張 琨,韓宇寧,李樂洲,周 瑋
實(shí)驗(yàn)室條件下不同鹽度水體去分層試驗(yàn)
張 琨1,韓宇寧1,李樂洲2,周 瑋2※
(1. 大連海洋大學(xué)海洋與土木工程學(xué)院,大連 116021;2.大連海洋大學(xué)水產(chǎn)與生命學(xué)院,大連 116021)
水產(chǎn)養(yǎng)殖中水體分層在水中形成屏障,阻礙質(zhì)量和能量交換,進(jìn)而導(dǎo)致水質(zhì)惡化,影響水體中生物的生長(zhǎng)。針對(duì)此問題,該研究在實(shí)驗(yàn)室條件下對(duì)玻璃水槽中2種不同鹽度水體(淡水和4% NaCl溶液)染色,僅依靠浮力作用,觀測(cè)水體去分層過程的準(zhǔn)備、起動(dòng)、混合和均勻4個(gè)階段;在壓力差的驅(qū)動(dòng)下,形成“上升流”式的上涌對(duì)流,發(fā)現(xiàn)流體上浮至分層界面發(fā)生混合并使躍層增厚,最終引起分層水體失穩(wěn)破壞。依據(jù)試驗(yàn)結(jié)果總結(jié)出水體分層破壞過程分為準(zhǔn)備、起動(dòng)、混合和均勻4個(gè)階段,在給定工況下,100 L/h輸水流量混合作用最強(qiáng)且完全混合的時(shí)間最短,25 L/h輸水流量混合作用最弱且完全混合的時(shí)間最長(zhǎng)。該文發(fā)現(xiàn)在一定鹽度差異下,水體去分層起動(dòng)時(shí)間和完全混合時(shí)間的變化規(guī)律對(duì)水產(chǎn)養(yǎng)殖產(chǎn)業(yè)有促進(jìn)作用。
環(huán)境;養(yǎng)殖;水質(zhì);水體去分層;鹽度分布;混合時(shí)間
水產(chǎn)養(yǎng)殖工程中,自然界的水體分層是困擾生產(chǎn)者的一大難題。水體分層是指天然水體隨深度的增加而呈現(xiàn)密度變化的現(xiàn)象,分層的發(fā)生通常引起環(huán)境的破壞、經(jīng)濟(jì)的損失、安全的隱患[1]。研究發(fā)現(xiàn)在湖泊、水庫(kù)、富營(yíng)養(yǎng)化水塘等水域中,在盛夏季節(jié)出現(xiàn)明顯分層,熱力學(xué)分層效應(yīng)會(huì)阻礙表層和底層水體間物質(zhì)交換,形成難以控制的水華,嚴(yán)重危害湖水環(huán)境及人類用水安全[2-3]。海水分層還會(huì)引起“海水?dāng)嘌隆?,使?jié)撏タ刂?,?963年的“長(zhǎng)尾鯊”號(hào)核潛艇失事[4]。此外,養(yǎng)殖池塘中的水體分層,常常造成重大的生產(chǎn)損失,養(yǎng)蝦池水分層引起底熱導(dǎo)致蝦病爆發(fā)[5]。因此,自然界中的水體分層是亟待解決的環(huán)境問題之一。
水體分層形成的主要原因是對(duì)流不暢,無(wú)法打破各層之間的密度差異[6-7]。水體分層會(huì)在水中形成一種類似“屏障”作用,阻礙水體質(zhì)量和能量交換,進(jìn)而引起水質(zhì)惡化[8]。因此,為了保證水體品質(zhì)、環(huán)境和諧,必須對(duì)分層的水體進(jìn)行破壞、消除。水體去分層,即強(qiáng)制干預(yù)密度不均的水體充分混合為密度均一的水體[9-10],途徑通常分為三類:1)遮光降低表層水溫,縮小水體溫差而達(dá)到混合,但其效果較差且人為遮光成本較高。2)風(fēng)力擾動(dòng)強(qiáng)制分層水體發(fā)生混合,但極易受環(huán)境因素制約。3)通過人為充氣、攪水等手段強(qiáng)化水體對(duì)流作用,是目前的主流人工去分層技術(shù)。
