馮建英,賀 苗,李 鑫,朱志強,穆維松
·農(nóng)產(chǎn)品加工工程·
基于改進MSVR的鮮食葡萄運輸過程中環(huán)境因子與感官品質(zhì)建模
馮建英1,賀 苗1,李 鑫1,朱志強2,穆維松1※
(1. 中國農(nóng)業(yè)大學信息與電氣工程學院,北京 100083;2. 國家農(nóng)產(chǎn)品保鮮工程技術(shù)研究中心(天津),天津 300384)
挖掘運輸過程中環(huán)境因子和生鮮果蔬感官品質(zhì)之間的關系,實現(xiàn)基于環(huán)境因子的感官品質(zhì)評估和預測,對于保持生鮮果蔬物流品質(zhì)具有重要意義。該研究以鮮食葡萄為研究對象,通過對實際運輸過程的跟蹤監(jiān)測,在實驗室開展了鮮食葡萄運輸模擬試驗和感官試驗,構(gòu)建了鮮食葡萄運輸感官品質(zhì)數(shù)據(jù)集。在建模方法層面,該研究提出了一種基于多輸出支持向量回歸(Multiple Output Support Vector Regression,MSVR)模型的運輸環(huán)境因子(溫度、相對濕度)與感官品質(zhì)(外觀、香氣、質(zhì)地和風味品質(zhì))的預測模型,并利用粒子群(Particle Swarm Optimization,PSO)算法和遺傳算法(Genetic Algorithm,GA)對模型進行優(yōu)化(PSOGA-MSVR)。結(jié)果表明,PSOGA聯(lián)合優(yōu)化算法有效提高了MSVR模型的調(diào)參效率,且在常溫運輸、保冷運輸和冷鏈運輸3種不同的運輸模式下,PSOGA-MSVR模型的預測效果均更優(yōu),決定系數(shù)2高于0.985且各項誤差指標低于其他模型;研究結(jié)果可為運輸過程中合理調(diào)控環(huán)境因子,減緩生鮮水果感官品質(zhì)的下降提供參考。
模型;溫度;相對濕度;鮮食葡萄;感官品質(zhì);多支持向量回歸;遺傳算法;粒子群算法
由于生產(chǎn)端和消費端的分離,包括鮮食葡萄在內(nèi)的生鮮水果采摘后需要經(jīng)過運輸、貯藏等物流過程才能到達消費者手中。葡萄果實被采摘后依然具有活躍的生命力,在貯藏、運輸、銷售等過程中易產(chǎn)生果粒硬度下降、果粒開裂甚至腐爛變質(zhì)等問題,由于缺乏物流過程中實時的質(zhì)量感知與監(jiān)測,導致不能及時發(fā)現(xiàn)果品品質(zhì)下降并采取挽救措施,最終將帶來產(chǎn)品的品質(zhì)和價值損失[1-2]。因此,精準和實時感知、評價、預測水果的品質(zhì),是生鮮水果運輸環(huán)節(jié)的重大技術(shù)需求,也是反映生鮮水果供應鏈績效的重要方面[3]。
生鮮水果的品質(zhì)評價方法主要有感官評價[4-5]和儀器測量評價[6]。感官評價結(jié)果更貼近消費者的感受,但存在組織難度大、主觀性強的弊端[7];基于理化指標檢測的智能儀器評價結(jié)果準確、客觀,但評價結(jié)果距離消費者的認知和感受較遠[8]。更重要的問題在于,感官評價和儀器評價都更適合于實驗室靜態(tài)評價,難以以較低成本在物流過程中進行實時的品質(zhì)監(jiān)測與感知。研究表明,物流過程中的環(huán)境因子如溫度、相對濕度等會對生鮮農(nóng)產(chǎn)品的感官品質(zhì)變化產(chǎn)生顯著影響[9-11]。因而,通過監(jiān)測物流環(huán)境因子,利用模型對物流環(huán)境因子和生鮮水果品質(zhì)進行建模,量化環(huán)境因素變化對水果品質(zhì)的影響,可以達到低成本、實時、動態(tài)感知物流過程中水果品質(zhì)變化的目標。此外,基于環(huán)境因子和品質(zhì)變化關系的解析,可以在運輸過程中控制環(huán)境因素,人為干預水果品質(zhì)變化,對于減少運輸過程中的產(chǎn)品消耗和經(jīng)濟損失具有重要價值。
人工智能技術(shù)的發(fā)展為上述思路提供了可能。由Vapnik于1995年提出的支持向量回歸(Support Vector Regression, SVR)算法利用了支持向量機(Support Vector Machines, SVM)的算法思想,并引入不敏感損失函數(shù)解決非線性回歸問題[12]。SVR應用廣泛,在解決小樣本、非線性及高維模式識別等問題上顯示了一定的優(yōu)勢[13]。近年來,SVR模型在食品品質(zhì)預測領域取得了一些應用成果,董春旺等[14]利用非線性模型SVR建立了紅茶的感官品質(zhì)評分和理化品質(zhì)指標的定量分析模型,結(jié)果表明基于最優(yōu)特征波長的各品質(zhì)指標SVR模型的相對分析誤差(Relative Percent Deviation,RPD)均大于2,模型具有極好的預測性能。