許磊,張翼,徐春龍,宋猛,龐浩宇,張宇,唐詩(shī)澤,雷麗軍
某柴油噴油嘴新沖蝕壽命預(yù)測(cè)模型及瞬態(tài)特性數(shù)值模擬
許磊1,張翼1,徐春龍2,宋猛1,龐浩宇1,張宇1,唐詩(shī)澤1,雷麗軍1
(1.中北大學(xué) 能源與動(dòng)力工程學(xué)院,太原 030051;2.中國(guó)北方發(fā)動(dòng)機(jī)研究所,天津 300400)
針對(duì)柴油噴油嘴噴孔內(nèi)部空化現(xiàn)象及沖蝕磨損問(wèn)題,建立了考慮近壁面不同邊界層內(nèi)群氣泡潰滅產(chǎn)生沖蝕影響的柴油噴油嘴瞬態(tài)特性仿真模型。探究柴油噴油嘴內(nèi)部沖蝕磨損程度的影響因素,并對(duì)噴孔內(nèi)部沖蝕磨損壽命進(jìn)行預(yù)測(cè)。首先,采用MATLAB對(duì)不同近壁面距離的空化泡對(duì)壁面作用壓力及射流速度進(jìn)行函數(shù)擬合,結(jié)合傳統(tǒng)經(jīng)驗(yàn)公式,推導(dǎo)了可考慮距壁面不同距離的群空泡阻力修正經(jīng)驗(yàn)公式。其次,利用Fluent中UDF建立了基于阻力修正經(jīng)驗(yàn)公式以及網(wǎng)格自適應(yīng)算法的有限元模型,用rs沖蝕風(fēng)險(xiǎn)預(yù)測(cè)模型和沖蝕疲勞試驗(yàn)結(jié)果對(duì)本文提出的新模型進(jìn)行驗(yàn)證。在此基礎(chǔ)上討論了噴嘴孔圓錐度f(wàn)ac及動(dòng)態(tài)特性對(duì)噴孔沖蝕磨損的影響。rs沖蝕磨損風(fēng)險(xiǎn)預(yù)測(cè)模型和沖蝕磨損疲勞試驗(yàn)結(jié)果與本文提出的新模型結(jié)果有較好的一致性,證明了該新模型的可行性。有限元仿真結(jié)果顯示,當(dāng)噴嘴形狀相同時(shí),隨著針閥向上移動(dòng),空化現(xiàn)象被有效地抑制,逐漸向噴孔的入口處收縮,其上最大射流速度和水錘壓力會(huì)略微增加,但總體空化區(qū)域多集中于噴孔入口上表面處。隨著噴嘴幾何尺寸從fac0增加至fac2、fac4,其上噴孔的氣泡潰滅最大微射流速度及最大水錘壓力分別減少11.29%、1.4%。當(dāng)無(wú)量綱距離=1.3時(shí),其最大速度和壓力值僅為無(wú)量綱距離=1.0時(shí)的2.6%,故可忽略無(wú)量綱距離>1.3時(shí)的氣泡潰滅對(duì)壁面的沖蝕磨損影響。隨著噴嘴幾何尺寸從fac0增加至fac2、fac4,其上噴孔內(nèi)壁面最小壽命分別提升了18.17%及32.32%。噴嘴孔圓錐度f(wàn)ac及動(dòng)態(tài)特性均對(duì)近壁面空化沖蝕磨損程度產(chǎn)生影響??傮w空化沖蝕磨損區(qū)域多集中于噴孔入口上表面處,可對(duì)此采取措施以提高總體噴嘴壽命,疲勞壽命計(jì)算時(shí)可忽略距壁面無(wú)量綱距離>1.3時(shí)氣泡對(duì)壁面產(chǎn)生的影響,噴嘴噴孔圓錐度的增加可降低噴孔內(nèi)側(cè)沖蝕磨損程度,顯著提升噴嘴壽命。
空化流動(dòng);水錘壓力;噴嘴噴孔;沖蝕;壽命預(yù)測(cè)
噴油器噴嘴在柴油霧化和噴霧的優(yōu)化中發(fā)揮著重要作用[1]。燃油在噴嘴孔入口附近因流道橫截面積急劇減小,導(dǎo)致燃油流速增加及靜壓迅速降低,空化隨即出現(xiàn)[2-4]。空化產(chǎn)生蒸氣泡,并在較高壓力區(qū)迅速破裂,此過(guò)程會(huì)使得金屬表面承受反復(fù)的沖擊力作用,進(jìn)而產(chǎn)生噴嘴處的沖蝕磨損[5],即使噴孔內(nèi)表面的沖蝕損傷輕微,仍然影響內(nèi)部流動(dòng)及噴霧霧化過(guò)程,導(dǎo)致流量的變化及影響噴射燃料質(zhì)量的精確控制[6]。因此針對(duì)噴嘴內(nèi)部的空化流動(dòng)及沖蝕磨損風(fēng)險(xiǎn)分析具有重要意義。
噴嘴的幾何形狀對(duì)流動(dòng)系數(shù)和空化形成[7]的影響較大。Shervani等[8]和Lee等[9]發(fā)現(xiàn),增加孔口入口角曲率半徑與噴孔直徑之比,會(huì)導(dǎo)致空化泡破裂的數(shù)量減少??族F度f(wàn)ac因子是影響噴嘴空化流[10-11]的另一個(gè)關(guān)鍵幾何參數(shù)。Brusiani等[12]使用均勻弛豫空化模型[13]和Singhal空化模型[14]再現(xiàn)了噴嘴內(nèi)部的空化流動(dòng)。Benajes等[15]觀察到,與圓柱形孔相比,圓錐形孔降低了空化程度,提高了流動(dòng)效率和出口速度。Brusiania等[16]比較了圓柱形噴嘴和錐形噴嘴的流體動(dòng)力學(xué)性能,發(fā)現(xiàn)錐形噴嘴顯著降低了湍流度,提高了整體的流動(dòng)均勻性。