隨著海洋學(xué)的發(fā)展,“上升流去分層技術(shù)”逐漸走入人們視野。機(jī)理是將分層水體中的低密度水送至高密度水中,借助浮力作用無(wú)需額外的動(dòng)力源,即可形成上升對(duì)流,實(shí)現(xiàn)混合水體的目的,理論上可以突破水體深度的限制[11-12]。世界著名的“秘魯漁場(chǎng)”就是上升流混合水體去分層的代表,沿岸強(qiáng)大的秘魯寒流在東南信風(fēng)的吹拂下形成上升流,底層冷水?dāng)y帶大量營(yíng)養(yǎng)物與表層水混合,消除了海洋躍層的同時(shí)為魚類繁殖、生長(zhǎng)提供了良好的生存條件[13]。Tsubaki等[14]在解決海洋躍層問題時(shí)提出,根據(jù)“鹽指”現(xiàn)象(分層界面處,高溫、高鹽的水向下呈指狀分布)在海洋中插入豎管并提供初始的管涌作用,就可依靠上升流消除海洋躍層,能量消耗低且環(huán)保,但該方法作用較為局限。
池塘分層具有短期性、間歇性、局部性等特點(diǎn),因而在實(shí)驗(yàn)室條件下采用替代溶液并添加染色示蹤劑是觀察流體運(yùn)動(dòng)過程的最直接、最有效的手段。本試驗(yàn)用淡水-氯化鈉溶液制造鹽度分層,采用彩液示蹤法,選取高錳酸鉀溶液作為示蹤劑將上層淡水染色。在外界作用下,強(qiáng)制向下層水體輸送染色淡水,觀察記錄水體的運(yùn)動(dòng)狀態(tài)及分層水體失穩(wěn)過程,探究強(qiáng)制對(duì)流去分層的機(jī)理。
試驗(yàn)材料選取亞克力管1根(長(zhǎng)55 cm、內(nèi)徑2.5 cm),亞克力連通器1個(gè)(管內(nèi)徑2 cm、入水口管長(zhǎng)13 cm、出水口管長(zhǎng)19 cm),分流器1個(gè)(4孔分流、內(nèi)徑4 mm),塑料軟管4根(長(zhǎng)2 m、內(nèi)徑4 mm)、塑料薄膜若干(長(zhǎng)200 cm、寬200 cm),精制鹽若干(GB/T5461),高錳酸鉀粉末若干(KMnO4化學(xué)純度≥99%),自來(lái)水若干。
玻璃水槽1個(gè)(長(zhǎng)113 cm、寬32 cm、深48 cm),標(biāo)本瓶1個(gè)(內(nèi)徑17 cm、高20 cm),小型潛水泵1臺(tái)(8 W功率),攝像機(jī)1臺(tái)(紅米note8 pro),白光燈帶1條(長(zhǎng)2 m,24 W功率),自吸泵2臺(tái)(220 W功率),YSI 1臺(tái)(ProPlus),塑料桶2個(gè)(容量300 L)。
增加鹽度在線監(jiān)測(cè)系統(tǒng),包括鹽度傳感器5支(0~7%鹽度測(cè)量范圍、準(zhǔn)確度±1、分辨率1 s),鹽度控制器5臺(tái)(0~7%鹽度測(cè)量范圍、確度±1、分辨率1 s)。鹽度傳感器分別垂直、等間距設(shè)置在試驗(yàn)水槽后壁中軸線0、10、20、30、40 cm處,監(jiān)測(cè)各水層鹽度變化數(shù)據(jù)并傳輸至鹽度控制器。
同等溫度條件下300 L塑料桶中將40 g高錳酸鉀加入200 L自來(lái)水中配制成1:5 000的KMnO4溶液,將8 kg精制鹽加入200 L自來(lái)水中配制成鹽度4%NaCl溶液,兩種溶液分別充分?jǐn)嚢琛?/p>
試驗(yàn)系統(tǒng)由玻璃水槽、回水收集槽、回水部分組成?;厮占塾蓸?biāo)本瓶組成,水平位置上沿與試驗(yàn)水槽一致;注水部分由小型潛水泵、分流器、塑料軟管、亞克力管構(gòu)成,工作時(shí)小型潛水泵在回水收集槽抽水經(jīng)分流器、塑料軟管輸送到試驗(yàn)水槽預(yù)定水層;回水部分由亞克力連通器構(gòu)成,入水口位于實(shí)驗(yàn)水槽表層,出水口位于回水水槽底層,工作時(shí)通過虹吸作用保持試驗(yàn)水槽水位穩(wěn)定。
在回水收集槽中加入染色水體(1∶5 000 KMnO4溶液),用亞克力連通器與試驗(yàn)水槽建立虹吸關(guān)系。高錳酸鉀溶液用于染色上層水體分層,NaCl溶液屬于透明鹽水分層。試驗(yàn)所用注水部分為1根塑料軟管,供水流量分別為25 L/h、50 L/h、75 L/h、100 L/h;亞克力管出水口設(shè)置于實(shí)驗(yàn)水槽水平中心處、垂直試驗(yàn)水槽底部,距底1 cm處。