Yao等[15]將SVR模型用于預測肉類樣品的pH值,該模型的預測準確率接近90%。研究者們逐漸發(fā)現(xiàn)簡單SVR模型具有欠學習、過擬合等缺陷,且參數(shù)的優(yōu)化選擇對SVR的預測精度和泛化能力影響顯著[16-17],于是國內(nèi)外一些學者開始嘗試對SVR進行改進和優(yōu)化。程鑫等[18]設計了一種基于PSO-SVR(Particle Swarm Optimization-Support Vector Regression)的智能補光系統(tǒng),利用粒子群算法對SVR模型進行參數(shù)優(yōu)化,保證了模型的魯棒性和準確度。孫俊等[19]探究利用介電特性檢測作物水分狀況的可行性,引入灰狼優(yōu)化算法(Iteratively Retains Informative Variables, IRIV)優(yōu)化IRIV-SVR模型的參數(shù),優(yōu)化后模型在測試集的決定系數(shù)2提高至0.963 8。Roushangar等[20]應用SVR預測礫石河床的河床荷載輸送率,使用遺傳算法(Genetic Algorithm,GA)確定最佳的SVR參數(shù),結(jié)果表明GA-SVR優(yōu)化算法提高了預測精度。因此,本文基于SVR研究的基礎上引入優(yōu)化算法對參數(shù)尋優(yōu)以提高預測精度。
綜上,本文基于SVR優(yōu)化算法進行鮮食葡萄物流環(huán)境因子與葡萄感官品質(zhì)的建模,深入挖掘運輸環(huán)境因子與葡萄品質(zhì)的演變關系,并比較不同物流模式下建模結(jié)果的差異,既能為物流過程中葡萄品質(zhì)評價和預測提供新的技術(shù)方案,又能將研究結(jié)論反饋到鮮食葡萄物流過程改進中,提升鮮食葡萄的品質(zhì),研究具有重要的理論價值和現(xiàn)實意義。
1.1.1 鮮食葡萄運輸模式跟蹤調(diào)研
當前鮮食葡萄運輸模式主要有常溫運輸、保冷運輸和冷鏈運輸。常溫運輸是指不采取任何制冷措施,在常溫下運輸鮮食葡萄。保冷運輸是指運輸之前鮮食葡萄在田間采后經(jīng)過預冷,利用棉被等包裹住葡萄以維持果實的低溫。冷鏈運輸是指通過人工制冷手段使得運輸過程中的鮮食葡萄維持在適宜的低溫環(huán)境中。常溫運輸和保冷運輸一般用于短距離運輸,冷鏈則可以實現(xiàn)較長距離和較長周期運輸。試驗之前,先跟蹤調(diào)研了3條典型的鮮食葡萄供應鏈,獲取了運輸過程環(huán)境因子數(shù)據(jù)。
常溫運輸和保冷運輸?shù)钠咸丫?019年9月24日16:00在遼寧盤錦某葡萄園采摘并分別用貨車運輸,于第二天凌晨到達天津某批發(fā)市場,歷經(jīng)12 h。冷鏈運輸葡萄為同一生產(chǎn)季在新疆某葡萄園采摘,10月11日18:00開始運輸,于10月17日06:00到達天津,共歷時約132 h。
通過在鮮食葡萄運輸筐內(nèi)兩層葡萄中間放置傳感器獲取了不同運輸條件下溫濕度的變化情況,如圖1所示。傳感器選取的是溫濕度傳感器(精創(chuàng) Elitech RC-4HC)對運輸過程的溫度和濕度進行監(jiān)測,溫度測量精度為±0.5 ℃,相對濕度測量精度為±3%,采樣頻率設置為30 s。從圖1a中可以看出,溫度從29 ℃一直緩慢下降至20 ℃左右,這是由于運輸時間是從第一天的下午到第二天的凌晨,室外溫度在這個過程中一直下降。由于果實水分的散失,會使相對濕度上升;從圖1b中可以看出,溫度從7 ℃上升至14 ℃左右,運輸中前3 h溫度基本保持恒定,隨后2 h進入相對快速上升期,后期溫度又進入緩慢上升期。由于果實水分的散失,使得相對濕度上升;從圖1c中可以看出,在運輸?shù)谝惶?,溫度?0 ℃迅速下降至1 ℃左右,再緩慢下降到?1 ℃,之后緩慢回升到2 ℃左右。由于果實水分的散失,相對濕度同樣上升。
1.1.2 鮮食葡萄運輸模擬試驗
基于獲取的不同運輸方式下環(huán)境因子數(shù)據(jù),根據(jù)鮮食葡萄實際運輸?shù)沫h(huán)境因子監(jiān)測結(jié)果,在實驗室條件下通過調(diào)控溫濕度,模擬了以上3種運輸過程,試驗地點為國家農(nóng)產(chǎn)品保鮮工程技術(shù)研究中心(天津)。為了突出運輸模式差異對鮮食葡萄品質(zhì)的影響,3種運輸模擬試驗選擇同一品種、同一批次的鮮食葡萄,試驗葡萄品種為巨峰,購于天津紅旗農(nóng)貿(mào)綜合批發(fā)市場,試驗葡萄總量為315 kg,滿足后期取樣測定。試驗中當溫濕度有顯著變化(溫度變化1 ℃,或相對濕度變化1%)時,隨機取出25串樣本,對鮮食葡萄品質(zhì)指標進行測定和評價。常溫運輸、保冷運輸、冷鏈運輸模擬試驗分別進行了12次、13次、17次測定和評價。
