楊琨,程濤
基于不確定性拔銷器的機(jī)構(gòu)運(yùn)動(dòng)可靠性分析
楊琨,程濤
(陜西應(yīng)用物理化學(xué)研究所,西安 710061)
實(shí)現(xiàn)拔銷器可靠性的定量分析和高效精確評(píng)估,研究拔銷器工作過(guò)程中隨機(jī)變量對(duì)可靠性的影響,提出一種基于不確定性的拔銷器機(jī)構(gòu)運(yùn)動(dòng)可靠性建模與分析方法。首先,基于應(yīng)力–強(qiáng)度模型和拔銷器的機(jī)構(gòu)運(yùn)動(dòng)失效模式,建立極限狀態(tài)方程;然后,綜合考慮工作過(guò)程中不確定性因素的影響,采用基于Kriging代理模型逼近極限狀態(tài)方程的機(jī)構(gòu)運(yùn)動(dòng)可靠性分析方法,對(duì)拔銷器的機(jī)構(gòu)運(yùn)動(dòng)進(jìn)行高效可靠性分析;最后,對(duì)拔銷器機(jī)構(gòu)運(yùn)動(dòng)中的隨機(jī)變量進(jìn)行可靠性靈敏度分析,確定隨機(jī)變量對(duì)拔銷器的機(jī)構(gòu)運(yùn)動(dòng)的可靠性影響程度,為優(yōu)化設(shè)計(jì)提供方向。拔銷器機(jī)構(gòu)運(yùn)動(dòng)的可靠度均大于0.999 9,達(dá)到設(shè)計(jì)要求。影響拔銷器活塞啟動(dòng)可靠性最大的是剪切銷直徑,其次是、、等,影響活塞運(yùn)動(dòng)可靠性最大的是,其次是、。該方法能夠準(zhǔn)確描述不確定性因素對(duì)拔銷器機(jī)構(gòu)運(yùn)動(dòng)的影響,提升機(jī)構(gòu)運(yùn)動(dòng)可靠性定量分析的精度和效率,為拔銷器的精細(xì)化設(shè)計(jì)提供了理論支撐。
拔銷器;可靠性分析;Kriging模型;靈敏度;不確定性
拔銷器是通過(guò)起爆器產(chǎn)生的高溫高壓氣體推動(dòng)機(jī)械機(jī)構(gòu)運(yùn)動(dòng)的火工裝置,具有體積小、質(zhì)量輕、作用可靠等特點(diǎn),能夠有效降低總體承載方向的沖擊,該類裝置已廣泛用于航天系統(tǒng)[1-2]。
近年來(lái),針對(duì)拔銷器的可靠性設(shè)計(jì)僅是采用冗余或裕度設(shè)計(jì)來(lái)保證產(chǎn)品的可靠度[3-4],或者通過(guò)數(shù)值模擬[2],從單因素的角度出發(fā)考慮對(duì)產(chǎn)品的影響,以提高產(chǎn)品可靠性。這些方法缺乏對(duì)產(chǎn)品設(shè)計(jì)可靠度的定量認(rèn)識(shí),隨著拔銷器在航天航空的應(yīng)用越來(lái)越普遍,對(duì)其可靠性的要求越來(lái)越高,急需開(kāi)展對(duì)拔銷器機(jī)構(gòu)作動(dòng)可靠性分析,了解外部載荷、材料屬性、結(jié)構(gòu)尺寸等因素對(duì)拔銷器機(jī)構(gòu)作動(dòng)可靠性的影響規(guī)律,以便采取設(shè)計(jì)措施,提高拔銷器機(jī)構(gòu)作動(dòng)的可靠性水平。拔銷器機(jī)構(gòu)作動(dòng)屬于機(jī)構(gòu)運(yùn)動(dòng)可靠性范疇[5],針對(duì)機(jī)構(gòu)運(yùn)動(dòng)可靠性方法主要分為近似解析法[6-7]、數(shù)字模擬法[8]、代理模型法3類[9-10]。其中,代理模型法由于有較高的求解效率,被廣泛使用,特別是Kriging代理模型法[11],與其他代理模型相比,具有插值精度高和預(yù)測(cè)準(zhǔn)確的優(yōu)點(diǎn)[12-13]。
本文以某拔銷器為研究對(duì)象,建立了拔銷器機(jī)構(gòu)運(yùn)動(dòng)動(dòng)力學(xué)仿真模型,通過(guò)綜合考慮拔銷器機(jī)構(gòu)運(yùn)動(dòng)不確定性因素的影響,基于應(yīng)力強(qiáng)度干涉模型,建立了拔銷器作動(dòng)極限狀態(tài)函數(shù)。最后,采用Kriging代理模型和蒙特卡洛方法相結(jié)合的方法進(jìn)行了可靠性分析和靈敏度分析,量化材料參數(shù)、結(jié)構(gòu)尺寸、火藥參數(shù)等不確定性對(duì)拔銷器工作可靠性的影響。
