亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        LA43M鎂鋰合金表面水熱合成Mg-Al LDH膜層的耐腐蝕及磨損性能

        2022-12-30 02:07:10張菊梅候安榮李嘉誠(chéng)段鑫王博連朵朵張萌春
        表面技術(shù) 2022年11期
        關(guān)鍵詞:水熱耐蝕性基體

        張菊梅,候安榮,李嘉誠(chéng),段鑫,王博,連朵朵,張萌春

        LA43M鎂鋰合金表面水熱合成Mg-Al LDH膜層的耐腐蝕及磨損性能

        張菊梅1,候安榮1,李嘉誠(chéng)1,段鑫1,王博2,連朵朵1,張萌春1

        (1.西安科技大學(xué) 材料科學(xué)與工程學(xué)院,西安 710054;2.國(guó)網(wǎng)陜西省電力公司電力科學(xué)研究院,西安 710054)

        提高鎂鋰合金的耐蝕和耐磨性,拓寬其應(yīng)用范圍。保持水熱溫度為90 ℃,改變水熱時(shí)間,采用原位水熱法在LA43M鎂鋰合金表面制備了Mg-Al 層狀雙金屬氫氧化物(LDH)膜層。利用掃描電子顯微鏡(SEM)、能譜儀(EDS)、X射線衍射儀(XRD)分別表征了膜層的表面形貌、成分及物相。采用浸泡試驗(yàn)、析氫試驗(yàn)、動(dòng)電位極化測(cè)試以及摩擦磨損試驗(yàn)對(duì)膜層的耐蝕性、耐磨性進(jìn)行了評(píng)估。水熱反應(yīng)后,在合金表面形成了細(xì)小片狀結(jié)構(gòu),且隨著水熱時(shí)間的延長(zhǎng),尺寸變大,數(shù)量增加,分布越密集。經(jīng)XRD分析,得到了LDH特征衍射峰。浸泡及析氫試驗(yàn)表明,LDH膜層的耐蝕性順序?yàn)長(zhǎng)DH-30 h>LDH-18 h>LDH-12 h>LA43M基體。其中LA43M基體在浸泡8 d后,腐蝕嚴(yán)重,出現(xiàn)了明顯的腐蝕坑和裂紋;而LDH膜層試樣腐蝕程度較輕,只在部分區(qū)域出現(xiàn)點(diǎn)蝕和微裂紋。動(dòng)電位極化測(cè)試表明,水熱30 h的膜層具有良好的耐蝕性。與基體相比,其自腐蝕電位提高了143.7 mV,腐蝕電流密度降低了約2個(gè)數(shù)量級(jí)。摩擦磨損試驗(yàn)結(jié)果顯示,基體的摩擦因數(shù)最大,磨痕深而寬,而LDH膜層的摩擦因數(shù)均明顯小于基體,磨痕淺而窄。Mg-Al LDH膜層在提高鎂鋰合金基體耐蝕性的同時(shí),也能使基體的耐磨性有所改善。

        鎂鋰合金;水熱法;LDH;耐蝕性;耐磨性

        鎂鋰合金是目前最輕的金屬結(jié)構(gòu)材料,因具有優(yōu)良的比強(qiáng)度、導(dǎo)電導(dǎo)熱性及電磁屏蔽性等眾多優(yōu)異特點(diǎn),在航天航空、3C產(chǎn)品、國(guó)防軍工等諸多領(lǐng)域應(yīng)用前景廣闊[1]-[2]。然而,較差的耐蝕性,嚴(yán)重制約了鎂鋰合金的發(fā)展和應(yīng)用[3]-[4]。因此,采用適當(dāng)?shù)姆雷o(hù)方法改善其耐蝕性至關(guān)重要。目前,改善鎂鋰合金耐蝕性的方法較多,但主要集中在表面處理方面。相對(duì)成熟的表面處理技術(shù)有電鍍、化學(xué)轉(zhuǎn)化膜、有機(jī)涂層等,采用這些方法雖然均能一定程度增強(qiáng)鎂鋰合金的耐蝕性,但都有局限性[5]-[6]。電鍍應(yīng)用范圍廣,但能耗較大;化學(xué)轉(zhuǎn)化膜操作簡(jiǎn)單,但膜層保護(hù)性單一;有機(jī)涂層制備工藝簡(jiǎn)單,但膜層較薄,耐蝕能力有限,無法為基體提供長(zhǎng)久性的保護(hù)。因而開發(fā)一種綠色環(huán)保、耐蝕性能優(yōu)異的新型智能涂層迫在眉睫[7]。

        層狀雙金屬氫氧化物(Layered Double Hydroxide,LDH)是一種新型的二維無機(jī)納米材料[8]。其通式可表示為[M2+1–xM3+(OH)2]+[A–]/n·H2O,其中陽離子M2+和M3+分別代表二價(jià)和三價(jià)金屬陽離子,A代表層間陰離子[9]-[10]。因具有離子可交換性、層板間距可調(diào)性、記憶效應(yīng)等獨(dú)特性能,LDH在醫(yī)藥、催化、材料等領(lǐng)域被廣泛研究[11]-[12]。近年來,LDH的獨(dú)特性能在腐蝕防護(hù)領(lǐng)域顯示出廣闊的應(yīng)用前景,并吸引了眾多研究者的目光[13]。Zhang等[14]采用共沉淀法和水熱法在AZ31鎂合金表面成功制備了致密均勻的Mg-Al LDH涂層,顯著提高了鎂合金基體的耐蝕性。Wu等[15]通過原位水熱法在陽極氧化后的鎂合金表面制備了Mg-Al LDH涂層,并發(fā)現(xiàn)水熱溶液的pH對(duì)膜層的致密度有很大的影響。Wang等[16]采用緩蝕劑對(duì)Mg-Al LDH膜層進(jìn)行了修飾,在AZ31鎂合金表面獲得了超疏水特性的復(fù)合膜層,從而具有優(yōu)異的耐蝕性能。此外,水熱溫度和成膜時(shí)間對(duì)LDH膜層的微觀結(jié)構(gòu)和耐蝕性也有影響[17]-[18]。