1.1.3 鮮食葡萄感官品質(zhì)評價
本文所用的鮮食葡萄感官品質(zhì)數(shù)據(jù)通過在模擬試驗中開展感官評價試驗獲得。參照 NY/T1986-2011標準設計了鮮食葡萄感官評價評分標準表,如表1所示。試驗地點在國家農(nóng)產(chǎn)品保鮮工程技術(shù)中心的感官分析實驗室,邀請10名感官評價員均具有生鮮農(nóng)產(chǎn)品工程專業(yè)背景,并且接受過專業(yè)的鮮食葡萄感官評價培訓。評價員根據(jù)評價指標和評分標準,對每次取出的葡萄樣本進行感官評價,對10份感官評價結(jié)果取均值,得到葡萄樣本各時間點各感官屬性維度上的最終評分。
表1 鮮食葡萄感官評價評分標準
1.1.4 數(shù)據(jù)預處理與數(shù)據(jù)集建立
對獲取到的運輸時長、環(huán)境數(shù)據(jù)、葡萄感官品質(zhì)數(shù)據(jù)進行預處理,包括去重、修正異常值、去除錯誤數(shù)據(jù)、數(shù)據(jù)標準化等,最終得到葡萄感官數(shù)據(jù)集。常溫運輸數(shù)據(jù)集包含300條記錄,保冷運輸數(shù)據(jù)集包含325條記錄,冷鏈運輸數(shù)據(jù)集包含425條記錄。3種數(shù)據(jù)集中,每條記錄具有三方面的特征屬性變量,即運輸時間、環(huán)境因子(溫度、相對濕度)、感官品質(zhì)指標(外觀、香氣、果皮和果肉質(zhì)地、果粒風味)。
1.2.1 基于多輸出支持向量回歸(Multiple Output Support Vector Regression,MSVR)的感官品質(zhì)預測模型構(gòu)建
利用超球不敏感區(qū)域的損失函數(shù),各組分的擬合誤差在受到懲罰時具有相同的強度,因此目標函數(shù)的結(jié)果與各組分的誤差有關,從而實現(xiàn)了整體優(yōu)化。引入拉格朗日函數(shù)[22],目標函數(shù)如下:
根據(jù)KKT優(yōu)化條件,引入核函數(shù)=T,最終矩陣表示如下[23]:
上述方程可用迭代法求解。
SVR的精確性和推廣能力很大程度上依賴于核函數(shù)及超參數(shù)[24-25],應謹慎選擇核函數(shù)的類型及其參數(shù)[26-27]。由于線性核函數(shù)解決非線性問題的能力較差,多項式核函數(shù)在進行大規(guī)模數(shù)據(jù)采樣時容易出現(xiàn)不收斂,Sigmoid核函數(shù)在高維輸出時的差錯控制能力較弱,目前已有一些研究表明徑向基函數(shù)(Radial Basis Function,RBF)作為SVR核函數(shù)有很好的效果[28-29],因此選用RBF,表達式為[22]
式中是RBF核函數(shù)寬度系數(shù)。
1.2.2 利用PSOGA(Particle Swarm Optimization union Genetic Algorithm ,PSOGA)優(yōu)化MSVR模型
1)PSO優(yōu)化GA變異算子
SVR模型的關鍵在于核函數(shù)的選取及其參數(shù)的確定,不合適的核函數(shù)或超參數(shù)設置可能會導致性能顯著下降[30-31],因此核函數(shù)中的參數(shù)和懲罰因子對SVR性能有關鍵影響。
遺傳算法是一種模仿生物進化過程的搜索最優(yōu)解的算法,本文首先利用遺傳算法對SVR模型的參數(shù)進行尋優(yōu),基本思路為:估計SVR模型的懲罰因子和核參數(shù)的取值范圍,其中個體為每一個(),種群由多個(,)構(gòu)成,編碼組成部分相當于個體基因,通過對利用適應度函數(shù)即均方誤差函數(shù)(Mean Square Error, MSE)的評價,選出最優(yōu)的參數(shù)和。
但遺傳算法具有局部搜索能力較差的弊端[32-33]。遺傳算法中包括選擇、交叉、變異3種操作,變異算子有助于維持種群的多樣性,但變異算子的大小會對變異方向產(chǎn)生影響。變異算子過大,使得搜索具有盲目性并且使得變異方向呈現(xiàn)隨機性;變異算子太小,則不能在沒有方向引導的情況下生成新的單一結(jié)構(gòu)。為了合理確定變異算子的大小,在遺傳算法中引入粒子群算法(Particle Swarm Optimization,PSO),將粒子群算法中的進化公式作為確定變異算子的依據(jù),粒子個體與群體的最優(yōu)解和粒子個體的進化速度決定了變異方向和變異程度,因此變異方向不再隨機,可以實現(xiàn)局部搜索,提升算法的局部搜索能力[34]。具體操作如下:
1)以PSO中的個體最佳位置(pbest)替換個體歷史的最大適應值max中的第個粒子的對應代碼max,i,并且將全局最優(yōu)位置(gbest)替換對應群體歷史最大適應值max的粒子代碼max,j。
式中為迭代次數(shù)。則基于粒子群的變異算子確定可表示如下:
式中是慣性權(quán)重因子,1和2是學習因子,1和2是隨機數(shù)。
2)PSOGA聯(lián)合優(yōu)化MSVR模型
綜上,利用PSOGA對多輸出SVR模型進行優(yōu)化的核心思想和流程可以用圖2表示,核心步驟解釋如下:
圖2 PSOGA-SVR模型流程圖
首先采集、預處理數(shù)據(jù)集,設置優(yōu)化算法的種群數(shù)量、參數(shù)和的取值范圍,找到種群中每個個體的適應度;接著,通過基于最優(yōu)參數(shù)執(zhí)行模型訓練過程,當模型達到預測精度,確定出最佳參數(shù)和,構(gòu)建PSOGA-MSVR鮮食葡萄感官評價模型。
1.2.3 模型評估方法
采用平均絕對誤差(Mean Absolute Error, MAE)、均方誤差(Mean Square Error, MSE)、均方根誤差(Root Mean Square Error, RMSE)、決定系數(shù)(2)作為評價模型的指標。
為了更深入全面地解析鮮食葡萄感官品質(zhì)與環(huán)境因子的關系,將感官品質(zhì)細化為外觀、香氣、質(zhì)地、風味4個維度,分別進行分析和建模。
對3種運輸模式的數(shù)據(jù)集分別建模,分別基于GA、PSO、PSOGA優(yōu)化MSVR模型的參數(shù),3種算法的參數(shù)設定見表2,為確定合適的算法參數(shù),本文對在一定合理范圍內(nèi)的參數(shù)進行了多次測試,最終取RMSE和MAE值較小的參數(shù)?;诒闅v法得到3種算法在3種運輸模式下的參數(shù)尋優(yōu)結(jié)果,如表3所示。
表2 三種算法的參數(shù)設定
注:1、2為PSO算法的學習因子,max為PSOGA算法的最大慣性權(quán)重,min為PSOGA算法的最小慣性權(quán)重。
Note:1,2are the learning factor of the PSO algorithm,maxis the maximum inertial weight of the PSOGA algorithm, andminis the the minimum inertia weight of PSOGA algorithm.
表3 三種算法的參數(shù)尋優(yōu)結(jié)果
試驗表明,3種優(yōu)化算法中,PSOGA收斂時迭代次數(shù)最少。3種運輸模式中,冷鏈運輸收斂時迭代次數(shù)最少。
分別基于MSVR、GA-MSVR、PSO-MSVR和PSOGA-MSVR模型(后三個模型采用表2的模型尋優(yōu)化參數(shù))在3個葡萄運輸感官品質(zhì)數(shù)據(jù)集上,進行預測建模,按照4∶1劃分訓練集和測試集,通過MAE、MSE、RMSE、2指標衡量模型效果。預測集具體結(jié)果如表4所示。
表4 三種運輸模型評價指標
由表4可知,在3種運輸過程中PSOGA-MSVR的MAE、MSE、RMSE均顯著低于其他模型,而2高于比較模型,表明PSOGA組合算法在MSVR參數(shù)優(yōu)化方面效果最好。PSOGA-MSVR模型在冷鏈運輸狀態(tài)下,MAE、MSE、RMSE均最小,且2達到了0.985,平均誤差為0.063,說明3種模式中冷鏈運輸對鮮食葡萄的感官品質(zhì)的預測精度最高,這是由于冷鏈數(shù)據(jù)集的時間序列最長,數(shù)據(jù)量最豐富,因而模型擬合更優(yōu)。
鮮食葡萄冷鏈運輸?shù)木嚯x最遠、時長最長、對品控的要求更高,因而冷鏈運輸情境下對鮮食葡萄感官品質(zhì)進行預測更有必要,本節(jié)只顯示冷鏈運輸模式下基于MSVR、GA-MSVR、PSO-MSVR、PSOGA-MSVR模型的鮮食葡萄感官品質(zhì)建模評估與預測結(jié)果。外觀、香氣、質(zhì)地、風味四類感官品質(zhì)預測模型的擬合結(jié)果如圖3~圖6所示。
圖3 不同算法冷鏈運輸外觀品質(zhì)擬合
圖4 不同算法冷鏈運輸香氣品質(zhì)擬合