拔銷裝置主要包括主裝藥、起爆器、螺蓋、活塞、剪切銷、密封圈等部件,如圖1所示。在工作前,為了限制活塞運(yùn)動(dòng),拔銷器使用剪切銷將活塞和殼體定位,實(shí)現(xiàn)對(duì)航天器機(jī)械結(jié)構(gòu)的鎖定。在接到起爆信號(hào)后,起爆器作用,點(diǎn)燃主裝藥,產(chǎn)生的高溫高壓燃?xì)馔ㄟ^(guò)殼體傳火孔進(jìn)入組合件密封殼體腔內(nèi),推動(dòng)活塞運(yùn)動(dòng),活塞前進(jìn),剪斷剪切銷,活塞沿軸線方向回縮,運(yùn)動(dòng)到位后,完成解鎖功能。
根據(jù)拔銷器的工作原理,將拔銷器的機(jī)構(gòu)運(yùn)動(dòng)劃分為活塞啟動(dòng)階段、活塞運(yùn)動(dòng)階段。當(dāng)其中一個(gè)階段發(fā)生失效,最后都將影響拔銷器功能的可靠性。因此,將拔銷器的機(jī)構(gòu)運(yùn)動(dòng)失效模型分為活塞啟動(dòng)失效、活塞運(yùn)動(dòng)失效。下面分別建立各階段運(yùn)動(dòng)過(guò)程的極限狀態(tài)函數(shù)。
圖1 拔銷器的結(jié)構(gòu)
活塞啟動(dòng)失效指活塞不能克服剪切銷的剪切力和密封圈的摩擦力,導(dǎo)致活塞不能啟動(dòng),該階段如圖2所示。
圖2 拔銷器的機(jī)構(gòu)啟動(dòng)階段
因此,根據(jù)應(yīng)力–強(qiáng)度干涉理論[14]和拔銷器的機(jī)構(gòu)運(yùn)動(dòng)失效模式,活塞啟動(dòng)階段的極限狀態(tài)函數(shù)1為:
式中:s為剪切銷剪切力;f密封圈的摩擦力;p為起爆器輸出的壓力。
根據(jù)文獻(xiàn)[15],密封圈摩擦力f的計(jì)算公式為:
式中:m為密封圈與外筒內(nèi)壁之間的摩擦系數(shù),取值為0.4;m為密封圈材料的彈性模量,取值為7.84 Pa;m為密封圈外徑,m;m為圓截面直徑,m;為密封圈材料的泊松系數(shù),取值為0.47;為預(yù)壓縮率;m為溝槽底部至外筒內(nèi)壁的距離,m。
根據(jù)文獻(xiàn)[16],剪切銷的剪切力s可按照式(3)進(jìn)行計(jì)算。
式中:為剪切銷直徑,取值為0.002 m;b為剪切銷材料的剪切強(qiáng)度,MPa。
起爆器輸出的壓力可以按照式(4)計(jì)算。
式中:為輸出壓力作用在活塞上的面積,m2;為輸出壓力。
根據(jù)文獻(xiàn)[17],對(duì)于密閉膛內(nèi)高溫高壓燃?xì)?,則按照如式(5)計(jì)算。
式中:為裝藥的火藥力,J/kg;為裝填密度,kg/m3;為余容,m3/kg。
活塞運(yùn)動(dòng)失效指活塞沿軸線方向回縮時(shí)不能克服密封圈的摩擦力,導(dǎo)致活塞未能運(yùn)動(dòng)到指定位置,該階段如圖3所示。
圖3 拔銷器的機(jī)構(gòu)運(yùn)動(dòng)階段
式中:為活塞運(yùn)動(dòng)時(shí)間,根據(jù)設(shè)計(jì)要求,為4.45 ms;min為活塞運(yùn)動(dòng)的最小距離,根據(jù)設(shè)計(jì)尺寸,min=2.5 mm。
由于拔銷器機(jī)構(gòu)運(yùn)動(dòng)受到諸多不確定因素的影響,導(dǎo)致極限狀態(tài)函數(shù)涉及到的參數(shù)不是定值,所以將極限狀態(tài)函數(shù)中所列出的主要參數(shù)作為隨機(jī)變量來(lái)處理。在工程中,零件幾何尺寸參數(shù)分布一般認(rèn)為都服從正態(tài)分布,設(shè)計(jì)的名義尺寸作為均值,而標(biāo)準(zhǔn)差是1/6的公差[18]。各參數(shù)服從的分布類型和參數(shù)值見(jiàn)表1,均采用國(guó)際單位。