用水泵將鹽水層(4% NaCl溶液)吸入試驗(yàn)水槽至20 cm處;然后用塑料薄膜覆蓋;再用水泵將淡水層(1∶5 000 KMnO4溶液)吸入塑料薄膜上方,至40 cm處;最后從一側(cè)將塑料薄膜緩慢拉出。此時(shí),水槽20 cm以下為無(wú)色透明的鹽水層,20~40 cm為紫紅色清水層。
試驗(yàn)裝置如圖1所示。在距離水槽2 m處的中軸線位置處放置攝像機(jī),先開啟錄像,后接通潛水泵電源,完整記錄試驗(yàn)過程。實(shí)驗(yàn)過程中通過水層界面顏色觀察記錄水體波動(dòng)、混合過程及相關(guān)現(xiàn)象。
通過輸水管向水槽底層輸送清水形成垂直方向?qū)α鞣绞降幕旌献饔茫瑘D2用染色的方法記錄了在流量為25 L/h的靜壓力條件下,垂直對(duì)流混合的去分層過程,圖中水色的浸染反映了混合過程中水體的運(yùn)動(dòng)狀態(tài),水色的深淺則反映了表底層水體混合程度。從穩(wěn)定分層開始到水體混合均勻,混合過程可分為準(zhǔn)備階段、起動(dòng)階段、混合階段、混勻階段。
1.試驗(yàn)水槽;2.亞克力管;3.鹽度傳感器S1;4.鹽度傳感器S2;5.鹽度傳感器S3;6.鹽度傳感器S4;7.鹽度傳感器S5;8.標(biāo)本瓶;9.小型潛水泵;10.連通器;11.塑料軟管;12.鹽度控制器
圖2 去分層現(xiàn)象全過程
準(zhǔn)備階段:試驗(yàn)開始,輸水管垂直于水平面,貫穿水槽內(nèi)分層水體(上層紅色清水,下層無(wú)色鹽水),輸水管內(nèi)外的分層水體(水色)保持一致(見圖2a)。隨著輸水管上端注入清水(紅色),輸水管內(nèi)外的分層水體(水色)發(fā)生變化,輸水管內(nèi)的分層水體(水色)界面發(fā)生下移,直到分層水體(紅色)界面位于輸水管下端開口處,此時(shí)輸水管內(nèi)充滿清水(紅色),但未溢出(見圖2b)。
起動(dòng)階段:隨著輸水管上端繼續(xù)注入淡水(紅色),輸水管內(nèi)的淡水(紅色)開始從輸水管下端開口處溢出,溢出的淡水(紅色)立刻與高鹽水(無(wú)色)混合,呈煙霧狀態(tài)沿垂直和水平兩個(gè)方向同時(shí)擴(kuò)散。垂直方向上,淡水(紅色)從輸水管下端開口處開始,圍繞輸水管壁外側(cè)栩栩上升;水平方向,淡水(紅色)從輸水管下端開口處開始,圍繞輸水管以同心圓的形式呈煙霧狀向周圍擴(kuò)散(見圖2c)。當(dāng)煙霧狀的混合水體上升到中層水槽水體分層界面(上層紅色淡水,下層無(wú)色鹽水)時(shí),垂直方向上停止擴(kuò)散,繼續(xù)維持水平方向擴(kuò)散繼,直到覆蓋水槽水體分層界面(見圖2d)。
圖2c中形成垂直方向上浮水,這與Walsh等[18-20]等試驗(yàn)?zāi)M的上升流相同。分析上升流形成的原因在于管口垂直向下,溢出的淡水重力遠(yuǎn)小于周圍鹽水浮力,在浮力的作用下產(chǎn)生向上的加速度,這與Middleton等[21-23]等學(xué)者報(bào)道流體在密度差環(huán)境下形成上升流的原因一致,因而形成圖2c中垂直方向上升的紅色水團(tuán)。其次,由牛頓第二定律可知,紅色水團(tuán)上浮做加速直線運(yùn)動(dòng),隨著流速加快,水團(tuán)會(huì)由規(guī)則的層流狀態(tài)變?yōu)槲闪鳡顟B(tài)[20],由于紊流流動(dòng)具有隨機(jī)性,紅色水團(tuán)無(wú)規(guī)則流動(dòng),因此,上浮呈現(xiàn)出圖2c“煙霧狀”。另外,上浮水達(dá)到中層界面時(shí),由于上層為淡水,下層為鹽水,造成上浮水在液面處停止上升,也無(wú)法向下流動(dòng),Stacey等[24-25]也在試驗(yàn)研究中證實(shí)分層的存在明顯阻礙水流上下運(yùn)動(dòng),因此上浮水只能在水平界面方向上繼續(xù)延伸擴(kuò)散,如圖2d所示。