對圖3至圖6進行分析可以看出,PSOGA-MSVR預測模型的擬合曲線最接近實際值曲線,預測精度更高(2可達到0.985,平均誤差為0.063),冷鏈運輸葡萄的外觀品質(zhì)、香氣品質(zhì)、果皮和果肉質(zhì)地、果粒風味四種感官品質(zhì)屬性的擬合效果都更接近于真實數(shù)據(jù),證明本研究提出的粒子群遺傳算法聯(lián)合優(yōu)化MSVR組合模型能夠更好地擬合感官屬性與運輸過程中的溫濕度之間復雜的非線性關系。其中香氣品質(zhì)的預測精度最高,其原因應該是由于冷鏈運輸中溫度控制嚴格,幾乎全程溫度低于8 ℃,這樣較低的溫度下葡萄香氣可能會進入封閉狀態(tài),因此香氣品質(zhì)的變化比較穩(wěn)定,預測也會更準確。而果粒風味的預測精度相對來說偏低,可能的原因是運輸過程中隨著運輸時長和環(huán)境因子的變化,鮮食葡萄不斷氧化,單寧和多酚類物質(zhì)含量發(fā)生變化,葡萄的口感風味得分會發(fā)生較大變化[35],因此預測偏差會大一些??紤]到冷鏈運輸一般要經(jīng)歷更長的運輸時間(本研究為132 h),可通過其他技術(shù)手段保持果蔬的風味品質(zhì)。
圖5 不同算法冷鏈運輸果皮和果肉質(zhì)地擬合
圖6 不同算法冷鏈運輸果粒風味擬合
為了挖掘鮮食葡萄運輸過程中環(huán)境因子(溫度、相對濕度)與感官品質(zhì)之間的關系,探索通過環(huán)境因子預測和評估鮮食葡萄的感官品質(zhì),本研究利用鮮食葡萄3種運輸模式下(常溫運輸、保冷運輸、冷鏈運輸)感官品質(zhì)評價數(shù)據(jù)集,構(gòu)建了基于改進的MSVR(Multiple Output Support Vector Regression,MSVR)模型來挖掘環(huán)境因子和感官品質(zhì)的關系,主要結(jié)論如下:
1)本研究提出了基于粒子群和遺傳算法聯(lián)合優(yōu)化多輸出支持向量回歸模型的PSOGA-MSVR(Particle Swarm Optimization union Genetic Algorithm optimize Multiple Output Support Vector Regression,PSOGA-MSVR)預測模型,首先通過粒子群算法對遺傳算法的變異算子進行改進,再利用PSOGA對MSVR的參數(shù)進行尋優(yōu)。聯(lián)合優(yōu)化算法的迭代次數(shù)少(在冷鏈運輸模式下,模型的迭代次數(shù)與其他模式大致相同。遺傳算法在訓練次數(shù)達到37次時趨于收斂狀態(tài),算法的適應度函數(shù)達到最優(yōu);粒子群算法在訓練次數(shù)達到30次時趨于收斂狀態(tài),算法的適應度函數(shù)達到最優(yōu);粒子群優(yōu)化遺傳算法組合模型在訓練次數(shù)達到23次時趨于收斂狀態(tài)),預測準確率最高(2可達到0.985),有效提高了MSVR模型的調(diào)參效率和預測精度。
2)PSOGA-MSVR模型對3種運輸模式下的鮮食葡萄感官品質(zhì)數(shù)據(jù)集的預測效果達到了最優(yōu),且PSOGA-MSVR模型在冷鏈運輸模式下預測效果最好(2可達到0.985,平均誤差為0.063),表明PSOGA-MSVR模型能夠滿足運輸環(huán)境因子與鮮食葡萄感官品質(zhì)的預測評價需求。
3)對運輸環(huán)境因子的合理調(diào)控可以有效減緩生鮮水果感官品質(zhì)的下降。在長距離運輸中,尤其要關注風味品質(zhì)的保持。本研究只關注了溫度和相對濕度因素,而環(huán)境中的微生物環(huán)境、機械振動等因素均會影響到運輸中鮮食葡萄的感官品質(zhì)(失重率、腐爛率等),未來研究可以探索其他環(huán)境因子與感官品質(zhì)的建模。
[1] 黃永暉,郭成波,張世鑫,等. 基于物聯(lián)網(wǎng)技術(shù)的林區(qū)漿果冷鏈運輸智能監(jiān)控系統(tǒng)[J].物流技術(shù),2020,39(6):119-122.
Huang Yonghui, Guo Chengbo, Zhang Shixin, et al. Intelligent monitoring system for cold chain transportation of berries in forest areas based on Internet of Things technology[J]. Logistics Technology, 2020, 39(6): 119-122. (in Chinese with English abstract)
[2] 賀苗,李鑫,朱志強,等. 基于PCA-GA-SVR的鮮食葡萄運輸過程品質(zhì)建模[J]. 農(nóng)業(yè)大數(shù)據(jù)學報,2022,4(1):98-108.