空化發(fā)展與沖蝕磨損損傷之間的關(guān)系非常復(fù)雜,尚未得到很好的研究[17]。連續(xù)工作1 000 h后,真實(shí)柴油噴射器的x射線CT掃描顯示,噴孔入口處和針閥容易受到空化沖蝕磨損[6]。Edelbauer等[18]估計(jì)了距壁面臨界距離內(nèi)的空化沖蝕磨損,氣泡沖擊的影響與負(fù)傳質(zhì)速率有關(guān),但該研究未考慮噴嘴幾何形狀對(duì)空化和相應(yīng)沖蝕磨損的影響。Brusiani等[19]將沖蝕風(fēng)險(xiǎn)與Zwart空化模型提出的冷凝速率源項(xiàng)聯(lián)系起來(lái),提出了一種沖蝕風(fēng)險(xiǎn)的新評(píng)價(jià)。Zhang等[20]基于不同相間的傳質(zhì)率建立了一種沖蝕風(fēng)險(xiǎn)預(yù)測(cè)模型(rs模型)。rs模型是尋找單噴嘴中沖蝕磨損風(fēng)險(xiǎn)最高處位置的合適指標(biāo),但未能很好評(píng)估不同噴嘴之間的沖蝕磨損風(fēng)險(xiǎn)。Dular等[21]研究得出平板近壁面附近單個(gè)空泡潰滅微射流速度經(jīng)驗(yàn)公式。呂煒等[22]分析了空化泡在距離平板近壁面不同位置處潰滅時(shí)其對(duì)壁面上沖擊壓強(qiáng)的分布規(guī)律,且總結(jié)出氣泡直徑大小與氣泡潰滅時(shí)對(duì)壁面產(chǎn)生的沖擊壓強(qiáng)大小無(wú)關(guān)。
本文首先提供了新沖蝕磨損風(fēng)險(xiǎn)預(yù)測(cè)模型的輸運(yùn)方程和描述,建立考慮近壁面不同邊界層內(nèi)群氣泡潰滅對(duì)內(nèi)壁面沖擊的柴油噴油嘴新沖蝕磨損風(fēng)險(xiǎn)預(yù)測(cè)模型。通過(guò)rs模型及噴嘴沖蝕磨損試驗(yàn)對(duì)本文的新沖蝕磨損風(fēng)險(xiǎn)壽命預(yù)測(cè)模型進(jìn)行驗(yàn)證,并進(jìn)一步探究不同fac因子和瞬態(tài)不同針閥升程下噴孔內(nèi)部的沖蝕磨損風(fēng)險(xiǎn),針對(duì)不同條件下噴孔進(jìn)行沖蝕磨損壽命預(yù)測(cè),為噴油器噴嘴設(shè)計(jì)和制造提供理論依據(jù)。
根據(jù)參考文獻(xiàn)[19],單位時(shí)間的蒸氣質(zhì)量凝聚速率可能與氣泡坍塌產(chǎn)生的沖擊波或壓力液錘強(qiáng)度的增加有關(guān)。假設(shè)壁的沖蝕磨損破壞是由于氣泡在第一邊界層內(nèi)氣泡沖擊造成的。利用表面冷凝速率(cs)來(lái)評(píng)價(jià)沖蝕磨損風(fēng)險(xiǎn)。表面冷凝速率cs[18-19]通過(guò)廣義公式(1)可以得出。
式中:con為經(jīng)驗(yàn)系數(shù);0為氣泡半徑;vap為柴油蒸氣相對(duì)分?jǐn)?shù);w為壁面附近液體壓力;為近壁面單元的高度;vap為飽和蒸氣壓;liq和vap分別為柴油液體和蒸氣的密度。
cs沖蝕風(fēng)險(xiǎn)預(yù)測(cè)模型在預(yù)測(cè)物理表面沖蝕磨損損傷時(shí)壁面高度對(duì)表面?zhèn)髻|(zhì)有影響,較大時(shí)壁表面的質(zhì)量轉(zhuǎn)移量可能被高估。用于表征表面沖蝕磨損相對(duì)風(fēng)險(xiǎn)的rs沖蝕風(fēng)險(xiǎn)預(yù)測(cè)模型,在模擬中選擇了相同的邊界層高度以克服cs模型的不足[20]。cslocal為局部表面冷凝速率,csmax為表面最大冷凝速率。rs沖蝕風(fēng)險(xiǎn)預(yù)測(cè)模型可以預(yù)測(cè)表面沖蝕磨損損傷可能發(fā)生的位置。
圖1[20]給出了由于氣泡潰滅對(duì)壁面沖擊導(dǎo)致的節(jié)流閥底表面的沖蝕磨損損傷。掃描結(jié)果表明,在通道入口附近的鋁箔表面有一個(gè)沖蝕磨損損傷區(qū),而rs沖蝕風(fēng)險(xiǎn)預(yù)測(cè)模型再現(xiàn)了類似的結(jié)果。如圖1所示,高rs區(qū)域的輪廓與鋁箔表面的沖蝕磨損損傷區(qū)域非常相似,可證明rs沖蝕風(fēng)險(xiǎn)預(yù)測(cè)模型可以很好地預(yù)測(cè)表面沖蝕磨損損傷位置。
圖1 沖蝕損傷表面結(jié)果及rs模型仿真分布[20]
Fig.1 Erosion damage surface results and simulation distribution ofrsmodel[20]
基于蒸氣和液體之間的冷凝速率或傳質(zhì)率的rs沖蝕風(fēng)險(xiǎn)預(yù)測(cè)模型可以作為預(yù)測(cè)噴射器噴嘴內(nèi)沖蝕磨損損傷風(fēng)險(xiǎn)的指標(biāo),其可以表示同一噴嘴中沖蝕磨損風(fēng)險(xiǎn)的相對(duì)程度,但其對(duì)沖蝕磨損風(fēng)險(xiǎn)無(wú)法很好地定量表達(dá),且該模型僅適用于一層邊界層。本文采用了改進(jìn)后的傳統(tǒng)經(jīng)驗(yàn)公式,可考慮壁面附近多層氣泡潰滅對(duì)壁面造成的沖蝕磨損損傷影響,且可對(duì)預(yù)測(cè)損傷區(qū)域處標(biāo)定出該處所受微射流速度及水錘壓力沖擊大小,并可后續(xù)進(jìn)行沖蝕壽命預(yù)測(cè)分析。