        綜上所述,鎂合金表面LDH膜層制備和耐蝕性的相關(guān)研究已經(jīng)開展起來,但有關(guān)LA43M鎂鋰合金表面原位制備LDH膜層及其耐蝕耐磨性研究鮮有報(bào)道。因此,本文采用原位水熱法在LA43M鎂鋰合金表面制備了Mg-Al LDH膜層,考察了水熱時(shí)間對(duì)Mg-Al LDH膜層形貌結(jié)構(gòu)、耐蝕性以及耐磨性的影響,并探討了LDH膜層的形成機(jī)理及耐蝕機(jī)理,對(duì)鎂鋰合金的廣泛應(yīng)用具有重要的指導(dǎo)意義。

        1 試驗(yàn)

        1.1 材料

        本試驗(yàn)以LA43M鎂鋰合金作為基體材料,其化學(xué)成分如表1所示。試樣尺寸為25 mm×25 mm×3 mm。依次使用牌號(hào)為240#、600#、1000#、1200#、2000#、3000#、5000#的金相砂紙打磨基材表面,除去表面的氧化皮和毛刺。打磨光滑后用酒精和去離子水將其表面清洗干凈,低溫吹干待用。

        表1 LA43M鎂鋰合金的化學(xué)成分

        Tab.1 Chemical composition of LA43M magnesium-lithium alloy wt.%

        1.2 LDH膜層制備

        室溫下,配制0.05 mol/L Al(NO)3·9H2O溶于40 mL去離子水中,同時(shí)配制0.01 mol/L NaOH來調(diào)節(jié)溶液pH,使其穩(wěn)定在12左右。配制好的混合溶液用超聲波震蕩5 min,然后將處理好的試樣和配制好的混合溶液轉(zhuǎn)移到水熱反應(yīng)釜中,并放于恒溫鼓風(fēng)干燥箱中。在保持水熱溫度為90 ℃的情況下,分別設(shè)置時(shí)間參數(shù)為12、18、30 h進(jìn)行LDH膜層的制備。水熱制備過程結(jié)束后,待冷卻至室溫后取出試樣,用去離子水清洗干凈。

        1.3 表征與測(cè)試

        采用TESCAN7718型掃描電鏡分別對(duì)所制備Mg-Al LDH膜層的表面、截面形貌以及腐蝕后的形貌進(jìn)行表征,并使用配備的EDS對(duì)LDH膜層試樣進(jìn)行點(diǎn)掃描、面掃描,分析其元素組成。采用D8AD-VANCE型X射線衍射儀分別對(duì)LA43M基體和LDH膜層進(jìn)行XRD物相分析。其中X衍射時(shí),靶材為銅靶,掃描角度為10°~80°,加速電壓為40 kV,掃描速度為3.75(°)/min。

        分別采用失重法和析氫法表征膜層在3.5% NaCl溶液中的失重速率和析氫速率。失重測(cè)試開始時(shí),先將試樣懸掛在裝有3.5% NaCl溶液的燒杯中,調(diào)整懸掛位置,避免試樣與燒杯接觸。為減小試驗(yàn)誤差,不同參數(shù)的試樣設(shè)置3個(gè)平行對(duì)照。試驗(yàn)時(shí),每隔24 h,取出燒杯中的試樣,用去離子水將表面的腐蝕產(chǎn)物沖洗干凈,吹干表面水分后使用精度為0.000 1 g的分析天平進(jìn)行稱量。試樣的失重速率計(jì)算公式為:

        式中:m表示試樣的失重速率,mg/(cm2·h);0為浸泡前的初始質(zhì)量,mg;為試樣浸泡一段時(shí)間后的質(zhì)量,mg;為試樣的表面積,cm2;為腐蝕時(shí)間,h。

        對(duì)基體和LDH膜層試樣做析氫測(cè)試,先計(jì)算試樣的表面積,然后將樣品放入盛有3.5% NaCl溶液的燒杯中,并連接好倒置漏斗和滴定管,記錄滴定管初始刻度并開始計(jì)時(shí),每間隔24 h 記錄1次,累計(jì)8 d。試樣的析氫速率計(jì)算公式為:

        式中:表示試樣的析氫速率,mL/(cm2·h);Δ為析出氣體體積,mL;為試樣的有效表面積,cm2;為腐蝕時(shí)間,h。

        動(dòng)電位極化曲線測(cè)試使用Parstat4000型電化學(xué)工作站,通過三電極體系測(cè)試,其中LDH膜層試樣為工作電極,暴露面積為1 cm2,Pt電極為對(duì)電極,Ag-AgCl電極為參比電極。整個(gè)測(cè)試過程均在室溫下3.5% NaCl溶液中進(jìn)行。測(cè)試時(shí),先將待測(cè)試樣置于三電極體系中,待開路電位穩(wěn)定后開始測(cè)試,電位掃描范圍為?2~2 V,掃描速度為1 mV/s。

        采用MFT-R4000高速往復(fù)摩擦磨損試驗(yàn)機(jī)對(duì)試樣進(jìn)行摩擦性能分析,摩擦副采用直徑為4 mm的GCr15 小球,對(duì)磨材料為L(zhǎng)A43M基體和LDH膜層試樣,其中摩擦載荷為5 N,往復(fù)距離為5 mm,往復(fù)頻率為2 Hz,摩擦?xí)r間為10 min。

        2 結(jié)果與分析

        2.1 膜層的微觀結(jié)構(gòu)及成分分析

        圖1為不同水熱時(shí)間下制備的Mg-Al LDH膜層的表面及截面形貌。由表面形貌可知,12 h時(shí)表面比較光滑,但低洼處已有細(xì)小的物質(zhì)出現(xiàn),可能是由于水熱時(shí)間較短,LDH正處在緩慢生長(zhǎng)過程中。而18 h所制備的膜層表面則密集分布著大量細(xì)小且彼此交錯(cuò)的納米薄片,它們均勻且垂直排列在基體上。之后隨著水熱時(shí)間的延長(zhǎng),納米薄片生長(zhǎng)得越來越致密,尺寸也明顯變大,30 h時(shí)納米片已經(jīng)彼此交聯(lián)形成了一個(gè)整體,將基體完全覆蓋。從截面形貌可知,各膜層與基體之間均無明顯的界面或間隙存在,且膜層的截面均勻致密,這表明LDH膜層與基體之間結(jié)合良好。此外,還發(fā)現(xiàn)12、18、30 h下所制備的膜層厚度逐漸增加,其中水熱30 h下的膜層厚度最大。由此說明通過水熱法可在LA43M鎂鋰合金表面構(gòu)筑起一道完整的保護(hù)屏障,且在保持水熱溫度一定的情況下,延長(zhǎng)水熱時(shí)間,有利于LDH膜層的生長(zhǎng)。

