié)果

        2.2 電化學(xué)分析

        不同時(shí)間點(diǎn)NiCrAl-NiC涂層鹽霧腐蝕后在3.5% NaCl溶液中所測得的極化曲線如圖2所示。利用Tafel曲線外推法得到腐蝕過程的動(dòng)力學(xué)參數(shù),結(jié)果見表4。由于涂層孔隙存在實(shí)際測試面積會(huì)大于1 cm2,測試結(jié)果僅反映此NiCrAl/NiC涂層系統(tǒng)耐蝕性能隨鹽霧時(shí)間的變化。未經(jīng)鹽霧腐蝕涂層的腐蝕電流密度(corr)為5.44×10–4A/cm2,經(jīng)歷48 h腐蝕涂層的corr降低至2.29×10–4A/cm2。涂層發(fā)生腐蝕,使得涂層的耐蝕性能提高,隨著鹽霧時(shí)間延長,腐蝕產(chǎn)物的增加,48 h時(shí)腐蝕產(chǎn)物已可以在多孔結(jié)構(gòu)的涂層中阻擋腐蝕介質(zhì)的進(jìn)一步侵入,起到一定的保護(hù)作用。在之后的試驗(yàn)中,涂層表面液膜持續(xù)更新,涂層的腐蝕會(huì)不斷進(jìn)行。鹽霧96 h時(shí),corr逐漸增大到4.40×10–4A/cm2,耐蝕性逐漸減退。在鹽霧試驗(yàn)結(jié)束時(shí),涂層的耐蝕性比未腐蝕的試樣好,這是其表面產(chǎn)生腐蝕產(chǎn)物的結(jié)果。腐蝕24~94 h,Tafel陽極斜率(a)逐漸增大,因?yàn)殡姌O的極化過程被孔隙及涂層表面中生成的腐蝕產(chǎn)物電阻所阻止,這也證明了腐蝕產(chǎn)物在孔隙中積累[23]。

        涂層腐蝕科學(xué)領(lǐng)域中,電化學(xué)阻抗譜(EIS)是一種強(qiáng)有力且無損的電化學(xué)表征測試[24]。NiCrAl-NiC涂層經(jīng)過不同時(shí)間鹽霧腐蝕后,在3.5% NaCl溶液中所測的Nyquist圖與Bode圖如圖3、4所示。由Nyquist圖可以看出,經(jīng)過鹽霧腐蝕后,NiCrAl-NiC涂層的圖像有2個(gè)明顯的容抗弧。相應(yīng)地,圖4b由相位角對lg作圖的曲線上同樣可以看出有2個(gè)峰值,高頻率所對應(yīng)的峰由雙電層電容(即涂層電容)的容抗弧引起。Nyquist圖中,經(jīng)過腐蝕后的電容回路的直徑較未腐蝕有明顯增加,耐蝕性有所提高,且直徑隨著鹽霧時(shí)間的延長而迅速減小,說明腐蝕速率增大[25],而低頻率所對應(yīng)的峰是相對應(yīng)于雙層的電荷轉(zhuǎn)移電容引起的。隨試驗(yàn)時(shí)間的延長,腐蝕加劇擴(kuò)展正在原本孔隙的基礎(chǔ)上可能擴(kuò)大的孔隙通道,增加Cl–深入涂層的幾率,導(dǎo)致基體腐蝕。圖4b相位角曲線的下降正解釋了這一點(diǎn),且最大相位角(即最高峰值)有向較低頻率方向移動(dòng)的趨勢,這與基體和腐蝕介質(zhì)接觸的面積增加有關(guān)。圖4a由||(阻抗模值)對lg作圖的曲線上,高頻區(qū)所對的平滑部分對應(yīng)的是溶液電阻。進(jìn)行鹽霧腐蝕后的||值較未被腐蝕的||值高,耐蝕性有所提高。NiCrAl-NiC涂層是多孔結(jié)構(gòu),其表面積更大,且有更大吸附和集中腐蝕介質(zhì)到孔隙中的趨勢,而腐蝕后的產(chǎn)物更有抵抗腐蝕的能力,并且填充了部分空隙,使得涂層的耐蝕性比腐蝕前提高,這也解釋了腐蝕96 h后的corr值比未發(fā)生腐蝕情況低的原因。

        圖2 NiCrAl-NiC封嚴(yán)涂層鹽霧極化曲線

        表4 NiCrAl-NiC封嚴(yán)涂層鹽霧電化學(xué)參數(shù)