空化泡潰滅對(duì)壁面的影響過(guò)程復(fù)雜且充滿隨機(jī)性,文獻(xiàn)[24]經(jīng)試驗(yàn)分析得到了近壁面處氣泡潰滅對(duì)壁面沖擊微射流速度的估算公式,見式(3)。
Kim等[25]主要借助于水錘理論,分析出近壁面處氣泡潰滅對(duì)壁面沖擊微射流速度與對(duì)壁面沖擊壓強(qiáng)的關(guān)系,見式(4)。
文獻(xiàn)[22]分析了空化泡由于受流體阻力影響,在距離近壁面不同距離時(shí),空化泡潰滅后對(duì)壁面沖擊壓強(qiáng)不同,其所得結(jié)論可經(jīng)由MATLAB擬合出空化泡近壁距離對(duì)作用在壁面上沖擊壓強(qiáng)的影響公式,見式(5)。
改進(jìn)后可考慮距壁面不同距離的群空泡阻力修正經(jīng)驗(yàn)公式為:
式中:b為空泡中心距離壁面的距離;0為空化泡初試半徑;w為壁面附近液體壓力;vap為飽和蒸氣壓;liq為柴油液體密度;為沖擊速度,=1 500 m/s;p為壓力等效系數(shù)。
噴油器噴嘴頭部的結(jié)構(gòu)如圖2a—b所示,由噴嘴頭部殼體、油嘴針閥和內(nèi)部流體三部分組成。位于噴嘴頭部殼體和油嘴針閥間的最小油膜厚度為0.04 mm。為提高仿真準(zhǔn)確性,最小油膜厚度處內(nèi)外劃分5層邊界層網(wǎng)格。在sac壓力室上有8個(gè)孔,這些孔具有相同的入口孔倒角和出口直徑。噴嘴孔內(nèi)部網(wǎng)格的最大尺寸為5 μm,位于噴嘴表面的邊界層附近網(wǎng)格的最小尺寸為1 μm。如圖2c—d所示,利用Fluent meshing繪制流體域網(wǎng)格。油膜整體采用四面體網(wǎng)格,網(wǎng)格偏斜率均小于0.5。經(jīng)計(jì)算檢驗(yàn),當(dāng)計(jì)算域網(wǎng)格總數(shù)為420萬(wàn)左右時(shí),油膜空化體積分?jǐn)?shù)、氣泡對(duì)壁面微射流速度及沖擊壓強(qiáng)計(jì)算值的精度都較好。
為了研究噴嘴錐度對(duì)噴孔內(nèi)表面沖蝕磨損風(fēng)險(xiǎn)的影響,通過(guò)增加出口孔的直徑可以實(shí)現(xiàn)不同的錐度。表1列出了模型的關(guān)鍵參數(shù)。
圖2噴油器噴嘴頭部模型、油膜模型及網(wǎng)格
表1 噴嘴幾何參數(shù)
本文采用ZGB空化模型進(jìn)行三維噴嘴空化內(nèi)流模擬,ZGB空化模型[23]假設(shè)流體內(nèi)所有氣泡都具有相同的大小,本次模擬采用10?6m。由文獻(xiàn)[22]中的結(jié)論可知,氣泡直徑大小與氣泡潰滅時(shí)對(duì)壁面產(chǎn)生的沖擊壓強(qiáng)大小無(wú)關(guān),故模擬時(shí)采用相同直徑的氣泡產(chǎn)生的后續(xù)結(jié)論與實(shí)際可以很好地吻合。湍流模型選擇標(biāo)準(zhǔn)-模型,導(dǎo)入自編譯UDF文件及采用CFD-POST的變量編輯器以模擬上述阻力修正公式(6)—(7)所表達(dá)的新沖蝕磨損風(fēng)險(xiǎn)預(yù)測(cè)方法。各噴嘴均采用以下邊界條件:入口壓力為180 MPa,出口壓力為0.101 MPa,壁面表面粗糙度為0.25 μm。由文獻(xiàn)[26-27]中的結(jié)論可知,由進(jìn)出口壓力差導(dǎo)致的噴孔內(nèi)流速變化是影響雷諾數(shù)(流態(tài))的主要因素。本文在各噴孔中均采用相同進(jìn)出口壓力及表面粗糙度,可認(rèn)為在各噴孔中近壁面流態(tài)基本一致。數(shù)值仿真采用的針閥運(yùn)動(dòng)規(guī)律如圖3所示。模型仿真中采用的柴油物性參數(shù)如表2所示。
圖4a和圖4d為引入dular和Chahine公式所得氣泡潰滅對(duì)壁面微射流速度和沖擊壓力云圖。該經(jīng)驗(yàn)公式經(jīng)論證僅適用于近壁面邊界層處,故CFD-post中對(duì)云圖做了修正,僅取近壁面3倍氣泡半徑范圍內(nèi)氣泡潰滅對(duì)壁面微射流速度和沖擊壓力值作為有效值。如圖4b和圖4e所示,近壁面處氣泡潰滅微射流速度和沖擊壓力隨著離壁面距離的增加而增加,圖中呈現(xiàn)趨勢(shì)與經(jīng)驗(yàn)公式描述一致,但傳統(tǒng)經(jīng)驗(yàn)公式忽視了流體阻力對(duì)氣泡的影響,遠(yuǎn)壁面處氣泡潰滅后射流沖擊至壁面時(shí)射流速度會(huì)受到較大的衰減,因此引入阻力修正公式(6)—(7)。如圖4c和圖4f所示,近壁面至遠(yuǎn)壁面處氣泡潰滅后沖擊至壁面的射流速度及沖擊壓力依次降低,綜合阻力修正后的經(jīng)驗(yàn)公式所得結(jié)果更符合實(shí)際情況。
圖3 數(shù)值模擬中的針閥運(yùn)動(dòng)規(guī)律