        為進(jìn)一步明確所制備 Mg-Al LDH膜層的微觀組成,利用SEM附帶的能譜儀對(duì)18 h所制備的膜層成分及分布進(jìn)行了點(diǎn)掃描、面掃描分析,掃描結(jié)果如圖2所示。由圖2b點(diǎn)掃描能譜圖可知該膜層由Mg、Al、O、N元素組成,其中Mg、Al元素主要來自LDH膜層,N、O元素來自Al(NO)3溶液。進(jìn)一步觀察EDS面掃描圖像發(fā)現(xiàn),Mg、Al、O元素亮點(diǎn)密集,且亮點(diǎn)在整個(gè)膜層表面均勻分布,而N元素分布相對(duì)較分散(圖2f),同時(shí)結(jié)合圖1中Mg-Al LDH膜層的形貌變化發(fā)現(xiàn),水熱12 h后的針狀結(jié)構(gòu)LDH膜層還較稀少,無法將基體覆蓋,之后隨著水熱時(shí)間的延長(zhǎng),LA43M基體表面逐漸被LDH膜層所覆蓋,變得更均勻、致密。

        圖1 不同水熱時(shí)間下制備的Mg-Al LDH膜層表面及截面形貌

        圖2 18 h下制備的 Mg-Al LDH膜層表面所含元素點(diǎn)掃描及面掃描圖像

        圖3a為L(zhǎng)A43M鎂鋰合金基體及所制備膜層的XRD圖譜。圖3b是將圖3a中2=10°~30°范圍放大后的XRD圖譜。LA43M鎂鋰合金中Li、Al質(zhì)量分?jǐn)?shù)分別大約為4%、3%,其相結(jié)構(gòu)由Mg基體和LiAl相構(gòu)成,在圖3a所示的XRD圖譜中可清楚地看到Mg和LiAl的衍射峰。而經(jīng)過水熱處理后XRD圖譜發(fā)生了較大變化,由于X射線穿透力很強(qiáng),因此在水熱處理后的試樣中也出現(xiàn)了基體相的衍射峰。其中90 ℃-18 h所制備的膜層除Mg(OH)2外,還在11.57°和24.52°衍射角處出現(xiàn)了LDH特征衍射峰,結(jié)合EDS分析結(jié)果,可以證實(shí)水熱處理后在鎂鋰合金表面生成了LDH。

        圖3 LA43M基體和90 ℃-18 h下制備的Mg-Al LDH膜層的XRD圖譜

        2.2 膜層的耐蝕性

        LA43M鎂鋰合金基體、不同水熱時(shí)間制備的Mg-Al LDH膜層試樣在3.5% NaCl溶液中浸泡192 h后的失重速率如圖4所示。從圖中可以看到,基體失重速率最大,達(dá)到了0.008 789 mg/(cm2·h),表明其耐蝕性較差。而與基體相比,LDH膜層試樣表現(xiàn)出較好的耐蝕性。不同水熱時(shí)間所制備的LDH膜層(12、18、30 h)的失重速率依次為0.006 694、0.006 563 9、0.006 046 mg/(cm2·h)。LDH膜層良好的耐蝕性可歸因于其致密的片層狀納米片具有阻隔作用以及層間陰離子可交換性能夠捕獲腐蝕性離子,從而抑制了腐蝕[19]。

        圖4 試樣在3.5% NaCl溶液中的失重速率

        為進(jìn)一步評(píng)估各試樣的耐蝕性,分別對(duì)基體、Mg-Al LDH膜層試樣進(jìn)行了析氫測(cè)試。各試樣在3.5% NaCl溶液中浸泡192 h的析氫速率如圖5所示。由圖可知,隨浸泡時(shí)間的推移,各試樣的析氫速率均明顯增大,但LA43M基體的析氫速率的增長(zhǎng)速度最快,浸泡192 h后,析氫速率為0.057 91 ml/(cm2·h);相比之下,Mg-Al LDH膜層試樣的析氫速率均小于基體。在0~120 h 范圍內(nèi),18 h的膜層試樣的析氫速率一直比12 h膜層試樣的析氫速率小,在浸泡120 h后,18 h的膜層試樣的析氫速率略大于12 h的膜層試樣。而水熱30 h的膜層試樣在整個(gè)析氫測(cè)試過程中,析氫速率最小;特別是浸泡96 h后,其析氫速率發(fā)生了明顯的下降,之后一直維持在0.024 5 mL/(cm2·h)附近,這可能歸因于LDH膜層的自修復(fù)能力[20]。各試樣呈現(xiàn)此趨勢(shì)的原因:LA43M基體化學(xué)性質(zhì)活潑,在沒有膜層保護(hù)的情況下,直接與腐蝕溶液發(fā)生析氫反應(yīng),并形成點(diǎn)蝕坑,且隨浸泡時(shí)間的延長(zhǎng),腐蝕越嚴(yán)重,因此析氫速率持續(xù)加快。而經(jīng)過膜層保護(hù)的試樣,可以起到屏障保護(hù)、離子交換的作用;同時(shí)膜層越致密、厚度越厚,抑制腐蝕的效果越好,對(duì)應(yīng)的析氫速率越小。結(jié)合圖1膜層表面及截面形貌發(fā)現(xiàn),水熱30 h的膜層形貌完整,厚度最大,18 h的次之,12 h的最差,這與析氫速率變化規(guī)律基本吻合。浸泡120 h后出現(xiàn)了18 h膜層試樣的析氫速率略大于12 h膜層試樣的現(xiàn)象,其原因可能是浸泡過程中,12 h的膜層試樣先遭到了破壞,產(chǎn)生了Mg(OH)2等腐蝕產(chǎn)物,并緊密附著在基體表面,起到了一定的保護(hù)作用。綜上分析,30 h的膜層試樣表面形貌完整且膜度最厚,可有效抵御腐蝕溶液對(duì)內(nèi)部基體的破壞,耐蝕性能最佳。