表1 主要不確定性因素分布類型及其參數(shù)
Tab.1 Distribution types and parameters of main uncertainty factors
根據(jù)可靠性理論,求解拔銷器機(jī)構(gòu)運(yùn)動(dòng)失效概率的模型為[19]:
為了求解式(7),將式(7)改寫為失效域指示函數(shù)I()的數(shù)學(xué)期望形式[20],即:
因此,可靠度模型為:
為了提高求解效率,采用Kriging代理模型逼近極限狀態(tài)函數(shù),進(jìn)而采用蒙特卡洛法(Monte Carlo Simulation, MCS)求解失效概率的方法。其中,Kriging模型為[21]:
式中:K()為未知的Kriging模型;()為回歸基函數(shù),()={1(),2(),…, f()}T;為回歸系數(shù),={1,1,…,β}T;表示基函數(shù)的個(gè)數(shù);()為高斯隨機(jī)過(guò)程。
可靠性靈敏度反映了隨機(jī)變量對(duì)失效概率的影響程度[22]。因此,拔銷器機(jī)構(gòu)運(yùn)動(dòng)可靠性靈敏度分析的計(jì)算公式為[23]:
式中:為隨機(jī)變量的均值或標(biāo)準(zhǔn)差;=[λ]×n,當(dāng)=時(shí),λ是第個(gè)隨機(jī)變量的標(biāo)準(zhǔn)差,當(dāng)≠,其取值為0;為可靠度指標(biāo),根據(jù)文獻(xiàn)[20],=();為獨(dú)立的標(biāo)準(zhǔn)正態(tài)隨機(jī)向量。
通過(guò)分析拔銷器的失效模式,分別建立了拔銷器啟動(dòng)階段和運(yùn)動(dòng)階段的極限狀態(tài)函數(shù),進(jìn)而采用拔銷器的機(jī)構(gòu)運(yùn)動(dòng)可靠性分析方法得到了拔銷器機(jī)構(gòu)運(yùn)動(dòng)的可靠度,并與傳統(tǒng)機(jī)構(gòu)可靠性分析的MCS結(jié)果進(jìn)行對(duì)比,結(jié)果見(jiàn)表2。
表2 不同方法拔銷器的活塞啟動(dòng)和運(yùn)動(dòng)階段可靠性分析結(jié)果
Tab.2 Analysis results of the pin puller startup and motion reliability by different methods
根據(jù)文獻(xiàn)[24],航天器分離任務(wù)所需的結(jié)構(gòu)/機(jī)構(gòu)可靠性為0.999 9。從表2可以看出,拔銷器機(jī)構(gòu)運(yùn)動(dòng)的可靠性均達(dá)到設(shè)計(jì)要求。通過(guò)分析隨機(jī)變量的靈敏度,得到影響可靠性較大的隨機(jī)因素,在后續(xù)的優(yōu)化設(shè)計(jì)進(jìn)行改進(jìn),繼續(xù)提高拔銷器機(jī)構(gòu)運(yùn)動(dòng)可靠性。啟動(dòng)階段和運(yùn)動(dòng)階段隨機(jī)變量的靈敏度分析如圖4所示。
圖4 不同階段隨機(jī)變量的靈敏度
本文以某拔銷器為研究對(duì)象,采用基于Kriging代理模型和蒙特卡洛方法相結(jié)合的方法對(duì)拔銷器機(jī)構(gòu)運(yùn)動(dòng)的可靠性進(jìn)行了分析。選取工作載荷、幾何尺寸和火藥燃燒參數(shù)等隨機(jī)變量,建立了拔銷器機(jī)構(gòu)不同作動(dòng)階段的應(yīng)力強(qiáng)度干涉模型。在拔銷器活塞啟動(dòng)過(guò)程中,影響可靠性的最主要參數(shù)為剪切銷直徑;拔銷器活塞運(yùn)動(dòng)過(guò)程中,影響可靠性的最主要參數(shù)為活塞的受壓面積??赏ㄟ^(guò)調(diào)節(jié)這些設(shè)計(jì)值的大小提高可靠性,該結(jié)果為優(yōu)化設(shè)計(jì)提供了方向。
[1] 王凱民, 溫玉全. 軍用火工品設(shè)計(jì)技術(shù)[M]. 北京: 國(guó)防工業(yè)出版社, 2006.