圖5為相同尺寸與升程下噴油器內(nèi)rs、對(duì)壁面射流速度、沖擊壓力云圖。其中rs沖蝕風(fēng)險(xiǎn)預(yù)測(cè)模型為經(jīng)由實(shí)驗(yàn)檢驗(yàn)的成熟沖蝕風(fēng)險(xiǎn)預(yù)測(cè)模型,其可以精準(zhǔn)地預(yù)測(cè)相對(duì)沖蝕磨損風(fēng)險(xiǎn)程度及沖蝕磨損嚴(yán)重位置,但僅能表征單模型單邊界層上相對(duì)沖蝕磨損風(fēng)險(xiǎn)程度,未能對(duì)沖蝕磨損風(fēng)險(xiǎn)程度進(jìn)行數(shù)值度量。結(jié)合阻力修正經(jīng)驗(yàn)公式得出云圖與rs云圖沖蝕磨損風(fēng)險(xiǎn)位置大體趨勢(shì)相同,rs沖蝕風(fēng)險(xiǎn)預(yù)測(cè)模型可證明阻力修正經(jīng)驗(yàn)公式新沖蝕風(fēng)險(xiǎn)模型在預(yù)測(cè)噴孔內(nèi)壁面沖蝕磨損風(fēng)險(xiǎn)位置的可行性。又因本文中引入的改進(jìn)經(jīng)驗(yàn)公式經(jīng)由文獻(xiàn)[22,24-25]試驗(yàn)結(jié)果總結(jié)得出,可滿足其定量驗(yàn)證,故可證明阻力修正經(jīng)驗(yàn)公式新沖蝕風(fēng)險(xiǎn)模型的可行性,且阻力修正經(jīng)驗(yàn)公式新沖蝕風(fēng)險(xiǎn)模型能考慮近壁面附近多層氣泡對(duì)壁面影響及對(duì)沖蝕磨損風(fēng)險(xiǎn)程度實(shí)現(xiàn)數(shù)值度量,也可為后續(xù)沖蝕磨損壽命預(yù)測(cè)提供載荷釋加條件及理論依據(jù)。
表2 柴油液體和蒸氣的熱力學(xué)特性
圖4 不同條件下微射流速度和空化水錘壓力云圖
圖5 基于Rrs模型的有限元模型的驗(yàn)證
采用CRS825型高壓共軌試驗(yàn)臺(tái)進(jìn)行沖蝕磨損疲勞試驗(yàn),試驗(yàn)試件的結(jié)構(gòu)如圖6a所示,高壓共軌試驗(yàn)臺(tái)技術(shù)參數(shù)如表3所示。
圖6 噴油器噴嘴頭部
表3 CRS825型高壓共軌試驗(yàn)臺(tái)技術(shù)參數(shù)
針對(duì)柴油機(jī)噴嘴進(jìn)行疲勞試驗(yàn),對(duì)柴油機(jī)噴嘴采用磨盤機(jī)將噴嘴頭部磨至顯露噴孔內(nèi)壁面,如圖6b所示,對(duì)噴嘴頭部及噴孔內(nèi)損傷表面進(jìn)行超聲波清洗,采用體式顯微鏡對(duì)噴孔上壁面沖蝕磨損區(qū)進(jìn)行觀察。對(duì)噴孔上壁面沖蝕磨損區(qū)域進(jìn)行光學(xué)顯微鏡、照片記錄。噴孔上壁面沖蝕磨損區(qū)域圖片與仿真沖蝕磨損壽命預(yù)測(cè)區(qū)域進(jìn)行對(duì)比,以此驗(yàn)證有限元模型的有效性。
圖7a為疲勞試驗(yàn)800 h后噴油器噴孔內(nèi)壁面沖蝕損傷圖。圖7b為該模型計(jì)算所得噴油器噴孔內(nèi)壁面沖蝕磨損壽命云圖。仿真結(jié)果顯示,總體沖蝕磨損風(fēng)險(xiǎn)區(qū)域在噴油孔入口附近及靠近入口的上壁面處,經(jīng)由8.96×107循環(huán)后,受空化泡破裂對(duì)壁面射流及壓力沖擊影響,噴嘴內(nèi)壁面將產(chǎn)生磨損坑,進(jìn)而失效。沖蝕磨損疲勞試驗(yàn)顯微鏡照片顯示出沖蝕磨損發(fā)生區(qū)域位于入孔口附近上壁面處,由此可以證明有限元模型的有效性。
圖7 基于疲勞試驗(yàn)的有限元模型的驗(yàn)證
為了研究噴嘴錐度對(duì)內(nèi)表面空化泡沖擊引起的沖蝕磨損風(fēng)險(xiǎn)影響,在180 MPa的入口壓力下,對(duì)不同fac系數(shù)的3個(gè)噴嘴進(jìn)行內(nèi)流模擬。定義為空泡中心距離壁面距離b與空化泡初試半徑比值0。提取=1.0時(shí)近壁面附近空化氣泡分布及空化泡破裂對(duì)壁面射流速度與沖擊壓力云圖,分析空化氣泡分布、空化泡破裂對(duì)壁面射流速度與沖擊壓力受不同噴嘴錐度f(wàn)ac因子及不同針閥升程的影響。
圖8為不同fac系數(shù)噴嘴整個(gè)工作循環(huán)動(dòng)態(tài)特性空化氣泡分布云圖??梢钥闯觯瑖娮斐叽缱兓痜ac因子對(duì)空化流動(dòng)會(huì)產(chǎn)生很大影響,不同fac因子噴嘴內(nèi)氣相分布形狀有顯著差異,氣相經(jīng)由噴嘴入孔口處延伸至噴嘴出口處。當(dāng)fac=0時(shí),空化泡幾乎覆蓋整個(gè)噴嘴上表面。當(dāng)fac增加時(shí),氣泡會(huì)提前破裂,空化泡分布位置會(huì)逐漸向噴嘴入口孔處收縮,且由于截面呈漸縮狀,可有效抑制壁面處邊界層分離和更易在軸心處產(chǎn)生渦流,高fac因子噴嘴近壁面處所產(chǎn)生的氣泡相較于低fac因子噴嘴更趨于遠(yuǎn)離壁面。
圖8 近壁面空化氣泡分布云圖