        圖5 LA43M合金基體、Mg-Al LDH膜層在3.5% NaCl溶液中浸泡192 h的析氫速率

        通過動(dòng)電位極化測(cè)試對(duì)各試樣的耐蝕性能進(jìn)行了表征,測(cè)試結(jié)果及其擬合結(jié)果如圖6及表2所示。通常,較正的自腐蝕電位或較小的自腐蝕電流密度意味著較低的腐蝕速率和較好的耐腐蝕性。由極化曲線可知:LA43M鎂鋰合金基體的腐蝕電位最負(fù)(?1.410 7 V),腐蝕電流最大(8.568 2×10?5A),故LA43M鎂鋰合金基體的耐蝕性較差。經(jīng)水熱處理后的LDH膜層試樣的腐蝕電流(corr)由基體的8.568 2×10?5A降低至1.758×10?7A,下降了約2個(gè)數(shù)量級(jí);而腐蝕電位(corr)由?1.410 7 V增加至?1.267 V,提高了約143.7 mV。此外還發(fā)現(xiàn),隨著水熱時(shí)間的延長(zhǎng),LDH膜層試樣的自腐蝕電位向右明顯偏移,腐蝕電流也明顯降低。其中水熱30 h的LDH膜層具有最正的腐蝕電位(?1.267 V),最低的腐蝕電流(1.758×10?7A)。這些數(shù)據(jù)說明水熱處理能較為顯著地提高鎂鋰合金基體的耐蝕性;不同水熱時(shí)間下得到的LDH膜層的耐蝕性由大到小順序?yàn)長(zhǎng)DH-30 h>LDH-18 h>LDH-12 h>LA43M,這與析氫及浸泡試驗(yàn)結(jié)果基本一致。

        為進(jìn)一步直觀反映Mg-Al LDH膜層的耐蝕能力,圖7顯示了LA43M鎂鋰合金基體以及不同水熱時(shí)間所制備的Mg-Al LDH膜層在3.5% NaCl溶液中浸泡8 d后的表面形貌。從圖7a可清晰地看到基體腐蝕嚴(yán)重,表面出現(xiàn)了大的腐蝕坑,且周圍還交錯(cuò)分布著許多裂紋和裂縫,在低倍下表現(xiàn)更為明顯。這是由于鎂鋰合金化學(xué)性質(zhì)活潑,在浸泡過程中,腐蝕溶液與基體發(fā)生析氫反應(yīng),形成點(diǎn)蝕坑,并不斷向基體內(nèi)部及四周逐漸擴(kuò)大,形成較深的腐蝕凹坑;同時(shí)腐蝕產(chǎn)物在界面不斷聚集,由此產(chǎn)生的應(yīng)力導(dǎo)致基體表面形成了裂紋[21]-[22]。而經(jīng)過水熱處理的LDH膜層試樣均保持著相對(duì)平整的表面形態(tài),無大的腐蝕坑出現(xiàn)。其中12 h(圖7b)和18 h(圖7c)下制備的膜層試樣腐蝕較輕。低倍顯示,浸泡8 d后試樣表面出現(xiàn)了較多的微裂紋和腐蝕坑,以及剝落痕跡。但從高倍發(fā)現(xiàn),膜層表面還殘留著針狀LDH結(jié)構(gòu),它們緊密地附著于基體表面,起到了屏障保護(hù)的作用,阻止了腐蝕性Cl?向基體內(nèi)部滲入;此外,裂紋深度較淺,腐蝕不太嚴(yán)重,防護(hù)效果較好。而水熱30 h(圖7d)的膜層試樣表面部分區(qū)域起伏不平,高倍顯示LDH膜層也受到了局部破壞而發(fā)生部分剝落,但整體比較完整。綜合以上分析可知,Mg-Al LDH膜層試樣在浸泡過程中腐蝕程度較輕,未出現(xiàn)大的腐蝕凹坑,具有保護(hù)基體,增強(qiáng)其耐蝕性的能力。

        圖6 LA43M基體、Mg-Al LDH膜層的極化曲線

        表2 LA43M基體、Mg-Al LDH膜層極化曲線擬合數(shù)據(jù)

        Tab.2 Corrosion parameters of polarization curves

        圖7 樣品在3.5% NaCl 溶液中浸泡8 d的表面形貌

        (a) the LA43M alloy substrate, (b-d) Mg-Al LDH: b) 12 h, c) 18 h, d) 30 h

        2.3 膜層的耐磨性

        隨著鎂鋰合金應(yīng)用領(lǐng)域的不斷拓展,將面臨更復(fù)雜的服役環(huán)境,因此在提高鎂鋰合金耐蝕性的同時(shí),還需要滿足一定的耐磨性。為檢驗(yàn)Mg-Al LDH膜層的耐磨性能,對(duì)其進(jìn)行了摩擦磨損試驗(yàn)。LA43M鎂鋰合金基體、不同水熱時(shí)間下所制備的Mg-Al LDH膜層的摩擦因數(shù)如圖8所示。由圖可以看出,隨摩擦?xí)r間的增加,各試樣的摩擦因數(shù)均呈現(xiàn)出先增大后相對(duì)穩(wěn)定的態(tài)勢(shì)。其中LA43M基體的摩擦因數(shù)最大,且在整個(gè)試驗(yàn)過程中產(chǎn)生了較大的起伏,表明基體發(fā)生了劇烈的磨損。而經(jīng)過水熱處理的膜層試樣的摩擦因數(shù)都比較小,波動(dòng)幅度平緩,說明磨損過程相對(duì)平穩(wěn)。同時(shí)摩擦磨損試驗(yàn)報(bào)告顯示基體的平均摩擦因數(shù)為0.552,而12、18、30 h膜層試樣的平均摩擦因數(shù)分別為0.30、0.231、0.195。由此可見,在LA43M基體表面制備Mg-Al LDH膜層可改善其耐磨性,且摩擦因數(shù)隨著水熱制備時(shí)間的延長(zhǎng)而減小。

        為進(jìn)一步研究LDH膜層的摩擦學(xué)性能,對(duì)磨損后的試樣進(jìn)行了SEM形貌分析。圖9為L(zhǎng)A43M鎂鋰合金基體、90 ℃-18 h 的Mg-Al LDH膜層試樣的磨損形貌。與動(dòng)態(tài)摩擦因數(shù)結(jié)果相類似,LA43M基體(圖9a)表面存在明顯的犁溝以及塑性變形引起的隆起,且磨痕較寬,約為900 μm,表明基體發(fā)生了嚴(yán)重的磨粒磨損[23]。而Mg-Al LDH膜層(圖9c)表面的犁溝較為輕微,且磨痕較窄(約為750 μm),磨損顏色較淺,同時(shí)磨損的痕跡淺而光滑,表明LDH膜層試樣發(fā)生了輕微的磨粒磨損[24]。此外,在高倍顯微圖像(圖9b)下發(fā)現(xiàn),基體表面還存在凹坑、切削狀的磨損產(chǎn)物以及許多白色的麻點(diǎn),這表明基體在發(fā)生劇烈磨粒磨損的同時(shí),還伴隨有嚴(yán)重的氧化磨損,而Mg-Al LDH膜層試樣(圖9d)除犁溝區(qū)被放大外,還保持著相對(duì)平整和光滑的表面形態(tài)。綜上可說明,Mg-Al LDH膜層在摩擦磨損過程中可起到一定的減摩效果,耐磨性較好。