        圖3 NiCrAl-NiC涂層不同鹽霧腐蝕時(shí)間的Nyquist圖

        圖4 NiCrAl-NiC涂層不同鹽霧腐蝕時(shí)間Bode圖

        以圖5所示的等效電路圖模型擬合電化學(xué)阻抗譜,0~48 h的等效電路如圖5a所示,72、96 h等效電路如圖5b所示。電路中的元件定義如下:s為溶液電阻,1為涂層電容相對電阻元件,1為孔隙電阻,二者與涂層的介電性能有關(guān),雙電層電容2相對的2為電荷轉(zhuǎn)移電阻,電路元件同樣為雙電層電容。等效電路中以常相位角元件代替線性電化學(xué)元件,即理想電容器,其原因是實(shí)際過程與理想電容行為的偏差,由被測電極表面的不均勻性、表面粗糙度、電極幾何形狀導(dǎo)致的電流或電位分布不均勻性、表面層的孔隙度和不均勻?qū)щ娦栽斐傻?。的阻抗如下所示?/p>

        式中:0和為可調(diào)參數(shù),可通過非線性擬合過程獲得。介于0~1,在粗糙表面的情況下,暴露于電解質(zhì)溶液的真實(shí)表面大于幾何定義的表面,因此不統(tǒng)一[26]。從圖4b可以看到,隨著腐蝕時(shí)間的延長,相位角曲線呈下降趨勢,說明涂層電容值增大,這與鹽霧腐蝕介質(zhì)侵入涂層有關(guān)。隨著腐蝕產(chǎn)物的逐漸產(chǎn)生,腐蝕產(chǎn)物在涂層空隙中由疏松變得致密,在72、96 h時(shí),雙電層電荷轉(zhuǎn)移電容接近理想電容。在NiCrAl- NiC涂層系統(tǒng)上獲得的EIS參數(shù)的擬合結(jié)果見表5。

        圖5 鹽霧腐蝕后NiCrAl-NiC涂層等效電路

        Fig.5 Equivalent circuit diagram of NiCrAl-NiC coating after salt spray corrosion

        表5 在NiCrAl/NiC涂層系統(tǒng)上獲得的EIS參數(shù)的擬合結(jié)果

        2.3 XPS分析

        通過XPS深度分析經(jīng)鹽霧腐蝕96 h后NiCrAl- NiC涂層的腐蝕產(chǎn)物,結(jié)果如圖6所示。首先在總譜中可以確定涂層表面包含F(xiàn)e、Al、Cr、Ni、O、Cl元素(見圖6a),樣品在0~1 350 eV內(nèi)進(jìn)行掃描,并在284.8 eV的結(jié)合能下用標(biāo)準(zhǔn)C1s峰值進(jìn)行荷電校正。從圖6b中可以看出,Al2p3/2擬合后,可以得到2個(gè)擬合峰,峰位置結(jié)合能分別是74.06、74.73 eV,與Al2O3和AlCl3的譜圖吻合[27],這與Al被腐蝕有關(guān)。雖然上述分析中原始涂層含有Al2O3,但也不排除腐蝕后產(chǎn)生的可能。圖6c中Fe2p3/2軌道峰擬合后的結(jié)果中,結(jié)合能在712.49 eV的峰對應(yīng)FeOOH,708.45 eV位置的峰證明了Fe2O3的存在[28-29]。圖6d中,Ni2p1/2軌道峰擬合后,在873.71、874.82 eV出現(xiàn)的峰歸屬于Ni(OH)2和Ni,這與上文分析相呼應(yīng)。圖6e中對O1s軌道峰進(jìn)行擬合后,531.5、532.5 eV出現(xiàn)的峰分別對應(yīng)Ni(OH)2、Al2O3的譜圖,533.4 eV處的峰分配給Fe-O結(jié)構(gòu),與文獻(xiàn)中描述Fe2O3峰位置相近[30-32]。

        2.4 腐蝕機(jī)制分析

        NiCrAl-NiC涂層系統(tǒng)鹽霧腐蝕實(shí)際上是一個(gè)電化學(xué)腐蝕過程,SEM圖像可以表明多孔的結(jié)構(gòu)更有吸附腐蝕介質(zhì)的趨勢。在高濕度高電解質(zhì)的鹽霧作用下,液膜附著在涂層表面,且暴露在空氣中氧氣也會(huì)被吸附。由于液膜很薄,其含量很容易達(dá)到飽和,極易發(fā)生氧化還原反應(yīng)。