混合階段:當(dāng)煙霧狀的混合水體沿水平方向擴(kuò)散至覆蓋水槽水體分層界面(上層紅色淡水,下層無(wú)色鹽水)時(shí),水槽水體分層界面開始出現(xiàn)混合水體形成的過渡區(qū)域(紅色煙霧狀)(見圖2e)。隨著輸水管上端淡水(紅色)的繼續(xù)注入,混合水體的垂直和水平不斷擴(kuò)散,水槽水體分層界面混合水體形成的過渡區(qū)域(紅色煙霧狀)向下擴(kuò)散的同時(shí)厚度不斷增加,過渡區(qū)域(紅色煙霧狀)呈現(xiàn)自上而下紅色逐漸變淺的現(xiàn)象(見圖2f)。
圖2e中形成明顯的過渡帶,這與海洋中的溫躍層(變溫層)類似[26],Maxworthy等[27-28]學(xué)者在試驗(yàn)研究中將這種現(xiàn)象定義為分層過渡區(qū)。隨著試驗(yàn)的進(jìn)行,上浮水團(tuán)不斷水平擴(kuò)散后堆積,造成躍層的厚度()逐漸增厚,結(jié)合浮力強(qiáng)度[25]公式(1)分析,浮力頻率越小,躍層強(qiáng)度越弱,即躍層越不穩(wěn)定。因此,躍層厚度從試驗(yàn)開始(約0 cm)不斷增厚(圖2f),混合階段內(nèi)越來(lái)越小,躍層變得越來(lái)越不穩(wěn)定。
式中是重力加速度,取9.8 m/s2;ρ為躍層上邊界密度,近似為1.0×103kg/m3;ρ為躍層下邊界密度,近似為1.029×103kg/m3;為躍層厚度,cm。
混勻階段:隨著過渡區(qū)域(紅色煙霧狀)的不斷增厚并下沉,仍然可見過渡區(qū)域明顯的自上而下紅色逐漸變淺的現(xiàn)象(見圖2g),直到達(dá)到水槽水體的底層開始,過渡區(qū)域(紅色煙霧狀)明顯的自上而下紅色逐漸變淺的現(xiàn)象開始減弱,最終過渡區(qū)域(紅色煙霧狀)消失,水槽水體全部呈現(xiàn)一致的顏色(見圖2h)。
該階段是混合階段的延續(xù),過渡區(qū)域逐漸向下增厚直至達(dá)到下端開口高度處,該階段過渡區(qū)域內(nèi)相鄰水層密度逐漸趨于一致,因此,表現(xiàn)出水色逐漸均勻、分層徹底消失的現(xiàn)象。另外,當(dāng)中層與底層水體密度接近時(shí),上浮的淡水只得不斷堆積于中層以上,以此類推直至表層完全混勻,但受限于上層淡水染色,無(wú)法觀察到混合過程,后期可通過鹽度在線監(jiān)測(cè)數(shù)據(jù)反映混勻程度。
消除水體分層的手段,其本質(zhì)均是水體對(duì)流作用所引起的傳質(zhì)現(xiàn)象,不同的對(duì)流方式所產(chǎn)生的去分層混合過程也有差異[29-31]。本試驗(yàn)在穩(wěn)定的分層水體中向鹽水(高密度)區(qū)輸送淡水(低密度),在壓力差的作用下,形成“上升流”式的上涌對(duì)流作用[32-33],上升流可以促進(jìn)不同水層的水體交換[34],流體上浮至分層界面發(fā)生混合并使得躍層增厚,最終造成分層水體失穩(wěn)破壞。
圖3顯示了輸水管向水槽底層輸送不同流量的淡水時(shí),5組在線監(jiān)測(cè)傳感器記錄的表層、次表層、中層、次底層、底層鹽度變化過程。由試驗(yàn)數(shù)據(jù)比較可知,輸水流量對(duì)槽內(nèi)水體的去分層作用有明顯的影響:100 L/h流量混合作用最強(qiáng),完全混合的時(shí)間最短,25 L/h流量混合作用最弱,完全混合的時(shí)間最長(zhǎng)。
根據(jù)圖3的4組流量下各水層(除中層外)起動(dòng)的觀測(cè)時(shí)間數(shù)據(jù)做圖4a,顯示了靜壓力下各組垂直對(duì)流引發(fā)水體啟動(dòng)混合作用的層次順序均為:次底層、底層、次表層、表層;調(diào)用傳感器存儲(chǔ)的大數(shù)據(jù),擬合輸水量各水層啟動(dòng)混合影響的冪函數(shù)曲線關(guān)系式如下:
()次底層=(2.82 ± 0.19) + (81.33 ± 10.55)×