如圖9—10所示,噴嘴幾何尺寸fac0、fac2、fac4下在距離近壁面=1.0處氣泡潰滅對(duì)壁面產(chǎn)生的最大微射流速度分別為709、630、620 m/s;沖擊壓力分別為531、471、464 MPa,長(zhǎng)期經(jīng)受較大的微射流沖擊,材料表面會(huì)出現(xiàn)沖蝕磨損坑,可經(jīng)由以上兩因素來(lái)作為近壁面沖蝕磨損的判斷依據(jù)。隨著噴嘴幾何尺寸從fac0增加至fac2、fac4,噴孔內(nèi)壁面遭受的最大微射流速度及最大沖擊壓力分別減少11.29%、1.4%,噴嘴噴孔圓錐度提升可顯著降低氣泡潰滅對(duì)噴孔內(nèi)壁面產(chǎn)生的影響。當(dāng)fac增加時(shí),氣泡會(huì)提前破裂,空化現(xiàn)象會(huì)逐漸向噴嘴入口孔處收縮,且由于截面呈漸縮狀,可有效抑制壁面處邊界層分離和更易在軸心處產(chǎn)生渦流,高fac因子噴嘴近壁面處所產(chǎn)生的氣泡相較于低fac因子噴嘴更趨于遠(yuǎn)離壁面。受空化泡氣相分布影響,高fac因子噴嘴近壁面處所受最大射流速度與水錘壓力均低于低fac因子噴嘴。針閥升程對(duì)空化效果的影響明顯,當(dāng)噴嘴形狀相同時(shí),隨著針閥向上移動(dòng),針閥表面至噴嘴頭部?jī)?nèi)殼間流體區(qū)域增加,流體在流入噴孔前有更多的空間和時(shí)間來(lái)調(diào)整流動(dòng)路徑,能以與噴孔軸線呈更小的夾角流入噴孔,使得附近區(qū)域的回流減弱[20]。噴孔內(nèi)空化現(xiàn)象一方面受幾何因素導(dǎo)致的流體流速增加、壓力降低影響,另一方面受回流區(qū)導(dǎo)致的壓力降低影響[28]。故針閥向上移動(dòng)引起了回流區(qū)域減少,導(dǎo)致空化現(xiàn)象被有效地抑制,逐漸向噴孔的入口處收縮,其壁面上所受最大射流速度和沖擊壓力會(huì)略微增加。但總體空化區(qū)域多集中于噴孔入口上表面處,其原因在于當(dāng)燃油流經(jīng)噴孔入口處時(shí),由于流動(dòng)方向突然改變致使噴孔入口拐角上方形成了局部低壓甚至負(fù)壓區(qū)域,該低壓區(qū)域?yàn)槿加椭械目栈瘹馀萆L(zhǎng)提供了必備條件[27]。故空化沖蝕磨損風(fēng)險(xiǎn)區(qū)域也集中于噴孔入口上表面處。
圖9 近壁面射流速度云圖
圖10 近壁面水錘壓力云圖
對(duì)比空化氣泡分布、射流速度與沖擊壓力云圖可得出,沖蝕磨損風(fēng)險(xiǎn)區(qū)域集中于氣液兩相交換處,該處的蒸發(fā)冷凝及質(zhì)量交換對(duì)應(yīng)氣泡的產(chǎn)生與潰滅,故此處壁面上所受射流速度與沖擊壓力為頻繁,為沖蝕磨損主要發(fā)生區(qū)域。
提取=1.0、1.1、1.2、1.3時(shí)氣泡對(duì)近壁面的最大射流速度與沖擊壓力隨針閥一周期內(nèi)運(yùn)動(dòng)的瞬態(tài)變化圖,分析不同近壁面距離時(shí)近壁面所受射流速度與沖擊壓力受噴嘴fac因子和針閥運(yùn)動(dòng)的影響。
近壁面附近空化泡潰滅過(guò)程中存在氣泡與壁面的相互作用,該相互作用使得潰滅過(guò)程中產(chǎn)生高速射流、壓力沖擊波,空化泡距離壁面越近,泡與壁面的相互作用越強(qiáng),對(duì)壁面的沖蝕磨損作用也越大。當(dāng)空化泡距壁面較遠(yuǎn)時(shí),泡與壁面的相互作用力較弱,且射流沖擊至壁面會(huì)受到流體阻力影響,對(duì)壁面產(chǎn)生的壓強(qiáng)及沖蝕磨損作用將較小。從圖11可以看出,隨著無(wú)量綱距離的增加,作用在壁面上的射流速度c和壓強(qiáng)s的最大值迅速減小,當(dāng)無(wú)量綱距離=1.3時(shí),其最大速度和壓力值僅為無(wú)量綱距離=1.0時(shí)的2.6%,故無(wú)量綱距離>1.3時(shí)的最大速度和壓力值可視為對(duì)壁面影響較小,可忽略無(wú)量綱距離>1.3時(shí)的氣泡潰滅對(duì)壁面沖蝕磨損的影響。但不同時(shí)刻隨針閥升程變化的最大速度和壓力變化趨勢(shì)一致,均隨著針閥升程的提升而略微增加,隨著針閥升程的回落而隨之降低,且隨著噴孔幾何形狀fac因子的增加,最大速度和潰滅壓力均呈現(xiàn)下降趨勢(shì)。當(dāng)fac=4時(shí)壁面所受最大速度和壓力更早地回歸至0,針閥還未完全關(guān)閉時(shí)氣泡便已消失。這是由于截面呈漸縮狀,可有效抑制壁面處邊界層分離和更易在軸心處產(chǎn)生渦流,軸心處產(chǎn)生的渦流可將部分近壁面處氣泡向軸心處匯集,使得近壁面處氣泡數(shù)量降低,從而有效抑制近壁面處氣泡與壁面的相互作用,最大速度和壓力均呈現(xiàn)下降趨勢(shì),且使得氣泡更早地消失。
圖11 距壁面不同距離處瞬態(tài)最大射流速度及水錘壓力
將=1.0、1.1、1.2、1.3時(shí)氣泡對(duì)近壁面的瞬態(tài)壓力值提取出并作用于噴嘴噴孔內(nèi)壁面固體域上,引入workbench 中ncode軟件對(duì)其進(jìn)行沖蝕磨損壽命預(yù)測(cè)。