        鹽霧腐蝕初期較為活潑的Al、Ni,在濕熱環(huán)境下作為陽極失去電子,見式(2)、(3)。EDS結(jié)果中,O元素增加表明陰極反應(yīng)為吸氧腐蝕,見式(4)。

        Al→Al3++3e (2)

        Ni→Ni2++2e (3)

        O2+2H2O+4e→4OH–(4)

        Al3+與水接觸會(huì)發(fā)生式(5)的反應(yīng)[29],OH–與Ni2+生成具有保護(hù)性腐蝕產(chǎn)物,見式(6),這也解釋了初期涂層的耐蝕性有所提高的現(xiàn)象。被腐蝕部位pH值也會(huì)降低,由于電解液較薄,但同時(shí)不斷刷新,故腐蝕會(huì)進(jìn)一步進(jìn)行。

        2Al3++3H2O→Al2O3+6H+(5)

        Ni2++2OH–→Ni(OH)2(6)

        無論是反應(yīng)生成Al2O3,還是涂層制備過程中產(chǎn)生Al2O3,其從熱力學(xué)角度上講,在溶液薄膜中都易發(fā)生水合反應(yīng),見式(7),而電解液薄膜中大量的Cl–會(huì)同Al2O3中的OH–爭奪Al3+進(jìn)而形成可溶的氯化物,見式(8)—(10)。

        Al2O3+3H2O→2Al(OH)3(7)

        Al(OH)3+Cl–→Al(OH)2Cl+OH–(8)

        Al(OH)2Cl+Cl–→Al(OH)Cl2+OH–(9)

        Al(OH)Cl+Cl–→AlCl3+OH–(10)

        多孔的涂層結(jié)構(gòu),加之涂層部分可以被溶解,為腐蝕介質(zhì)進(jìn)入涂層系統(tǒng)內(nèi)部提供了通道。腐蝕持續(xù)進(jìn)行,當(dāng)電解質(zhì)與基體接觸時(shí),與基體中Fe發(fā)生反應(yīng),見式(11)。被溶解的Fe2+隨電解質(zhì)薄膜擴(kuò)散至涂層表面,與OH–結(jié)合生成Fe(OH)2,之后在O2的作用下氧化成Fe(OH)3,見式(12)、(13)。

        圖6 鹽霧腐蝕96 h后的NiCrAl-NiC涂層XPS譜圖

        Fe→Fe2++2e (11)

        Fe2++2OH—→Fe(OH)2(12)

        4Fe(OH)2+O2+4H2O→4Fe(OH)3(13)

        同時(shí),在濕熱的環(huán)境中,F(xiàn)e2+存在的情況下,有電解質(zhì)薄膜中存在的Fe(OH)3可以發(fā)生如下轉(zhuǎn)化反應(yīng),見式(14)、(15)。

        Fe(OH)3→FeOOH+H2O (14)

        Fe(OH)3→Fe2O3·3H2O→Fe2O3+3H2O(15)

        隨著腐蝕持續(xù)發(fā)生,若隨腐蝕產(chǎn)物積累,涂層內(nèi)部或基體形成閉塞電池腐蝕,呈現(xiàn)自催化反應(yīng),那么對涂層內(nèi)部破壞更為嚴(yán)重。

        3 結(jié)論

        1)NiCrAl-NiC涂層經(jīng)過連續(xù)鹽霧腐蝕期間,前48 h腐蝕電流密度減小,后48 h腐蝕電流密度增加,相應(yīng)涂層耐蝕性先增大、后減小,這是涂層腐蝕與腐蝕產(chǎn)物積累共同作用的結(jié)果。

        2)鹽霧試驗(yàn)中,NiCrAl-NiC涂層的腐蝕速率隨時(shí)間增大,腐蝕后的涂層出現(xiàn)很多裂隙,涂層表面分布并不均勻,且涂層包含多種元素,使得不同元素之間形成電勢差。涂層表面積累的腐蝕產(chǎn)物主要為金屬的氧化物和氫氧化物,溶液侵入到基體的情況下,可能造成各層之間發(fā)生電偶腐蝕,嚴(yán)重情況下會(huì)導(dǎo)致涂層脫落,影響航空發(fā)動(dòng)機(jī)使用壽命。

        [1] 張俊紅, 魯鑫, 何振鵬, 等. 航空發(fā)動(dòng)機(jī)可磨耗封嚴(yán)涂層技術(shù)研究及性能評價(jià)[J]. 材料工程, 2016, 44(4): 94-109.