(0.93 ± 0.01)R2=0.999 62 (2)
()底層=(9.67 ± 0.92) + (459.78 ± 150.44)×
(0.91 ± 0.01)R2=0.999 09 (3)
()次表層=(11.28 ± 1.02) + (169.18 ± 14.47)×
(0.95 ± 0.00)R2=0.999 47 (4)
()表層=(23.63±2.27)+(299.03±23.47)×
(0.96 ± 0.00)R2=0.999 44 (5)
式中()代表混合時(shí)間,min;代表流量,L/h;2代表決定系數(shù)。
圖3 4組流量下各水層鹽度變化情況
圖4 流量隨時(shí)間的變化關(guān)系
根據(jù)圖3的四組流量下水槽水體充分混合的觀測(cè)時(shí)間數(shù)據(jù)做圖4b,調(diào)用傳感器存儲(chǔ)的大數(shù)據(jù),擬合出靜壓力下垂直對(duì)流引發(fā)水體混合時(shí),輸水量與充分混合所需時(shí)間關(guān)系也呈冪函數(shù)曲線關(guān)系,流量越大各水層混合所需的時(shí)間越少,流量越小所需時(shí)間越多。
()混勻=(11.38±1.78×10-15)+(?285.20±2.91×10-15)×
(0.98±6.258×10-19)2=0.999 99(6)
總結(jié)試驗(yàn)數(shù)據(jù),得到擬合計(jì)算式(2)~(5),可歸納輸水量分別對(duì)次底層、底層、次表層、表層的啟動(dòng)時(shí)間影響的冪函數(shù)曲線;計(jì)算式(6)給出了輸水量與充分混合所需時(shí)間的關(guān)系。在實(shí)驗(yàn)室給定工況下獲得的這些函數(shù)關(guān)系,對(duì)僅在浮力作用下的水體去分層理論有一定的探索,有助于應(yīng)用在生產(chǎn)實(shí)踐。
本文使用水體染色法,在水槽條件下觀測(cè)了水體去分層過程。從水色明顯分層開始垂直向下輸?shù)?,?jīng)歷了管內(nèi)充滿紅色水團(tuán)但未溢出的準(zhǔn)備階段,紅色水團(tuán)溢出后煙霧狀栩栩上浮并在分層界面水平擴(kuò)散開來(lái)的起動(dòng)階段,分層界面紅色變淺逐漸向下增厚形成過渡區(qū)域的混合階段,最終達(dá)到水色一致的混勻階段。總結(jié)獲得如下結(jié)論:
1)根據(jù)觀測(cè)現(xiàn)象,將僅在浮力作用下的水體去分層過程分解為準(zhǔn)備、起動(dòng)、混合和均勻4個(gè)階段。
2)消除水體分層,本質(zhì)是水體對(duì)流作用所引起的質(zhì)量傳遞現(xiàn)象。在壓力差的驅(qū)動(dòng)下,向穩(wěn)定的鹽水區(qū)輸送淡水形成“上升流”致使躍層增厚,最終造成分層水體失穩(wěn)破壞。在本試驗(yàn)工況下,100 L/h輸水流量混合作用最強(qiáng),完全混合的時(shí)間最短,25 L/h輸水流量混合作用最弱,完全混合的時(shí)間最長(zhǎng)。
總結(jié)歸納4組實(shí)驗(yàn)數(shù)據(jù),得到輸水量對(duì)次底層、底層、次表層、表層啟動(dòng)時(shí)間的影響規(guī)律,和輸水量與充分混合所需時(shí)間的關(guān)系,實(shí)現(xiàn)對(duì)更多工況的準(zhǔn)確預(yù)測(cè),對(duì)于指導(dǎo)生產(chǎn)實(shí)踐有所幫助。
[1] Anderson E J, Stow C A, Gronewold A D, et al. Seasonal overturn and stratification changes drive deep-water warming inone of Earth's largest lakes[J]. Nature Communications, 2021, 12(1): 1-9.