WANG Kai-min, WEN Yu-quan. Design of Initiators and Pyrotechnics for Weapon Systems[M]. Beijing: National Defense Industry Press, 2006.
[2] 孫潔, 郭崇星, 吳瑞德, 等. 拔銷器作用過(guò)程的仿真研究[J]. 火工品, 2017(1): 10-13.
SUN Jie, GUO Chong-xing, WU Rui-de, et al. Simulation Research on the Function Process of the Pin Puller[J]. Initiators & Pyrotechnics, 2017(1): 10-13.
[3] 王鵬, 杜志明. 火工煙火裝置裕度研究與設(shè)計(jì)方法綜述[J]. 火工品, 2005(2): 34-38.
WANG Peng, DU Zhi-ming. Summarize of Margin Research and Design Method of Pyrotechnic Devices[J]. Initiators & Pyrotechnics, 2005(2): 34-38.
[4] 榮吉利, 張濤, 董沛武, 等. 冗余設(shè)計(jì)火工裝置的可靠性評(píng)定試驗(yàn)方法研究[J]. 北京理工大學(xué)學(xué)報(bào), 2011, 31(5): 509-513.
RONG Ji-li, ZHANG Tao, DONG Pei-wu, et al. Study on Hardened Test Approach to Reliability Assessment for Pyrote-chnic Devices with Redundancy Design[J]. Transactions of Beijing Institute of Technology, 2011, 31(5): 509-513.
[5] 熊芬芬, 楊樹(shù)興, 劉宇. 工程概率不確定性分析方法[M]. 北京: 科學(xué)出版社, 2015.
XIONG Fen-fen, YANG Shu-xing, LIU Yu. Engineering Probability Uncertainty Analysis Method[M]. Beijing: Science Press, 2015.
[6] HAOFER A, LIND N. An Exact and Invariant First- Order Reliability Format[J]. Eng Mech ASCE, 1974, 100: 111-121.
[7] LEE I, NOH Y, YOO D. A Novel Second-Order Reliability Method (SORM) Using Noncentral or Generalized Chi-Squared Distributions[J]. Journal of Mechanical Design, 2012, 134(10): 100912.
[8] ZHU Zhi-fu, DU Xiao-ping. Reliability Analysis with Monte Carlo Simulation and Dependent Kriging Predictions[J]. Journal of Mechanical Design, 2016, 138(12): 121403.
[9] BEZERRA M A, SANTELLI R E, OLIVEIRA E P, et al. Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry[J]. Talanta, 2008, 76(5): 965-977.
[10] ECHARD B, GAYTON N, LEMAIRE M. AK-MCS: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation[J]. Structural Safety, 2011, 33(2): 145-154.
[11] KAYMAZ I. Application of Kriging Method to Structural Reliability Problems[J]. Structural Safety, 2005, 27(2): 133-151.
[12] HUANG Xiao-xu, CHEN Jian-qiao, ZHU Hong-ping. Assessing Small Failure Probabilities by AK-SS: An Active Learning Method Combining Kriging and Subset Simulation[J]. Structural Safety, 2016, 59: 86-95.
[13] ECHARD B, GAYTON N, LEMAIRE M, et al. A Combined Importance Sampling and Kriging Reliability Method for Small Failure Probabilities with Time-Demanding Numerical Models[J]. Reliability Engineering & System Safety, 2013, 111: 232-240.
[14] KOTZ S, LUMELSKII Y, PENSKY M. The Stress-Stren-gth Model and its Generalizations - Theory and Applications[M]. HongKong: World Scientific Publishing Co Pte Ltd, 2003.
[15] XU Fu-ren. Calculating Frictional Force Caused by O-Ring Seal[J]. Lubric Ation Engineering,1989(1):32-34.
[16] JIN Zhong-mou. Mechanics of Materials[M]. Beijing: Machinery Industry Press, 2009: 64-65.
[17] JIN Zhi-ming. The Ballistics of Interior Guns[M]. Beijing: Beijing Institute of Technology, 2004: 188-189.