        圖8 LA43M基體、不同水熱時(shí)間下制備的Mg-Al LDH膜層的摩擦因數(shù)

        圖9 樣品磨損形貌

        2.4 分析與討論

        水熱反應(yīng)時(shí),鎂鋰合金基體首先與溶液發(fā)生反應(yīng),產(chǎn)生大量的Mg2+,在堿性條件下,Mg2+與OH?結(jié)合形成Mg(OH)2,并慢慢附著于基體上,形成了板層狀的水鎂石結(jié)構(gòu)[25]。同時(shí),如反應(yīng)式(3)所示,Mg(OH)2中的部分Mg2+被溶液中的Al3+取代,導(dǎo)致膜層帶正電,為了維持電荷平衡,溶液中的NO3?插入板層中,使Mg(OH)2轉(zhuǎn)化為更穩(wěn)定的LDH[26]。隨著水熱時(shí)間的延長(zhǎng),溶液與基體反應(yīng)更充分,LDH得以持續(xù)生長(zhǎng),膜層也變得更加致密,因此圖1所示,12、18、30 h下制備的LDH納米片尺寸逐漸增大,表面分布更加密實(shí),其中30 h時(shí)的納米片彼此交聯(lián),將基體完全覆蓋,形成了一道完整的保護(hù)屏障。

        Al3++(1?)Mg(OH)2+NO3?+H2O+2OH?→

        (Mg2+(1?)Al3+(OH)2)(NO3?)·H2O (3)

        綜合失重試驗(yàn)、析氫試驗(yàn)、動(dòng)電位極化以及浸泡后的腐蝕形貌分析結(jié)果,提出了如圖10所示的Mg-Al LDH膜層的耐蝕性機(jī)理。LDH膜層具有長(zhǎng)期耐蝕性的原因如下:片層狀納米結(jié)構(gòu)的LDH具有較強(qiáng)的化學(xué)穩(wěn)定性、良好的致密性,當(dāng)LDH膜層暴露在3.5% NaCl溶液中時(shí),起到屏障保護(hù)的作用,阻擋Cl?向基體內(nèi)部侵入,且膜層越致密,保護(hù)效果越好。由表面及截面形貌(圖1)可知,水熱30 h的膜層最完整,厚度最大,因此具有最小的失重速率和較為完整的腐蝕形貌。與此同時(shí),LDH具有層間陰離子可交換的特性,發(fā)生式(4)的反應(yīng),捕捉和吸附溶液中的Cl?,從而降低溶液中的Cl?濃度,起到抑制腐蝕的作用[27]。

        圖10 Mg-Al LDH膜層的耐蝕性機(jī)理

        Mg-Al(NO3)LDH+Cl?→Mg-Al(Cl)LDH+NO3?(4)

        其次,在浸泡過程中,LDH膜層中的Mg2+也會(huì)與OH?發(fā)生式(5)所示的反應(yīng),形成Mg(OH)2沉淀,并附著于LDH膜層之上,對(duì)基體起到二次保護(hù)作用,這一過程被稱為Mg-Al LDH自修復(fù)功能[28]。

        Mg2++ OH?→ Mg(OH)2↓ (5)

        因此,LDH膜層的耐蝕性機(jī)理歸納為:LDH膜層的屏障作用、層間陰離子交換性以及自修復(fù)性三者的協(xié)同保護(hù)。

        根據(jù)摩擦因數(shù)變化(圖8)以及磨損后的形貌(圖9)可知,LA43M基體表面磨損最為嚴(yán)重,不僅有深而寬的犁溝狀磨痕產(chǎn)生,而且在摩擦過程中產(chǎn)生了凹坑、切削狀的磨損產(chǎn)物以及許多麻點(diǎn),因而導(dǎo)致摩擦因數(shù)較大,波動(dòng)明顯,其磨損機(jī)理主要為磨粒磨損,此外還伴有氧化磨損,可能存在黏著磨損[29]-[30]。而LDH膜層試樣在整個(gè)磨損過程中摩擦因數(shù)變化相對(duì)穩(wěn)定,盡管磨痕表面也存在犁溝,但磨痕淺而窄,磨損機(jī)理主要為輕微磨粒磨損。在基體表面制備LDH膜層可以降低摩擦力,具有一定的減摩效果。其原因如下:(1)LDH膜層是通過原位水熱法制備而來,與基體結(jié)合良好,在摩擦磨損過程中不易剝落,具有一定的抗磨性;(2)LDH層板間中含有離子鍵、氫鍵等弱化學(xué)鍵,使得LDH層板間的作用力較弱,變形抗力小、剪切強(qiáng)度低,在摩擦磨損過程中具有一定的減摩效果[31];(3)LDH層狀結(jié)構(gòu)中含有羥基、氫鍵等大量活性基團(tuán),可有效覆蓋摩擦副表面,受到剪切應(yīng)力時(shí)易發(fā)生層間滑動(dòng),從而降低了摩擦因數(shù)[32];(4)在摩擦磨損過程中脫落的LDH粉末,可能在摩擦副之間起到潤(rùn)滑作用,可減小摩擦阻力。

        3 結(jié)論

        1)通過簡(jiǎn)單原位水熱法在LA43M鎂鋰合金表面上成功制備了Mg-Al LDH膜層。Mg-Al LDH膜層主要由Mg(OH)2和LDH納米片組成。

        2)水熱時(shí)間變化對(duì)Mg-Al LDH膜層表面形貌有很大影響。在一定的時(shí)間范圍內(nèi),延長(zhǎng)水熱時(shí)間,LDH納米片尺寸變大,數(shù)量變多,分布更密集。

        3)Mg-Al LDH膜層明顯提高了鎂鋰合金基體的耐蝕性,不同水熱時(shí)間下LDH膜層的耐蝕性由大到小依次為L(zhǎng)DH-30 h>LDH-18 h>LDH-12 h>LA43M。

        4)Mg-Al LDH膜層有效改善了基體的耐磨性,與LA43M基體相比,Mg-Al LDH膜層的磨痕淺而窄,摩擦因數(shù)降低,磨損機(jī)制主要為輕微磨粒磨損。

        [1] 李慧, 徐榮正, 侯艷喜, 等. 鎂鋰合金的焊接技術(shù)及其在航天領(lǐng)域的應(yīng)用[J]. 熱加工工藝, 2019, 48(1): 1-4.