如圖12所示,噴嘴幾何尺寸fac0、fac2、fac4對(duì)應(yīng)的上固體域最小壽命循環(huán)次數(shù)分別為7.582×107、8.960×107和1.1856×108,隨著噴嘴噴孔圓錐度的增加,其上噴孔內(nèi)壁面最小壽命分別提升了18.17%及32.32%。隨著噴孔圓錐度增加,一方面,噴孔截面面積沿流動(dòng)方向變得更小,壁面附近的回流和邊界層分離受到抑制,空化將被抑制,近壁面處所受氣泡相互作用區(qū)域?qū)?huì)減少;另一方面,流體也更易在噴孔軸心處產(chǎn)生渦流,其產(chǎn)生的渦流將使噴孔近壁面處氣泡減少,氣泡更趨向于遠(yuǎn)離壁面,從而有效抑制近壁面處氣泡與壁面的相互作用,近壁面處所受最大射流速度與水錘壓力將會(huì)降低。故噴嘴噴孔圓錐度的增加可降低噴孔內(nèi)側(cè)沖蝕磨損程度,顯著提升噴嘴壽命。
圖12 沖蝕磨損壽命對(duì)比圖
1)當(dāng)fac因子增加時(shí),氣泡會(huì)提前破裂,空化泡分布會(huì)逐漸向噴嘴入口孔處收縮,高fac因子噴嘴近壁面處的最大射流速度與水錘壓力均低于低fac因子噴嘴。
2)當(dāng)噴嘴形狀相同時(shí),隨著針閥向上移動(dòng),空化泡分布逐漸向噴孔的入口處收縮,但其最大射流速度和水錘壓力會(huì)略微增加。
3)隨著氣泡距離壁面無(wú)量綱距離的增加,作用在壁面上的射流速度c和壓強(qiáng)s的最大值迅速減小。
4)沖蝕磨損壽命預(yù)測(cè)顯示沖蝕磨損發(fā)生區(qū)域位于入孔口附近上壁面處,且隨著fac因子增加,可降低噴孔內(nèi)側(cè)沖蝕磨損程度,顯著提升噴嘴壽命。
綜上所述,由分析結(jié)果可知,沖蝕磨損發(fā)生區(qū)域主要位于入孔口附近上壁面處,故可考慮在噴孔入孔口附近壁面做表面處理,達(dá)到減小噴孔整體空蝕磨損的效果,也可在設(shè)計(jì)加工時(shí)適當(dāng)增加噴孔圓錐度,達(dá)到減小噴孔空蝕磨損、提升噴孔壽命的效果。文中模型可預(yù)測(cè)噴嘴噴孔內(nèi)沖蝕磨損嚴(yán)重位置及壽命,所得結(jié)論為后續(xù)工程應(yīng)用中控制空化強(qiáng)度、沖蝕磨損等提供理論參考,也可為后續(xù)噴油器改進(jìn)設(shè)計(jì)提供理論依據(jù)。
[1] REITZ R D. Directions in Internal Combustion Engine Research[J]. Combustion and Flame, 2013, 160(1): 1-8.
[2] XUAN Tie-min, CAO Jia-wei, HE Zhi-xia, et al. A Study of Soot Quantification in Diesel Flame with Hydrog-enated Catalytic Biodiesel in a Constant Volume Com-bustion Chamber[J]. Energy, 2018, 145: 691-699.
[3] AGARWAL A K, DHAR A, GUPTA J G, et al. Effect of Fuel Injection Pressure and Injection Timing on Spray Characteristics and Particulate Size-Number Distribution in a Biodiesel Fuelled Common Rail Direct Injection Diesel Engine[J]. Applied Energy, 2014, 130: 212-221.
[4] NISHIDA K, ZHU Jing-yu, LENG Xian-yin, et al. Effects of Micro-Hole Nozzle and Ultra-High Injection Pressure on Air Entrainment, Liquid Penetration, Flame Lift-off and Soot Formation of Diesel Spray Flame[J]. Internati-onal Journal of Engine Research, 2017, 18(1-2): 51-65.
[5] 郭根苗. 柴油機(jī)噴嘴內(nèi)特殊流動(dòng)現(xiàn)象的瞬態(tài)特性及對(duì)噴霧的影響[D]. 鎮(zhèn)江: 江蘇大學(xué), 2019.
GUO Gen-miao. Transient Characteristics of Special Flow Phenomena in Diesel Injector Nozzles and Their Effects on Spray[D]. Zhenjiang: Jiangsu University, 2019.
[6] KOUKOUVINIS P, GAVAISES M, LI J, et al. Large Eddy Simulation of Diesel Injector Including Cavitation Effects and Correlation to Erosion Damage[J]. Fuel, 2016, 175: 26-39.