He Miao, Li Xin, Zhu Zhiqiang, et al. Quality modeling of table grape transportation process based on PCA-GA-SVR[J]. Journal of Agricultural Big Data, 2022, 4(1): 98-108. (in Chinese with English abstract)
[3] 原變魚. 鮮食葡萄可持續(xù)供應鏈風險評價的神經(jīng)網(wǎng)絡模型優(yōu)化及系統(tǒng)[D]. 北京:中國農(nóng)業(yè)大學,2021.
Yuan Bianyu. Neural Network Model Optimization and System for Risk Assessment of Sustainable Supply Chain of Table Grapes [D].Beijing:China Agricultural University, 2021. (in Chinese with English abstract)
[4] 王康飛,王桂英,王德錚. 不同保鮮方式對葡萄保鮮效果影響的對比研究[J]. 包裝工程,2020,41(15):19-24.
Wang Kangfei, Wang Guiying, Wang Dezheng. Comparative study on the effect of different preservation methods on grape preservation effect[J]. Packaging Engineering, 2020, 41(15): 19-24. (in Chinese with English abstract)
[5] 陳遠濤. 電子鼻結(jié)合感官評價的食品新鮮度檢測研究[D].杭州:浙江大學,2021.
Chen Yuantao. Research on Food Freshness Detection Based on Electronic Nose Combined with Sensory Evaluation[D]. Hangzhou:Zhejiang University, 2021. (in Chinese with English abstract)
[6] 徐賽,陸華忠,周志艷,等. 基于電子鼻的果園荔枝成熟階段監(jiān)測[J]. 農(nóng)業(yè)工程學報,2015,31(18):240-246.
Xu Sai, Lu Huazhong, Zhou Zhiyan, et al. Monitoring of orchard litchi maturity stage based on electronic nose[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(18): 240-246. (in Chinese with English abstract)
[7] Hempel A, O'Sullivan M G, Papkovsky D B, et al. Use of optical oxygen sensors to monitor residual oxygen in pre-and post-pasteurised bottled beer and its effect on sensory attributes and product acceptability during simulated commercial storage[J]. LWT-Food Science and Technology, 2013, 50(1): 226-231.
[8] 李鑫. 基于支持向量回歸建模的鮮食葡萄運輸感官品質(zhì)評價與預測[D]. 北京:中國農(nóng)業(yè)大學,2021.
Li Xin. Evaluation and Prediction of Sensory Quality of Table Grape Transportation Based on Support Vector Regression Modeling[D]. Beijing: China Agricultural University, 2021. (in Chinese with English abstract)
[9] Xiao X Q, He Q L, Li Z G, et al. Improving traceability and transparency of table grapes cold chain logistics by integrating WSN and correlation analysis[J]. Food Control, 2017, 73: 1556-1563.
[10] Zhu Z Q, Ma R Q, Draganic A, et al. Postharvest quality monitoring and cold chain management of fresh garlic scapes based on a wireless multi‐sensors system[J]. Journal of Food Process Engineering, 2022, 45(1): e13918.
[11] 肖如武,肖柳寶,張少波,等. 熱帶季風氣候下降氧貯存對片煙外觀與感官品質(zhì)的影響[J]. 安徽農(nóng)業(yè)科學,2021,49(1):166-168,175.
Xiao Ruwu, Xiao Liubao, Zhang Shaobo, et al. Effects of oxygen storage in tropical monsoon climate on the appearance and sensory quality of cigarettes[J]. Anhui Agricultural Sciences, 2021, 49(1): 166-168, 175. (in Chinese with English abstract)
[12] 張磊,劉馳旸,康淑瑰. 基于優(yōu)化AP-SVR模型的能源消耗預測[J]. 山西大學學報(自然科學版),2022,45(4):1004-1013.
Zhang Lei, Liu Chiyang, Kang Shugui. Energy consumption prediction based on optimized AP-SVR model [J]. Journal of Shanxi University (Natural Science Edition), 2022, 45(4): 1004-1013. (in Chinese with English abstract)
[13] Hsu C W, Lin C J. A simple decomposition method for support vector machines[J]. Machine Learning, 2002, 46(1): 291-314.
[14] 董春旺,梁高震,安霆,等. 紅茶感官品質(zhì)及成分近紅外光譜快速檢測模型建立[J]. 農(nóng)業(yè)工程學報,2018,34(24):306-313.
Dong Chunwang, Liang Gaozhen, An Ting, et al. Establishment of a fast detection model for sensory quality and components of black tea by near-infrared spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(24): 306-313. (in Chinese with English abstract)
[15] Yao X L, Cai F H, Zhu P Y, et al. Non-invasive and rapid pH monitoring for meat quality assessment using a low-cost portable hyperspectral scanner[J]. Meat Science, 2019(152): 73-80.