        LI Hui, XU Rong-zheng, HOU Yan-xi, et al. Welding Technology of Mg-Li Alloy and Its Application in Aeros-pace Field[J]. Hot Working Technology, 2019, 48(1): 1-4.

        [2] 王志虎, 張菊梅, 白力靜, 等. AZ91鎂合金表面微弧氧化與化學(xué)鍍銅復(fù)合處理層的微觀組織與性能[J]. 中國(guó)腐蝕與防護(hù)學(xué)報(bào), 2018, 38(4): 391-396.

        WANG Zhi-hu, ZHANG Ju-mei, BAI Li-jing, et al. Microstructure and Property of Composite Coatings on AZ91 Mg-Alloy Prepared by Micro-Arc Oxidation and Electroless Cu-Layer[J]. Journal of Chinese Society for Corrosion and Protection, 2018, 38(4): 391-396.

        [3] 李巖, 章晴云, 盧小鵬, 等. 微弧氧化工藝參數(shù)對(duì)鎂合金表面水滑石復(fù)合膜層耐蝕性的影響[J]. 表面技術(shù), 2021, 50(8): 327-336.

        LI Yan, ZHANG Qing-yun, LU Xiao-peng, et al. Effect of Process Parameters on Corrosion Resistance of MAO/ LDH Composite Coatings[J]. Surface Technology, 2021, 50(8): 327-336.

        [4] WANG Zhi-hu, ZHANG Ju-mei, LI Yan, et al. Corrosion Resistance Enhancement of Micro-Arc Oxidation Ceramic Layer by Mg-Al-Co Layered Double Hydroxide Coating[J]. Transactions of the Indian Ceramic Society, 2020, 79(2): 59-66.

        [5] 任魏巍, 梁思琰, 符殿寶, 等. 鋁合金PEO涂層表面原位制備Mg-Al LDH膜及其耐蝕性能研究[J]. 表面技術(shù), 2020, 49(4): 254-262.

        REN Wei-wei, LIANG Si-yan, FU Dian-bao, et al. In-Situ Preparation of Mg-Al LDH/PEO Film on Aluminum Alloy PEO Coatings and Its Corrosion Resistance[J]. Surface Technology, 2020, 49(4): 254-262.

        [6] YAO Qing-song, LI Zhong-chao, QIU Zai-meng, et al. Corrosion Resistance of Mg(OH)2/Mg-Al-Layered Double Hydroxide Coatings on Magnesium Alloy AZ31: Influ-ence of Hydrolysis Degree of Silane[J]. Rare Metals, 2019, 38(7): 629-641.

        [7] 孫俊麗, 李思遠(yuǎn), 許恒旭, 等. 鎂合金表面緩蝕劑插層LDHs涂層自愈合性能的研究[J]. 稀有金屬材料與工程, 2020, 49(12): 4236-4245.

        SUN Jun-li, LI Si-yuan, XU Heng-xu, et al. Self-Healing Properties of Corrosion Inhibitor Intercalated LDHS Film on Magnesium Alloy Surface[J]. Rare Metal Materials and Engineering, 2020, 49(12): 4236-4245.

        [8] CHEN Jun-feng, LIN Wen-xin, LIANG Shi-yan, et al. Effect of Alloy Cations on Corrosion Resistance of LDH/ MAO Coating on Magnesium Alloy[J]. Applied Surface Science, 2019, 463: 535-544.

        [9] GUO Lian, WU Wei, ZHOU Yong-feng, et al. Layered Double Hydroxide Coatings on Magnesium Alloys: A Review[J]. Journal of Materials Science & Technology, 2018, 34(9): 1455-1466.

        [10] ZHANG Gen, WU Liang, TANG Ai-tao, et al. Growth Behavior of MgAl-Layered Double Hydroxide Films by Conversion of Anodic Films on Magnesium Alloy AZ31 and Their Corrosion Protection[J]. Applied Surface Science, 2018, 456: 419-429.

        [11] HOU Li-feng, LI Yu-lin, SUN Jun-li, et al. Enhancement Corrosion Resistance of MgAl Layered Double Hydro-xides Films by Anion-Exchange Mechanism on Magn-esium Alloys[J]. Applied Surface Science, 2019, 487: 101-108.

        [12] WANG Zhi-hu, ZHANG Ju-mei, LI Yan, et al. Enhanced Corrosion Resistance of Micro-Arc Oxidation Coated Magnesium Alloy by Superhydrophobic Mg-Al Layered Double Hydroxide Coating[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(10): 2066-2077.

        [13] 許恒旭, 孫俊麗, 李思遠(yuǎn), 等. 水熱反應(yīng)溫度對(duì)AZ31鎂合金CaAl-LDH膜層結(jié)構(gòu)及耐蝕性的影響[J]. 中國(guó)有色金屬學(xué)報(bào), 2021, 31(2): 298-309.

        XU Heng-xu, SUN Jun-li, LI Si-yuan, et al. Effect of Hydrothermal Reaction Temperature on Structure and Corrosion Resistance of CaAl-LDH Film on AZ31 Magnesium Alloy[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(2): 298-309.

        [14] ZHANG Fen, LIU Zhen-guo, ZENG Rong-chang, et al. Corrosion Resistance of Mg-Al-LDH Coating on Magne--sium Alloy AZ31[J]. Surface and Coatings Technology, 2014, 258: 1152-1158.

        [15] WU Liang, PAN Fu-sheng, LIU Yuan-huan, et al. Influ-ence of pH on the Growth Behaviour of Mg-Al LDH Films[J]. Surface Engineering, 2018, 34(9): 674-681.

        [16] WANG Xin, JING Chuan, CHEN Yu-xiang, et al. Active Corrosion Protection of Super-Hydrophobic Corrosion Inhibitor Intercalated Mg-Al Layered Double Hydroxide Coating on AZ31 Magnesium Alloy[J]. Journal of Magnesium and Alloys, 2020(1): 291-300.