[2] Qin B, Zhu G, Gao G et al. A drinking water crisis in lake taihu, China: Linkage to climatic variability and lake management[J]. Environmental Management, 2010, 45(1): 105-112.
[3] 郄志紅,吳鑫淼,鄭旌輝,等. 一種基于人工神經(jīng)網(wǎng)絡(luò)的水庫(kù)水溫分層模式判別方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),1999,15(3):204-208.
Qie Zhihong, Wu Xinmiao, Zheng Jinghui,et al. A discriminating method of reservoir water temperature layering model based on artificial neural network[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),1999, 15(3):204-208. (in Chinese with English abstract)
[4] Muldoon T. Nuclear submarine crushed by press of the sea and work schedules[J]. Professional Mariner, 2004(79): 63-64.
[5] 葉兆弘. 海水蝦池的太陽(yáng)池效應(yīng)[J]. 集美大學(xué)學(xué)報(bào)(自然科學(xué)版),2004,9(3):210-215.
Ye Zhaohong. The solar ponds effect of seawater prawn ponds[J]. Journal of Jimei University (Natural Science), 2004, 9(3): 210-215. (in Chinese with English abstract)
[6] 黃廷林,曾明正,邱曉鵬. 周村水庫(kù)季節(jié)性熱分層消亡期水質(zhì)響應(yīng)特性[J]. 環(huán)境工程學(xué)報(bào),2016,10(10):5695-5702.
Huang Tinglin, Zeng Mingzheng, Qiu Xiaopeng. Response of water quality of Zhoucun reservoir during the disappearance of seasonal thermal stratification[J]. Chinese Journal of Environmental Engineering, 2016, 10(10): 5695-5702. (in Chinese with English abstract)
[7] Noto D, Tasaka Y, Yanagisawa T, et al. Developing horizontal convection against stable temperature stratification in arectangular container[J]. Physical Review Fluids, 2021, 6(8): 083501.
[8] Boyd C E (著). 池塘養(yǎng)殖水質(zhì)[M]. 林文輝(譯).廣州:廣東科技出版社,2003:16-20.
[9] Gupta R, Gupta P K. The effect of artificial de-stratification on the water quality of a freshwater high altitude lake[J]. Journal of Ecophysiology & Occupational Health, 2012, 12(3/4): 27-41.
[10] Assari M R, Tabrizi H B, Movahedi M J. Experimental study on destruction of thermal stratification tank in solar collector performance[J]. The Journal of Energy Storage, 2018, 15: 124-132.
[11] 黃源彬. 內(nèi)置換料水箱自然對(duì)流及熱分層現(xiàn)象研究[D]. 哈爾濱:哈爾濱工程大學(xué),2018:33-56.
Huang Yuanshan. Research on Natural Convection and Thermal Stratification of In-containment Refueling Water Storage Tank[D]. Harbin:Harbin Engineering University, 2018: 33-56. (in Chinese with English abstract)
[12] 石效卷,李璐,張濤. 水十條水實(shí)條——對(duì)《水污染防治行動(dòng)計(jì)劃》的解讀[J]. 環(huán)境保護(hù)科學(xué),2015,41(3):1-3.
Shi Xiaojuan,Li Lu,Zhang Tao. Water pollution control action plan, a realistic and pragmatic plan: An interpretation of water pollution control action plan[J]. Environmental Protection Science, 2015, 41(3): 1-3. (in Chinese with English abstract)
[13] Brink K H, Halpern D, Huyer A, et al. The physical environment of the Peruvian upwelling system[J]. Progress in Oceanography, 1983, 12(3): 285-305.
[14] Tsubaki K, Maruyama S, Komiya A, et al. Continuous measurement of an artificial upwelling of deep sea water induced by the perpetual salt fountain[J]. Deep Sea Research Part I Oceanographic Research Papers, 2007, 54(1): 75-84.