        ZHANG Jun-hong, LU Xin, HE Zhen-peng, et al. Tech-nique Application and Performance Evaluation for Abra-dable Coating in Aeroengine[J]. Journal of Materials Engi-neering, 2016, 44(4): 94-109.

        [2] LU Bin, MA Xiao-jian, WU Cai-guang, et al. The Wear of Seal Fins during High-Speed Rub between Labyrinth Seal Fins and Honeycomb Stators at Different Incursion Rates[J]. Materials (Basel, Switzerland), 2021, 14(4): 979.

        [3] 張?zhí)鹛? 黃傳兵, 蘭昊, 等. 鎳基耐高溫自潤滑刷式封嚴(yán)涂層研究[J]. 航空制造技術(shù), 2017, 60(8): 24-29.

        ZHANG Tian-tian, HUANG Chuan-bing, LAN Hao, et al. Investigation of Ni-Based Brush Seal Coatings with Self-Lubricating Property at Elevated Temperature[J]. Aeronautical Manufacturing Technology, 2017, 60(8): 24-29.

        [4] LI He-ping, KE Zhi-qiang, LI Jing, et al. An Effective Low-Temperature Strategy for Sealing Plasma Sprayed Al2O3-Based Coatings[J]. Journal of the European Cera-mic Society, 2018, 38(4): 1871-1877.

        [5] ZHANG Feng, LAN Hao, HUANG Chuan-bing, et al. Corrosion Resistance of Ti3Al/BN Abradable Seal Coa-ting[J]. Acta Metallurgica Sinica (English Letters), 2014, 27(6): 1114-1121.

        [6] 黃偉. 高溫可磨耗封嚴(yán)復(fù)合涂層的制備及性能研究[D]. 武漢: 武漢理工大學(xué), 2011.

        HUANG Wei. Study of Preparation and Properties of Abra-dable Composite Seal Coating Used in High Tempera-ture[D]. Wuhan: Wuhan University of Technology, 2011.

        [7] WANG Zhe, DU Ling-zhong, LAN Hao, et al. Prepa-ration and Characterization of YSZ Abradable Sealing Coating through Mixed Solution Precursor Plasma Spra-ying[J]. Ceramics International, 2019, 45(9): 11802-11811.

        [8] CAO Y X, LIU W, DU L Z, et al. Preparation and Pro-perty of Al/hBN Plasma Sprayed Abradable Sealing Coating[J]. Rare Metal Materials and Engineering, 2012, 41(S2): 813-816.

        [9] WANG Zhe, DU Ling-zhong. Stabilization of a Novel Mixed Solution Precursor Used for Preparing YSZ Abradable Sealing Coatings[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 562: 354-360.

        [10] ZHANG Xi-qian, YANG Qiong-lian, CHEN Lin, et al. Fabrication and Characterization of 8YSZ Ceramic Based Abradable Seal Coatings by Atmospheric Plasma Spra-ying [J]. Ceramics International, 2020, 46(17): 26530-26538.

        [11] XIA Zhi-xin, WANG Chuan-yang, ZHAO Dong, et al. Substructure Formation Mechanism and High Tempera-ture Performance in CoNiCrAlY Seal Coating by Laser Melting Deposition with Inside-Laser Coaxial Powder Feeding[J]. Surface and Coatings Technology, 2019, 367: 108-117.

        [12] ZHANG Jia-ping, XUE Wei-hai, DUAN De-li, et al. Effect of the Corrosion of Seal Coatings Used in Aero Engines on Their High-Speed Wear Behaviour[J]. Journal of Thermal Spray Technology, 2020, 29(8): 1958-1967.

        [13] 趙丹, 孫杰, 趙忠興. 鈦合金與NiAl封嚴(yán)涂層的電偶腐蝕行為研究[J]. 稀有金屬, 2012, 36(2): 224-228.

        ZHAO Dan, SUN Jie, ZHAO Zhong-xing. Galvanic Cor-rosion Behavior of Titanium Alloy and NiAl Seal Coa-ting [J]. Chinese Journal of Rare Metals, 2012, 36(2): 224-228.