[16] 張海洋,張瑤,李民贊,等. 基于BSO-SVR的香蕉遙感時序估產(chǎn)模型研究[J]. 農(nóng)業(yè)機械學報,2021,52(S1):98-107.
Zhang Haiyang, Zhang Yao, Li Minzan, et al. Research on banana remote sensing time series yield estimation model based on BSO-SVR[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(S1): 98-107. (in Chinese with English abstract)
[17] Tao Y X, Yan H R, Gao H, et al. Application of SVR optimized by modified simulated annealing (MSA-SVR) air conditioning load prediction model[J]. Journal of Industrial Information Integration, 2019, 15: 247-251.
[18] 程鑫,徐曉輝,宋濤,等. 基于PSO-SVR模型的溫室智能補光系統(tǒng)研究[J]. 中國農(nóng)機化學報,2020,41(6):64-68,82.
Cheng Xin, Xu Xiaohui, Song Tao, et al. Research on intelligent lighting system for greenhouse based on PSO-SVR model[J]. Chinese Journal of Agricultural Machinery, 2020, 41(6): 64-68, 82. (in Chinese with English abstract)
[19] 孫俊,莫云南,戴春霞,等. 基于介電特性與IRIV-GWO-SVR算法的番茄葉片含水率檢測[J]. 農(nóng)業(yè)工程學報,2018,34(14):188-195.
Sun Jun, Mo Yunnan, Dai Chunxia, et al. Detection of tomato leaf moisture content based on dielectric properties and IRIV-GWO-SVR algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(14): 188-195. (in Chinese with English abstract)
[20] Roushangar K, Koosheh A. Evaluation of GA-SVR method for modeling bed load transport in gravel-bed rivers[J]. Journal of Hydrology, 2015(527): 1142-1152.
[21] Zhu X Q, Gao Z H. An efficient gradient-based model selection algorithm for multi-output least-squares support vector regression machines[J]. Pattern Recognition Letters, 2018, 111: 16-22.
[22] Li X N, Z Z H . Location layout design of aircraft parts assembly based on MSVR[J]. Chinese Journal of Aeronautics, 2020, 33(5): 1532-1540.
[23] Abbaszadeh Shahri A, Maghsoudi Moud F, Mirfallah Lialestani S P. A hybrid computing model to predict rock strength index properties using support vector regression[J]. Engineering with Computers, 2020,38(1): 1-16.
[24] Laref R, Losson E, Sava A, et al. On the optimization of the support vector machine regression hyperparameters setting for gas sensors array applications[J]. Chemometrics and Intelligent Laboratory Systems, 2019, 184: 22-27.
[25] 王冬生,李智軒,渠賽賽,等. 基于PSO-SVR的取水泵組優(yōu)化調(diào)度方法研究[J]. 給水排水,2022,58(8):143-150.
Wang Dongsheng, Li Zhixuan, Qu Saisai, et al. Study on optimal dispatching method of water intake pump unit based on PSO-SVR[J]. Water Supply and Drainage, 2022, 58(8): 143-150. (in Chinese with English abstract)
[26] Liu F, He Y, Wang L. Comparison of calibrations for the determination of soluble solids content and pH of rice vinegars using visible and short-wave near infrared spectroscopy[J]. Analytica Chimica Acta, 2008, 610(2): 196-204.
[27] Lin H, Chen Q S, Zhao J W, et al. Determination of free amino acid content in Radix Pseudostellariae using near infrared (NIR) spectroscopy and different multivariate calibrations[J]. Journal of Pharmaceutical and Biomedical Analysis, 2009, 50(5): 803-808.
[28] Dong J J, Li Q L, Yin H, et al. Predictive analysis of beer quality by correlating sensory evaluation with higher alcohol and ester production using multivariate statistics methods[J]. Food Chemistry, 2014, 161: 376-382.
[29] 陳鵬,齊超,劉人瑋,等. 基于支持向量機回歸的LIBS飛灰含碳量定量分析[J]. 光學學報,2022,42(9):278-285.
Chen Peng, Qi Chao, Liu Renwei, et al. Quantitative analysis of carbon content in LIBS fly ash based on support vector machine regression[J]. Acta Optics, 2022, 42(9): 278-285. (in Chinese with English abstract)
[30] Che J X, Wang J Z. Short-term load forecasting using a kernel-based support vector regression combination model[J]. Applied Energy, 2014, 132: 602-609.
[31] Roushangar K, Koosheh A. Evalution of GA-SVR method for modeling bed load transport in gravel-bed rivers[J]. Journal of Hydrology, 2015(527): 1141-1152.
[32] 楊博,劉樹東,魯維佳,等. 改進遺傳算法在機器人路徑規(guī)劃中的應用[J]. 現(xiàn)代制造工程,2022(6):9-16.