[7] HE Zhi-xia, ZHONG Wen-jun, WANG Qian, et al. Effect of Nozzle Geometrical and Dynamic Factors on Cavita-ting and Turbulent Flow in a Diesel Multi-Hole Injector Nozzle[J]. International Journal of Thermal Sciences, 2013, 70: 132-143.
[8] SHERVANI M T, PARSA S, GHORBANI M. Numerical Study on the Effect of the Cavitation Phenomenon on the Characteristics of Fuel Spray[J]. Mathematical and Com-puter Modelling, 2012, 56(5-6): 105-117.
[9] LEE W G, REITZ R D. A Numerical Investigation of Transient Flow and Cavitation within Minisac and Valve-Covered Orifice Diesel Injector Nozzles[J]. Journal of Engineering for Gas Turbines and Power, 2010, 132(5): 1.
[10] MOLINA S, SALVADOR F J, CARRERES M, et al. A Computational Investigation on the Influence of the Use of Elliptical Orifices on the Inner Nozzle Flow and Cavitation Development in Diesel Injector Nozzles[J]. Energy Conversion and Management, 2014, 79: 114-127.
[11] HE Zhi-xia, GUO Gen-miao, TAO Xi-cheng, et al. Study of the Effect of Nozzle Hole Shape on Internal Flow and Spray Characteristics[J]. International Communications in Heat and Mass Transfer, 2016, 71: 1-8.
[12] BRUSIANI F, NEGRO S, BIANCHI G M, et al. Comp-arison of the Homogeneous Relaxation Model and a Rayleigh Plesset Cavitation Model in Predicting the Cavi-ta-ting Flow through Various Injector Hole Shapes[C]//SAE Technical Paper Series. Warrendale: SAE International, 2013.
[13] NEROORKAR K, SHIELDS B, GROVER R O Jr, et al. Application of the Homogeneous Relaxation Model to Simulating Cavitating Flow of a Diesel Fuel[C]//SAE Technical Paper Series. Warrendales: SAE International, 2012.
[14] SINGHAL A K, ATHAVALE M M, LI Hui-ying, et al. Mathematical Basis and Validation of the Full Cavitation Model[J]. Journal of Fluids Engineering, 2002, 124(3): 617-624.
[15] BENAJES J, MOLINA S, GONZáLEZ C, et al. The Role of Nozzle Convergence in Diesel Combustion[J]. Fuel, 2008, 87(10-11): 1849-1858.
[16] BRUSIANI F, FALFARI S, PELLONI P. Influence of the Diesel Injector Hole Geometry on the Flow Conditions Emerging from the Nozzle[J]. Energy Procedia, 2014, 45: 749-758.
[17] HE Zhi-xia, ZHANG Liang, SAHA K, et al. Investiga-tions of Effect of Phase Change Mass Transfer Rate on Cavitation Process with Homogeneous Relaxation Model[J]. International Communications in Heat and Mass Transfer, 2017, 89: 98-107.
[18] EDELBAUER W, STRUCL J, MOROZOV A. Large Eddy Simulation of Cavitating Throttle Flow[M]. Singapore: Springer, 2016: 501-517.
[19] BRUSIANI F, FALFARI S, BIANCHI G M. Definition of a CFD Multiphase Simulation Strategy to Allow a First Evaluation of the Cavitation Erosion Risk Inside High- Pressure Injector[J]. Energy Procedia, 2015, 81: 755-764.
[20] ZHANG Liang, HE Zhi-xia, GUAN Wei, et al. Simul-ations on the Cavitating Flow and Corresponding Risk of Erosion in Diesel Injector Nozzles with Double Array Holes[J]. International Journal of Heat and Mass Transfer, 2018, 124: 900-911.
[21] DULAR M, STOFFEL B, ?IROK B. Development of a Cavitation Erosion Model[J]. Wear, 2006, 261(5-6): 642-655.
[22] 呂煒. 近壁空化泡潰滅的數(shù)值模擬[D]. 杭州: 浙江大學(xué), 2015.
LYU Wei. Numerical Study on the Collapse of Bubbles Near a Wall[D]. Hangzhou: Zhejiang University, 2015.
[23] ZWART P J, GERBER A G, BELAMRI T.A Two-phase Flow Model for Predicting Cavitation Dynamics[C]//Fifth International Conference on Multiphase Flow. JAPAN: Yokohama, 2004.
[24] 葉林征, 祝錫晶, 王建青. 近壁聲空泡潰滅微射流沖擊流固耦合模型及蝕坑反演分析[J]. 爆炸與沖擊, 2019, 39(6): 23-34.
YE Lin-zheng, ZHU Xi-jing, WANG Jian-qing. Fluid- Solid Coupling Model of Micro-Jet Impact from Acoustic Cavitation Bubble Collapses near a Wall and Pit Inversion Analysis[J]. Explosion and Shock Waves, 2019, 39(6): 23-34.
[25] KIM K H, CHAHINE G, FRANC J P, et al. Advanced Experimental and Numerical Techniques for Cavitation Ero-sion Prediction[M]. Dordrecht: Springer Netherlands, 2014.
[26] 魏起森. 柴油機(jī)噴油嘴內(nèi)部空化現(xiàn)象的研究[D]. 洛陽(yáng): 河南科技大學(xué), 2011.
WEI Qi-sen. The Study of Cavitation in Diesel Injector Nozzle[D]. Luoyang: Henan University of Science and Technology, 2011.
[27] 高國(guó)席. 共軌噴油器噴油嘴內(nèi)空化流動(dòng)特性數(shù)值模擬研究[D]. 北京: 北京交通大學(xué), 2012.
GAO Guo-xi. A Numerical Investigation of Cavitation Flow Characteristics in a Common Rail Injector’s Nozzle[D]. Beijing: Beijing Jiaotong University, 2012.