        [14] USMAN B J, SCENINI F, CURIONI M. Corrosion Testing of Anodized Aerospace Alloys: Comparison be-tween Immersion and Salt Spray Testing Using Elec-trochemical Impedance Spectroscopy[J]. Journal of the Electrochemical Society, 2020, 167(4): 041505.

        [15] ZHANG Feng, XU Cun-guan, LAN Hao, et al. Corrosion Behavior of an Abradable Seal Coating System[J]. Journal of Thermal Spray Technology, 2014, 23(6): 1019-1028.

        [16] 孫杰, 石超, 趙丹. NiAl/AlBN封嚴(yán)涂層的電偶腐蝕行為[J]. 材料工程, 2015, 43(11): 44-49.

        SUN Jie, SHI Chao, ZHAO Dan. Galvanic Corrosion Be-ha-vior of NiAl/AlBN Seal Coating[J]. Journal of Mate-rials Engineering, 2015, 43(11): 44-49.

        [17] NI Yu-meng, ZHANG Fan, NJOKU D I, et al. Corrosion Mechanism of CuAl-NiC Abradable Seal Coating System—The Influence of Porosity, Multiphase, and Multilayer Structure on the Corrosion Failure[J]. Journal of Materials Science & Technology, 2021, 88: 258-269.

        [18] LEI Bing, LI Man, ZHAO Zhong-xing, et al. Corrosion Mechanism of an Al-BN Abradable Seal Coating System in Chloride Solution[J]. Corrosion Science, 2014, 79: 198-205.

        [19] LEI Bing, PENG Ming-xiao, LIU Ling, et al. Galvanic Corrosion Performance of an Al–BN Abradable Seal Coating System in Chloride Solution[J]. Coatings, 2020, 11(1): 9.

        [20] 李垚, 馬彬, 趙九蓬, 等. 鹽霧條件下NiCrAl涂層的耐腐蝕性研究[J]. 稀有金屬材料與工程, 2010, 39(12): 2181-2184.

        LI Yao, MA Bin, ZHAO Jiu-peng, et al. Corrosion Resi-stance of NiCrAl Coatings in the Salt Spray Tests[J]. Rare Metal Materials and Engineering, 2010, 39(12): 2181-2184.

        [21] 項(xiàng)民, 駱軍華, 張琦. 鹽霧腐蝕對熱障涂層高溫循環(huán)氧化性能的影響[J]. 航空學(xué)報(bào), 2006, 27(1): 138-141.

        XIANG Min, LUO Jun-hua, ZHANG Qi. Influence of Salt Spray Corrosion on High-Temperature Cyclic Oxida-tion Behavior of Thermal Barrier Coatings[J]. Acta Aero-nautica et Astronautica Sinica, 2006, 27(1): 138-141.

        [22] XU Cun-guan, DU Ling-zhong, YANG Bin, et al. Study on Salt Spray Corrosion of Ni-Graphite Abradable Coa-ting with 80Ni20Al and 96NiCr-4Al as Bonding Layers[J]. Surface and Coatings Technology, 2011, 205(17/18): 4154-4161.

        [23] DUAN Hong-ping, DU Ke-qin, YAN Chuan-wei, et al. Electrochemical Corrosion Behavior of Composite Coa-tings of Sealed MAO Film on Magnesium Alloy AZ91D [J]. Electrochimica Acta, 2006, 51(14): 2898-2908.

        [24] YUE Yuan-yuan, LIU Zhong-xia, WAN Ting-ting, et al. Effect of Phosphate-Silane Pretreatment on the Corrosion Resistance and Adhesive-Bonded Performance of the AZ31 Magnesium Alloys[J]. Progress in Organic Coat-ings, 2013, 76(5): 835-843.

        [25] SHAO Fang, YANG Kai, ZHAO Hua-yu, et al. Effects of Inorganic Sealant and Brief Heat Treatments on Corrosion Behavior of Plasma Sprayed Cr2O3-Al2O3Composite Ceramic Coatings[J]. Surface and Coatings Technology, 2015, 276: 8-15.

        [26] 曹楚南. 腐蝕電化學(xué)原理[M]. 3版. 北京: 化學(xué)工業(yè)出版社, 2008: 175-176.

        CAO Chu-nan. Principles of electrochemistry of corro-sion[M]. 3rd Edition. Beijing: Chemical Industry Press, 2008: 175-176.