[15] Sigman D M, Jaccard S L, Haug G H. Polar ocean stratification in a cold climate[J]. Nature, 2015, 2004, 428(6978): 59-63.
[16] Zhao B, Han S, Xu L, et al. Rollover mechanism methodology of LNG tank with gas-liquid stratification based on Curvelet Finite element method and large eddy simulation technology[J]. Journal of Applied Fluid Mechanics, 2018, 11(3): 779-786.
[17] Ambach W, Blumthaler M, Kirchlechner P. Application of the gravity flow theory to the percolation of melt water through firn[J]. Journal of Glaciology, 2017, 27(95): 67-75.
[18] Walsh J J. A spatial simulation model of the Peru upwelling ecosystem[J]. Deep Sea Research &Oceanographic Abstracts, 1975, 22(4): 201-236.
[19] 修樹孟,黃浩升. 臺(tái)灣東北近海冬季上升流的數(shù)值模擬研究[J]. 水動(dòng)力學(xué)研究與進(jìn)展(A輯),2006(3):331-338.
Xiu Shumeng, Huang Haosheng. Study on numerical simulation for upwelling of winter off northeastern Taiwan[J]. Chinese Journal of Hydrodynamics (Ser. A), 2006(3): 331-338. (in Chinese with English abstract)
[20] 閆旭. 開式環(huán)境下差熱式人工上升流速度場(chǎng)及溫度場(chǎng)基礎(chǔ)特性研究[D]. 杭州:杭州電子科技大學(xué),2015.
Yan Xu. Study on the Basic Characteristic of Thermal-left Artificial Upwelling’S Velocity and Temperature Field on Open Environment[D]. Hangzhou:Hangzhou Dianzi University, 2015. (in Chinese with English abstract)
[21] Middleton J F. Wind-forced upwelling: The role of the surface mixed layer[J]. Journal of Physical Oceanography, 2000, 30(5): 745-763.
[22] Koszalka I, Ceballos L, Bracco A. Vertical mixing and coherent anticyclones in the ocean: The role of stratification[J]. Nonlinear Processes in Geophysics, 2010, 37(17): 37-47.
[23] 程向華,厲彥忠. 低溫液體熱分層特性分析[J]. 低溫工程,2011(5):32-36.
Cheng Xianghua, Li Yanzhong. Characteristics analysis of cryogenic thermal stratification[J]. Cryogenics, 2011(5): 32-36. (in Chinese with English abstract)
[24] Stacey M T, Ralston D K. The scaling and structure of the estuarine bottom boundary layer[J]. Journal of Physical Oceanography, 2005, 35(1): 477-478.
[25] Scully M E, Geyer W R, Lerczak J A. The influence of lateral advection on the residual estuarine circulation: A numerical modeling study of the Hudson River Estuary[J]. Journal of Physical Oceanography, 2009, 39(1): 107-124.
[26] 張玉超,錢新,錢瑜,等. 太湖水溫分層現(xiàn)象的監(jiān)測(cè)與分析[J]. 環(huán)境科學(xué)與管理,2008,33(6):117-121.
Zhang Yuchao, Qian Xin, Qian Yu, et al. Field measurement and analysis on diurnal stratification in taihu lake[J]. Environmental Science and Management, 2008, 33(6): 117-121. (in Chinese with English abstract)
[27] Maxworthy T, Monismith S G. Differential mixing in a stratified fluid[J]. Journal of Fluid Mechanics, 1988, 189(1): 571-598.
[28] 王海蓉,馬曉茜. 液化天然氣(LNG)儲(chǔ)存容器中的分層與翻滾[J]. 低溫工程,2006(1):50-54.
Wang Hairong, Ma Xiaoqian. Stratification and rolling of liquid natural gas in storage tank[J]. Cryogenics, 2006(1): 50-54. (in Chinese with English abstract)
[29] Noto D, Tasaka Y, Yanagisawa T, et al. Developing horizontal convection against stable temperature stratification in a rectangular container[J]. Physical Review Fluids, 2021, 6(8): 083501.
[30] Patterson J,Imberger J. Unsteady natural convection in a rectangular cavity[J]. Journal of Fluid Mechanics, 1980, 100(1): 65-86.
[31] Vargas M, Sierra F Z, Ramos E, et al. Steady natural convection in a cylindrical cavity[J]. International Communications in Heat and Mass Transfer, 2002, 29(2): 213-221.
[32] Dippner J W, Nguyen K V, Hein H, et al. Monsoon-induced upwelling off the vietnamese coast[J]. Ocean Dynamics, 2007, 57(1): 46-62.