[28] 張正洋. 柴油機(jī)噴嘴內(nèi)空穴流動(dòng)瞬態(tài)特性及對(duì)噴霧影響的可視化研究[D]. 鎮(zhèn)江: 江蘇大學(xué), 2017.
ZHANG Zheng-yang. Visual Experiment of Transient Cavitating Flow in the Diesel Injector Nozzle and Its Influence on Spray Characteristics[D]. Zhenjiang: Jiangsu University, 2017.
Prediction Model of New Erosion Life and Numerical Simulation of Transient Characteristics of a Diesel Fuel Injector
1,1,2,1,1,1,1,1
(1. School of Energy and Power Engineering, North University of China, Taiyuan 030051, China; 2. China North Engine Research Institute, Tianjin 300400, China)
Aiming at the cavitation phenomenon and erosion wear problem in the nozzle hole of diesel fuel injector, by introducing the research theory of the pressure and jet velocity of cavitation bubbles with different distance near the wall, the traditional empirical formula is modified, and the transient characteristic simulation model of diesel fuel injector considering the erosion effect caused by the collapse of group bubbles in different boundary layers near the wall is established. Using the method of simulation, the influencing factors of the internal erosion wear degree of diesel fuel injection nozzle are explored, and the erosion wear life of the nozzle hole is predicted. Firstly, based on the research conclusions of the pressure and jet velocity of cavitation bubbles with different distance to the wall, the function fitting of the pressure and jet velocity of cavitation bubbles with different distance to the wall is carried out by using MATLAB software. Combined with the traditional empirical formula, the resistance correction empirical formula of group cavitation considering different distances from the wall surface is derived. Secondly, the finite element model based on resistance correction empirical formula and grid adaptive algorithm is established by using UDF in fluent. Therscavitation risk prediction model is established by using the theory of representing erosion risk by steam mass condensation rate. The new model proposed in this paper is verified byrscavitation risk prediction model and cavitation fatigue test results, It is proved that the new model proposed in this paper has good accuracy. Based on the calculation results of this model, the effects of nozzle orifice conicityfacand needle valve dynamic characteristics on orifice erosion wear are discussed. As the geometric size of the nozzle increases fromfac0 tofac2 andfac4, the cross-sectional area of the orifice becomes smaller along the flow direction, the reflux near the wall and the separation of the boundary layer are restrained, the cavitation will be restrained, and the bubble interaction area near the wall will be reduced. At the same time, the fluid is more likely to generate eddy currents at the axis of the orifice, which will reduce the bubbles near the wall of the orifice, bubbles tend to be far away from the wall, so as to effectively inhibit the interaction between bubbles and the wall near the wall. The maximum jet velocity and water hammer pressure near the wall will be reduced, and the bubble collapse of the upper orifice will be reduced by 11.29% and 1.4% respectively; when the nozzle shape is the same, with the upward movement of the needle valve, the fluid area from the surface of the needle valve to the inner shell of the nozzle head increases, and the fluid has more space and time to adjust the flow path before flowing into the nozzle hole, which can flow into the nozzle hole at a smaller included angle with the axis of the nozzle hole, so that the backflow in the nearby area is weakened, the cavitation phenomenon is effectively restrained, and gradually shrinks towards the inlet of the nozzle hole. The effects of dimensionless distance on the transient maximum jet velocity and water hammer pressure at different distances from the wall are also studied. When the dimensionless distance=1.3, the maximum velocity and pressure are only 2.6% of that when the dimensionless distance=1.0. Therefore, the effect of bubble collapse at dimensionless distance>1.3 on erosion wear of wall surface can be ignored. Finally, the influence of nozzle hole conicity on nozzle hole life is explored. With the increase of nozzle geometric size fromfac0 tofac2 andfac4, the minimum life of the inner wall surface of the upper nozzle hole is increased by 18.17% and 32.32% respectively. From the analysis results, it can be seen that the erosion wear area is mainly located at the upper wall near the inlet orifice. Therefore, it can be considered to do surface treatment on the wall near the inlet orifice to reduce the overall cavitation wear of the orifice, or appropriately increase the taper of the orifice during design and processing, so as to reduce the cavitation wear of the orifice and improve the service life of the orifice.
cavitation flow; water hammer pressure; nozzle orifice; erosion; life prediction
TH117
A
1001-3660(2023)01-0121-11
10.16490/j.cnki.issn.1001-3660.2023.01.013
2021–12–26;
2022–03–27
2021-12-26;
2022-03-27
山西省科技重大專項(xiàng)(MQ2016-02-01);山西省“百人計(jì)劃”創(chuàng)新團(tuán)隊(duì)項(xiàng)目資助
Major Scientific and Technological Projects in Shanxi Province (MQ2016-02-01); Foundation of Shanxi Province "Hundred Talents Plan" Innovation Team Project
許磊(1996—),男,碩士研究生,主要研究方向?yàn)閯?dòng)力機(jī)械結(jié)構(gòu)強(qiáng)度及流體分析。
XU Lei (1996-), Male, Postgraduate, Research focus: strength and fluid analysis of dynamic mechanical structure.
張翼(1969—),男,博士,副教授,主要研究方向?yàn)閯?dòng)力機(jī)械結(jié)構(gòu)強(qiáng)度。
ZHANG Yi (1969-), Male, Doctor, Associate professor, Research focus: strength of mechanical structure.
許磊, 張翼, 徐春龍, 等.某柴油噴油嘴新沖蝕壽命預(yù)測(cè)模型及瞬態(tài)特性數(shù)值模擬[J]. 表面技術(shù), 2023, 52(1): 121-131.
XU Lei, ZHANG Yi, XU Chun-long, et al. Prediction Model of New Erosion Life and Numerical Simulation of Transient Characteristics of a Diesel Fuel Injector[J]. Surface Technology, 2023, 52(1): 121-131.
責(zé)任編輯:萬(wàn)長(zhǎng)清