        [27] DING Jian, LIU Xin, WANG Yu-jiang, et al. Effect of Sn Addition on Microstructure and Corrosion Behavior of As-Extruded Mg-5Zn-4Al Alloy[J]. Materials (Basel, Switzerland), 2019, 12(13): 2069.

        [28] KOCIJAN A, DONIK ?, JENKO M. Electrochemical and XPS Studies of the Passive Film Formed on Stainless Steels in Borate Buffer and Chloride Solutions[J]. Cor-rosion Science, 2007, 49(5): 2083-2098.

        [29] GUO Yang, ALI R, ZHANG Xing-zhong, et al. Raman and XPS Depth Profiling Technique to Investigate the Corrosion Behavior of FeSiAl Alloy in Salt Spray Envi-ronment[J]. Journal of Alloys and Compounds, 2020, 834: 155075.

        [30] XU Wen-hua, HAN En-hou, WANG Zhen-yu. Effect of Tannic Acid on Corrosion Behavior of Carbon Steel in NaCl Solution[J]. Journal of Materials Science & Tech-nology, 2019, 35(1): 64-75.

        [31] OLIVARES O, LIKHANOVA N V, GóMEZ B, et al. Electrochemical and XPS Studies of Decylamides of Α-Amino Acids Adsorption on Carbon Steel in Acidic Environment[J]. Applied Surface Science, 2006, 252(8): 2894-2909.

        [32] WAN Kai, LI Chang-cheng, XING Cui-juan, et al. En-hanced Anticorrosion Properties of Epoxy Coatings from Al and Zn Based Pigments[J]. Chemical Research in Chinese Universities, 2015, 31(4): 573-580.

        Corrosion Behavior of NiCrAl-NiC Seal Coating in Salt Spray Conditions

        1,1,2,1,1,1

        (1. Shenyang Ligong University, Shenyang 110159, China; 2. AECC Shenyang Liming Aero-Engine Co., Ltd., Shenyang 110043, China)

        With the development of aero-engine technology, gas path sealing technology plays an important role in the continuous improvement of aero-engine mechanical efficiency. It is widely used due to the advantages of convenient maintenance, simple manufacturing process and good thermal stability of thermal spraying seal coating. When the seal coating is applied in the environment of high humidity and high salt, its composite metal coating will be seriously damaged. Therefore, the work aims to study the corrosion behavior of NiCrAl-NiC seal coating in high humidity and high salt environment by the salt spray test.

        The NiCrAl-NiC seal coating was prepared by atmospheric plasma spraying. The surface layer of NiCrAl-NiC seal coating was 1.5 mm thick and the bonding layer of NiAl was about 0.15 mm thick. It was sprayed on the GH907 substrate with a thickness of 2 mm by thermal spraying, and the salt spray test was continuously carried out to the coating. The other five sides of the sample were sealed with silica gel to ensure that only one side of the coating was exposed to salt spray. The test was carried out in accordance with GB/T 1012—2012. The solution was analyzed with 5wt.% pure NaCl solution. The test equipment was DCTC1200P salt spray box. The corrosion time of the samples was 96 h. The samples were continuously sprayed for 24 h, and a set of samples was removed every 24 h. The samples obtained after different time of salt spray test were stored in CS350 electrochemical workstation. The three-electrode cell was used (the reference electrode was saturated calomel electrode, the auxiliary electrode was platinum electrode, and the working electrode was the tested sample) to carry out polarization curve test, electrochemical impedance spectrum test, and scanning electron microscope (TESCAN-MIAR4) observation. Then, the energy dispersive spectrometer spectrum of each selected point collected by the energy spectrometer was used to analyze the elements. X-ray photoelectron spectroscopy test was carried out to the samples after 96 h of salt spray corrosion, and the composition of corrosion products was deeply analyzed. It was observed that the coating surface was loose and had many pores under 500 times electron microscopes, and the corrosion occurred near the surface pores. The results of the energy dispersive spectrometer showed that the content of O element increased in the early stage of corrosion. After continuous salt spray time reached 72 h, Cl and Fe elements were observed, and cracks appeared on the corrosion products on the coating surface. This result showed that the electrolyte solution intruded into the interior of the coating, resulting in corrosion of the substrate. The XPS results after 96 h of corrosion showed that the corrosion products were Al2O3, Ni(OH)2, FeOOH, etc. In the early stage of salt spray test, the corrosion current density obtained by polarization curve decreased, indicating that the corrosion resistance of the coating was enhanced. In the later stage of salt spray corrosion, the corrosion current density increased and the corrosion resistance of the coating decreased. The accumulation of corrosion products in the early stage of the test improves the corrosion resistance of the coating. Due to the gradual increase of corrosion rate with time, corrosion has occurred in the coating in the later stage of the test, and the corrosion products are metal oxides and metal hydroxides.