Yang Bo, Liu Shudong, Lu Weijia, et al.Application of improved genetic algorithm in robot path planning[J].Modern Manufacturing Engineering, 2022(6): 9-16. (in Chinese with English abstract)
[33] 張源,陶翼飛,王加冕. 基于并行融合機制的改進遺傳算法求解HFSP調(diào)度問題[J]. 計算機應用與軟件,2022,39(6):252-257.
Zhang Yuan, Tao Yifei, Wang Jiamian. Improved genetic algorithm based on parallel fusion mechanism to solve HFSP scheduling problem[J]. Computer Applications and Software, 2022, 39(6): 252-257. (in Chinese with English abstract)
[34] Li X N, Zhao Z H. Location layout design of aircraft parts assembly based on MSVR[J]. Chinese Journal of Aeronautics, 2020, 33(5): 1532-1540.
[35] 譚偉,唐曉萍,董志剛,等. 5個鮮食葡萄品種果實酚類物質(zhì)及抗氧化能力分析[C]//中國園藝學會2015年學術(shù)年會論文摘要集,中國福建廈門,2015:39.
Tan Wei, Tang Xiaoping, Dong Zhigang, et al. Analysis of phenolic substances and antioxidant capacity in fruits of five table grape varieties[C]//Collection of Abstracts of 2015 Academic Annual Conference of Chinese Horticultural Society. Xiamen, Fujian, China, 2015:39. (in Chinese with English abstract)
Modeling of environmental factors and sensory quality during transportation of table grapes using improved MSVR
Feng Jianying1, He Miao1, Li Xin1, Zhu Zhiqiang2, Mu Weisong1※
(1.,,100083,; 2(),300384)
Fresh fruits and vegetables need transportation and storage after harvesting, due to the regional and seasonal production in recent years. It is a high demand to clarify the relationship between environmental factors and the sensory quality of fresh fruits and vegetables during transportation. Accurate and rapid evaluation and prediction can be of great significance to maintain the logistics and sensory quality of fresh fruits and vegetables using environmental factors. Taking the table grape as the research object, the transportation simulation and sensory experiments were carried out in the laboratory, according to the tracking and monitoring actual transportation process. A data set of sensory quality was then constructed for the table grape during transportation. A prediction model was established for the environmental factors (temperature, relative humidity) during transportation and sensory quality (appearance, aroma, texture and flavor) using the Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) with the Multiple Output Support Vector Regression (PSOGA-MSVR) model. Specifically, the SVR model was widely used to identify the small sample, nonlinear, and high-dimensional pattern in the field of food quality prediction. The accuracy and generalization of SVR model depended largely on the kernel function and hyperparameters. The Radial Basis Function (RBF) was selected as the kernel function in this case. The results show that the PSOGA joint optimization effectively improved the parameter adjustment efficiency of the MSVR model. The improved PSOGA-MSVR model performed better prediction under three transportation modes, including normal, cold temperature, and cold chain transportation. Among them, the Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and coefficient of determination (2) of the model were 0.083, 0.029, 0.172, and 0.982, respectively, under the normal temperature transportation. The MAE, MSE, RMSE, and2were 0.077, 0.022, 0.148, and 0.981, respectively, under cold storage and transportation. The MAE, MSE, RMSE, and2of cold chain transportation were 0.063, 0.018, 0.138, and 0.985, respectively. Therefore, cold chain transportation achieved the highest prediction accuracy for the sensory quality of table grapes. The better-fitting model was attributed to the longest time series and the most abundant data in the cold chain data set. There was a significant nonlinear relationship between transportation environmental factors and grape sensory quality (appearance, aroma, texture and flavor). Consequently, reasonable regulation of transportation environmental factors can be expected to effectively maintain the sensory quality of fresh fruits. The SVR model can also be used to simulate the logistics environmental factors and grape sensory quality of fresh table grapes. The quality evaluation and prediction can provide a theoretical, technical, and practical solution to improve the logistics process and quality of fresh table grapes.
models; temperature; relative humidity; table grape; sensory quality; multiple support vector regression; genetic algorithm; particle swarm algorithm
10.11975/j.issn.1002-6819.2022.17.032
S2
A
1002-6819(2022)-17-0294-09
馮建英,賀苗,李鑫,等. 基于改進MSVR的鮮食葡萄運輸過程中環(huán)境因子與感官品質(zhì)建模[J]. 農(nóng)業(yè)工程學報,2022,38(17):294-302.doi:10.11975/j.issn.1002-6819.2022.17.032 http://www.tcsae.org
Feng Jianying, He Miao, Li Xin, et al. Modeling of environmental factors and sensory quality during transportation of table grapes using improved MSVR[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(17): 294-302. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.17.032 http://www.tcsae.org
2022-05-31
2022-08-15
財政部和農(nóng)業(yè)農(nóng)村部:國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系資助項目(CARS-29)
馮建英,博士,副教授,研究方向為農(nóng)業(yè)大數(shù)據(jù)分析與智能決策。Email:fjying@cau.edu.cn
穆維松,博士,教授,研究方向為農(nóng)業(yè)大數(shù)據(jù)分析與智能決策。Email:wsmu@cau.edu.cn