[18] 楊帆. 電連接器鎖緊分離機(jī)構(gòu)可靠性設(shè)計(jì)方法的研究[D]. 杭州: 浙江理工大學(xué), 2017.
YANG Fan. Reliability Design Method of the Locking Mechanism for Electrical Connectors[D]. Hangzhou: Zhejiang Sci-Tech University, 2017.
[19] DITLEVSEN O, MADSEN H O. Structural Reliability Methods[M]. West Sussex: John Wiley & Sons Ltd, 2007.
[20] 呂震宙, 宋述芳, 李璐祎. 結(jié)構(gòu)/機(jī)構(gòu)可靠性設(shè)計(jì)基礎(chǔ)[M]. 西安: 西北工業(yè)大學(xué)出版社, 2019.
LYU Zhen-zhou, SONG Shu-fang, LI Lu-yi. Foundations of Structural/Mechanism Reliability Design [M]. Xi'an: Northwestern Polytechnical University Press, 2019.
[21] LOPHAVEN S, NIELSEN H, S?NDERGAARD J. DACE a Matlab Kriging Toolbox[K].Copenhagen: Technical University of Denmark, 2002.
[22] IONESCU-BUJOR M, CACUCI D G. A Comparative Review of Sensitivity and Uncertainty Analysis of Large-Scale Systems—I: Deterministic Methods[J]. Nuclear Science and Engineering, 2004, 147(3): 189-203.
[23] SALTELLI A, ANNONI P. How to Avoid a Perfunctory Sensitivity Analysis[J]. Environmental Modelling & Software, 2010, 25(12): 1508-1517.
[24] GONG Qi, ZHANG Jian-guo, TAN Chun-lin, et al. Neural Networks Combined with Importance Sampling Techniques for Reliability Evaluation of Explosive Initiating Device[J]. Chinese Journal of Aeronautics, 2012, 25(2): 208-215.
Motion Reliability Analysis of Pin Puller Mechanism Based on Uncertainty
YANG Kun, CHENG Tao
(Shaanxi Applied Physical-Chemistry Institute, Xi'an 710061, China)
The work aims to study the effects of random variables on the reliability in the working process of pin puller and propose a modeling and analysis method for the motion reliability of the pin puller mechanism based on uncertainty, so as to realize the quantitative analysis and efficient and accurate evaluation of the pin puller reliability. Firstly, based on the stress-strength model and mechanism motion failure mode of the pin puller, the limit state equation was established. Then, considering the effects of uncertainty factors in the working process, a reliability analysis method of mechanism motion based on Kriging surrogate model to approximate the limit state equation was proposed, and the efficient reliability analysis of the mechanism motion of the pin puller was carried out. Finally, the reliability sensitivity analysis was conducted to the random variables in the mechanism motion of the pin puller to determine the effects of the random variables on the motion reliability of the pin puller mechanism, which provided the direction for the optimization design. The motion reliability of pin puller mechanism was more than 0.999 9, meeting the design requirements. The diameter of shear pinwas the biggest factor affecting the startup reliability of pin puller piston, followed by,,,etc. The biggest factor affecting the reliability of piston motion was, followed by,. This method can accurately describe the effects of uncertainty factors on the motion of the pin puller mechanism, improve the accuracy and efficiency of the quantitative analysis of mechanism motion reliability, and provide support for the fine design of the pin puller.
pin puller; reliability analysis; Kriging model; sensitivity; uncertainty
TJ 450
A
1672-9242(2022)12-0014-05
10.7643/ issn.1672-9242.2022.12.003
2022–11–22;
2022–12–10
2022-11-22;
2022-12-10
楊琨(1984—),男,高級(jí)工程師,主要研究方向?yàn)榛鸸ぱb置設(shè)計(jì)技術(shù)研究。
YANG Kun (1984-), Male, Senior engineer, Research focus: Design technology of pyrotechnic device.
程濤(1971—),男,研究員,主要研究方向?yàn)榛鸸は到y(tǒng)技術(shù)研究。
CHENG Tao (1971-), Male, Researcher, Research focus: pyrotechnic system technology.
楊琨, 程濤. 基于不確定性拔銷器的機(jī)構(gòu)運(yùn)動(dòng)可靠性分析[J]. 裝備環(huán)境工程, 2022, 19(12): 014-018.
YANG Kun, CHENG Tao. Motion Reliability Analysis of Pin Puller Mechanism Based on Uncertainty[J]. Equipment Environmental Engineering, 2022, 19(12): 014-018.
責(zé)任編輯:劉世忠