[33] Jiang Y, Chai F, Wan Z, et al. Characteristics and mechanisms of the upwelling in the southern Taiwan Strait:a three-dimensional numerical model study[J]. Journal of oceanography, 2011, 67(6): 699-708.
[34] 劉興國(guó),劉兆普,徐皓,等. 生態(tài)工程化循環(huán)水池塘養(yǎng)殖系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(11):237-244.
Liu Xingguo, Liu Zhaopu, Xu Hao, et al. Ecological engineering water recirculating ponds aquaculture system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(11): 237-244. (in Chinese with English abstract)
Effects of different salinity on water delamination under laboratory conditions
Zhang Kun1, Han Yuning1, Li Lezhou2, Zhou Wei2※
(1.,,116021,;2.,,116021,)
Salinity stratification has caused the uneven distribution of nutrients in the water body for aquaculture. A barrier layer can be normally formed to hinder the exchange of quality and energy, leading to the deterioration of water quality. Therefore, stratification can pose a great threat to the growth of organisms in the water body. In this study, two kinds of water bodies were dyed with different salinity in a glass tank in the laboratory. Four stages of water body delamination were observed: preparation, start-up, mixing, and homogenization, when depending only on buoyancy. Among them, the pressure difference was driven to form the upwelling convection of the "upwelling" type. The upwelling was then floated up to the layered interface for the mixing and thick thermocline. Eventually, the layered water body triggered the instability and destruction. The experimental system consisted of a glass tank, a backwater collecting tank, a water injection, and a backwater part. Specifically, the glass tank was the main body of the system. The backwater collecting tank was composed of sample bottles, whose upper edge of the horizontal position was aligned with the experimental tank. The water injection part also included the small submersible pump, diverter, plastic hose, and acrylic pipe. The water in the return collection tank was firstly delivered by the small submersible pump, and then carried to the predetermined water layer of the test tank via the diverter and plastic hose. In the backwater part, the inlet of acrylic connectors was set on the surface of the experimental water tank, while the outlet was on the bottom of the backwater tank. The water level of the experimental water tank was kept stable by the siphoning during operation. The salinity change was recorded on the surface, subsurface, middle, sub bottom, and bottom layer. Five groups of sensors were used to online monitor the process, when the water pipe was delivered the fresh water of different flows to the bottom layer of the tank. The results show that there was a significant impact of the water delivery flow on the delamination of the water body in the tank. Furthermore, there was the strongest mixing effect of 100 L/h flow, and the shortest time of complete mixing. By contrast, there was the weakest mixing effect of 25 L/h flow, and the longest time of complete mixing. A large amount of experimental data was summarized to obtain the fitting formulas. The function curve was then achieved in the impact of water delivery on the start-up time of the sub bottom, bottom, sub surface, and surface layer. A specific relationship was obtained between the water delivery volume and the time required for the full mixing under the given working conditions in the laboratory. The layered destruction of the water body was summarized to determine the influence of the water delivery flow on the salinity, starting, and mixing time of the water layer. The finding can also provide a strong reference for aquaculture production.
environment; breed; water quality; delamination of water body; salinity distribution; mixing time
10.11975/j.issn.1002-6819.2022.17.026
S96
A
1002-6819(2022)-17-0240-06
張琨,韓宇寧,李樂洲,等. 實(shí)驗(yàn)室條件下不同鹽度水體去分層試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(17):240-245. doi:10.11975/j.issn.1002-6819.2022.17.026 http://www.tcsae.org
Zhang Kun, Han Yuning, Li Lezhou, et al. Effects of different salinity on water delamination under laboratory conditions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(17): 240-245. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.17.026 http://www.tcsae.org
2022-05-12
2022-08-24
大連市科技創(chuàng)新基金項(xiàng)目(2020JJ26SN063);遼寧省興遼英才項(xiàng)目“海參安全高效智慧養(yǎng)殖系統(tǒng)研究項(xiàng)目”(XLYC1808029)
張琨,博士,副教授,碩士生導(dǎo)師,研究方向?yàn)榱鲃?dòng)與傳熱傳質(zhì)。Email:zhk@dlou.edu.cn
周瑋,博士,碩士生導(dǎo)師,研究方向?yàn)樗a(chǎn)養(yǎng)殖和產(chǎn)業(yè)化技術(shù)。Email:zhouwei@dlou.edu.cn