        [17] 張菊梅, 段鑫, 王凱, 等. 水熱反應(yīng)溫度對(duì)LA103Z鎂鋰合金表面MAO/LDH復(fù)合膜層微觀組織及耐蝕性的影響[J]. 表面技術(shù), 2021, 50(5): 261-268, 280.

        ZHANG Ju-mei, DUAN Xin, WANG Kai, et al. Effect of Hydrothermal Temperature on Microstructure and Corrosion Behavior of MAO/LDH Composite Coatings on LA103Z Mg-Li Alloy[J]. Surface Technology, 2021, 50(5): 261-268, 280.

        [18] ZHANG Ju-mei, ZHANG Yang, WANG Kai, et al. The Influence of Holding Time on Morphologies and Elect-rochemical Properties of MAO/LDH Composite Film on LA103Z Mg-Li Alloy[J]. Transactions of the Indian Ceramic Society, 2020, 79(3): 166-171.

        [19] ZHANG Ju-mei, WANG Kai, DUAN Xin, et al. A Novel Mg-Al-Co LDH/MAO Composite Films on LA103Z Magnesium-Lithium Alloy and Its Active Anti-Corrosion Performance[J]. Transactions of the Indian Ceramic Society, 2021, 80(4): 251-257.

        [20] QIU Zai-meng, ZHANG Fen, CHU Jun-tong, et al. Corrosion Resistance and Hydrophobicity of Myristic Acid Modified Mg-Al LDH/Mg(OH)2Steam Coating on Magnesium Alloy AZ31[J]. Frontiers of Materials Science, 2020, 14(1): 96-107.

        [21] ZHANG Ju-mei, WANG Kai, DUAN Xin, et al. Effect of Hydrothermal Treatment Time on Microstructure and Corrosion Behavior of Micro-Arc Oxidation/Layered Double Hydroxide Composite Coatings on LA103Z Mg-Li Alloy in 3.5wt.% NaCl Solution[J]. Journal of Materials Engineering and Performance, 2020, 29(6): 4032-4039.

        [22] 王志虎, 張菊梅, 白力靜, 等. AZ31鎂合金微弧氧化陶瓷層表面Mg(OH)2膜層的制備及耐蝕性[J]. 無機(jī)材料學(xué)報(bào), 2020, 35(6): 709-716.

        WANG Zhi-hu, ZHANG Ju-mei, BAI Li-jing, et al. Mg(OH)2Film on Micro-Arc Oxidation Ceramic Coating of AZ31 Magnesium Alloy: Preparation and Corrosion Resistance[J]. Journal of Inorganic Materials, 2020, 35(6): 709-716.

        [23] 馬立民, 侯凱明, 楊志剛, 等. 不同陰離子插層雙金屬氫氧化物的制備及摩擦學(xué)性能研究[J]. 摩擦學(xué)學(xué)報(bào), 2017, 37(2): 192-198.

        MA Li-min, HOU Kai-ming, YANG Zhi-gang, et al. Synthesis of Various Co-Al LDH Interlayered with Different Anions and Their Tribological Properties as Oil Additive[J]. Tribology, 2017, 37(2): 192-198.

        [24] 沈倩倩, 向莉, 張瑜, 等. 復(fù)合表面處理改善304不銹鋼的微觀結(jié)構(gòu)和耐磨性[J]. 表面技術(shù), 2021, 50(5): 208-215.

        SHEN Qian-qian, XIANG Li, ZHANG Yu, et al. Microstructure and Wear Resistance of 304 Austenitic Stainless Steel Improved by Duplex Surface Treatment[J]. Surface Technology, 2021, 50(5): 208-215.

        [25] ZHANG Ju-mei, ZHANG Yang, WANG Kai, et al. Morphology and Corrosion Resistance of MAO/Mg-Al LDH Composite Film Obtained on LA103Z Mg-Li Alloy at Different Temperatures[J]. Transactions of the Indian Ceramic Society, 2021, 80(1): 6-11.

        [26] ZENG Rong-chang, LIU Zhen-guo, ZHANG Fen, et al. Corrosion Resistance of In-Situ Mg-Al Hydrotalcite Conversion Film on AZ31 Magnesium Alloy by One-Step Formation[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(6): 1917-1925.

        [27] ZHANG Ju-mei, DUAN Xin, HOU An-rong, et al. In Situ Preparation of Mg-Al-Co Layered Double Hydroxides on Microarc Oxidation Ceramic Coating of LA103Z Magne-sium-Lithium Alloy for Enhanced Corrosion Resistance[J]. Journal of Materials Engineering and Performance, 2021, 30(11): 8490-8499.

        [28] QIU Zai-meng, ZENG Rong-chang, ZHANG Fen, et al. Corrosion Resistance of Mg–Al LDH/Mg(OH)2/Silane–Ce Hybrid Coating on Magnesium Alloy AZ31[J]. Transa-ctions of Nonferrous Metals Society of China, 2020, 30(11): 2967-2979.

        [29] 許肖, 梁文萍, 繆強(qiáng), 等. ZrN改性層對(duì)TA18鈦合金摩擦磨損性能的影響[J]. 表面技術(shù), 2021, 50(5): 133-140.

        XU Xiao, LIANG Wen-ping, MIAO Qiang, et al. Effect of ZrN Modified Layer on Friction and Wear Properties of TA18 Titanium Alloy[J]. Surface Technology, 2021, 50(5): 133-140.

        [30] 朱阮利, 張津, 高帥, 等. SiO2對(duì)鎂合金陰極電泳涂層耐磨性的影響[J]. 表面技術(shù), 2015, 44(7): 27-33.

        ZHU Ruan-li, ZHANG Jin, GAO Shuai, et al. Effect of SiO2on the Abrasion Resistance of E-Coatings on Magn-esium Alloy[J]. Surface Technology, 2015, 44(7): 27-33.

        [31] 欒中岳, 白志民, 宋學(xué)禮, 等. Mg-Al類水滑石的制備及摩擦性能[J]. 硅酸鹽學(xué)報(bào), 2013, 41(5): 679-684.

        LUAN Zhong-yue, BAI Zhi-min, SONG Xue-li, et al. Preparation and Tribological Properties of Mg-Al Hydrotalcite-Like Compounds[J]. Journal of the Chinese Ceramic Society, 2013, 41(5): 679-684.