        NiCrAl-NiC seal coating; salt spray test; electrochemical test; corrosion

        TG172

        A

        1001-3660(2023)01-0206-08

        10.16490/j.cnki.issn.1001-3660.2023.01.021

        2021–12–01;

        2022–04–06

        2021-12-01;

        2022-04-06

        沈陽理工大學(xué)高水平成果建設(shè)項(xiàng)目(SYLUXM202105);沈陽理工大學(xué)科研創(chuàng)新團(tuán)隊(duì)支持項(xiàng)目(SYLUTD202004)

        High Level Achievement Construction Project of Shenyang LiGong University (SYLUXM202105); Research Innovation Team Support Project of Shenyang LiGong University (SYLUTD202004)

        劉天(1998—),男,碩士研究生,主要研究方向?yàn)椴牧系母g與防護(hù)。

        LIU Tian (1998—), Male, Postgraduate, Research focus: corrosion and protection of materials.

        孫杰(1971—),男,博士,教授,主要研究方向?yàn)椴牧细g電化學(xué)行為及防護(hù)方法。

        SUN Jie (1971—), Male, Doctor, Professor, Research focus: material corrosion electrochemical behavior and protection methods.

        劉天, 孫杰, 宋佳, 等. NiCrAl-NiC封嚴(yán)涂層在鹽霧環(huán)境下的腐蝕行為研究[J]. 表面技術(shù), 2023, 52(1): 206-213.

        LIU Tian, SUN Jie, SONG Jia, et al. Corrosion Behavior of NiCrAl-NiC Seal Coating in Salt Spray Conditions[J]. Surface Technology, 2023, 52(1): 206-213.

        責(zé)任編輯:劉世忠

        猜你喜歡
        鹽霧耐蝕性電化學(xué)
        中性鹽霧試驗(yàn)標(biāo)準(zhǔn)研究進(jìn)展
        大氣鹽霧含量監(jiān)測與影響因素研究
        電化學(xué)中的防護(hù)墻——離子交換膜
        不同含硫密封劑的耐SO2 鹽霧性能研究
        鹽霧腐蝕試驗(yàn)的國際國內(nèi)標(biāo)準(zhǔn)及在汽車行業(yè)里的應(yīng)用
        關(guān)于量子電化學(xué)
        電化學(xué)在廢水處理中的應(yīng)用
        Na摻雜Li3V2(PO4)3/C的合成及電化學(xué)性能
        磷對鋅-鎳合金耐蝕性的影響
        AZ31B鎂合金復(fù)合鍍鎳層的制備及其耐蝕性研究
        久久中文精品无码中文字幕下载| 在线视频自拍视频激情| 俺也去色官网| 国产在线AⅤ精品性色| 在线国产丝袜自拍观看| 成人免费无码大片a毛片抽搐色欲| 内射少妇36p九色| 国产精品原创av片国产日韩| 日韩午夜三级在线视频| 午夜久久久久久禁播电影| 999久久久国产精品| 国产亚洲欧洲AⅤ综合一区| 亚洲综合伊人久久综合| 搡女人真爽免费视频大全| 国产福利酱国产一区二区| 无码人妻精品一区二区三区下载| 亚洲av推荐网站在线观看| 97在线视频人妻无码| 天躁夜夜躁狼狠躁| 91精品综合久久久久m3u8| 三级国产自拍在线观看| 亚洲av无码电影在线播放| 老熟妇高潮喷了╳╳╳| 精品国产你懂的在线观看| 福利利视频在线观看免费| 少妇激情一区二区三区视频| 一本大道香蕉最新在线视频| 久久久国产视频久久久| 亚洲视频网站大全免费看| 亚洲 精品 综合 精品 自拍| 亚洲福利天堂网福利在线观看| 自拍偷区亚洲综合激情| 成人午夜福利视频| 精品国产高清a毛片无毒不卡| 一本久道久久综合狠狠操 | 97色伦综合在线欧美视频| 久久99国产伦精品免费| 高潮av一区二区三区| 初尝人妻少妇中文字幕| 欧美人与物videos另类xxxxx| 99久久亚洲精品加勒比|