        [32] 王曉波, 白志民, 賀智勇, 等. 鎂-鋁類水滑石的摩擦性能[J]. 硅酸鹽學(xué)報(bào), 2014, 42(5): 688-692.

        WANG Xiao-bo, BAI Zhi-min, HE Zhi-yong, et al. Friction Performances of Magnesium-Aluminium Layered Double Hydroxide[J]. Journal of the Chinese Ceramic Society, 2014, 42(5): 688-692.

        Corrosion and Wear Resistance of Mg-Al LDH Coatings on LA43M Magnesium Lithium Alloy by Hydrothermal Method

        1,1,1,1,2,1,1

        (1. School of Materials Science and Engineering, Xian University of Science & Technology, Xi'an 710054, China; 2.State Grid Shannxi Electric Power Research Institute, Xi'an 710054, China)

        It is an advanced surface treatment technology by in-situ synthesis of Mg-Al Layered double hydroxide (LDH), which can improve surface properties without changing the matrix material, such as corrosion resistance, wear resistance, hydrophobic performance and other properties. Due to the active chemical properties of the magnesium alloy matrix and their low standard potential and poor corrosion resistance, which seriously limits its wide application and development. How to improve anticorrosion of magnesium alloys have attracted considerable attention. This article studies the corrosion resistance and wear corrosion of LDH coatings on surface of LA43M Mg-Li alloy.

        The LA43M Mg-Li alloy was divided into 25 mm×25 mm×3 mm thin slices as substrate.At room temperature (25 ℃), 0.05 mol/L Al (NO3)3·9H2O (AR) was prepared in 40 mL deionized water, and 0.01 mol/L NaOH (AR) was added to adjust the pH of the solution, keep it in the range of 12-13. The cleaned substrate samples and the mixed solution were transferred to a hydrothermal reactor and heated with an electric drying oven(101-0BS) at 90 ℃, and the hydrothermal time is 12, 18 and 30 h, respectively. After cooling to room temperature, the sample was removed and cleaned with alcohol and deionized water. The surface morphology, composition and phase of the coating were characterized by SEM, EDS and XRD respectively. The corrosion resistance and wear resistance of LDH coated samples were evaluated by immersion test, hydrogen evolution test, potentiodynamic polarization cures and friction and wear test.

        A well-formed LDH coating, which is uniform, strong adhesive to the substrate, was successfully prepared on the surface of LA43M Mg-Li alloy via a in-situ hydrothermal treatment. SEM results showed that after the hydrothermal reaction, fine sheet structures are formed on the surface of the alloy, and with the increase of hydrothermal time, their size and quantity increase, and their distribution become more densely. Meanwhile, the lamellar LDH nanosheet is well bonded with the substrate and its thickness gradually increased with an increase in the hydrothermal time. XRD result demonstrated that the Mg-Al LDH coating is mainly composed of LDH and Mg(OH)2nanosheets. The experiments of immersion and hydrogen analysis showed that the corrosion resistance of LDH coatings rank as LDH-30 h>LDH-18 h>LDH-12 h>LA43M. After 8 days corrosion in simulated seawater 3.5wt.% NaCl solution, LA43M substrate were corroded into holes, with cracks and pitting corrosion. However, LDH coated samples had light corrosion, only some of them had pitting corrosion and microcracks. The potentiodynamic polarization cures of the film coated at 30 h exhibited excellent corrosion resistance. Compared with the substrate, its self-corrosion potential increased by 143.7 mV, and its corrosion current density decreased by about two orders of magnitude. The friction and wear test results showed that the substrate has the largest friction coefficient and the wear marks were deep and wide, and its wear mechanism is typical abrasive wear. while the friction coefficients of LDH coating were obviously smaller than the substrate, and the wear marks were shallow and narrow.

        The Mg-Al LDH coating exhibited an improved corrosion resistance, even after immersion in 3.5wt.% NaCl solution for 8 days, showing good corrosion resistance and durability. Furthermore, anti-corrosion and anti-wear protection mechanism of Mg-Al LDH layer was investigated and proposed. The corrosion protection ability of LDH coatings may be due to barrier protection, ion-exchange, competitive adsorption for chloride and self-healing property. Besides, LDH coating is strong adhesive to the substrate and stable chemical properties are also an important reason for improving corrosion resistance. On the other hand, LDH could significantly reduce the friction coefficient and wear of Mg-Li alloy substrate. The anti-wear mechanism of LDH could be described as follows: It contains a large number of active groups (such as hydroxyl, etc.), can effectively cover the rubbing pair, shear slip occurs between layers, thereby reducing the friction coefficient. In addition, micron-nano particles acted as lubricant to reduce the coefficient of friction and wear. All in all, this method is effective to improve the corrosion resistance and wear resistance of Mg-Li alloys, which is simple, cost-effective and eco-friend.

        magnesium lithium alloy; hydrothermal method; LDH; corrosion resistance; wear resistance

        TG174.4;TH117

        A

        1001-3660(2022)11-0318-10

        10.16490/j.cnki.issn.1001-3660.2022.11.030

        2021–09–18;

        2022–01–28

        2021-09-18;

        2022-01-28

        陜西省教育廳專項(xiàng)科研計(jì)劃項(xiàng)目(14JK1465);2020年陜西省大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃項(xiàng)目(S202010704129)

        Shaanxi Provincial Education Department (14JK1465); College Students' Innovation and Entrepreneurship Training Program of Shaanxi Province (S202010704129)

        張菊梅(1978—),女,博士,副教授,主要研究方向?yàn)檩p合金表面腐蝕與防護(hù)、表面工程等。

        ZHANG Ju-mei (1978-), Female, Doctor, Associate professor, Research focus:corrosion and protection of light alloy, surface engineering, etc.

        張菊梅, 候安榮, 李嘉誠(chéng), 等. LA43M鎂鋰合金表面水熱合成Mg-Al LDH膜層的耐腐蝕及磨損性能[J]. 表面技術(shù), 2022, 51(11): 318-327.

        ZHANG Ju-mei, HOU An-rong, LI Jia-cheng, et al. Corrosion and Wear Resistance of Mg-Al LDH Coatings on LA43M Magnesium Lithium Alloy by Hydrothermal Method[J]. Surface Technology, 2022, 51(11): 318-327.

        責(zé)任編輯:萬長(zhǎng)清

        猜你喜歡
        水熱耐蝕性基體
        金剛石圓鋸片基體高溫快速回火技術(shù)的探索
        石材(2022年3期)2022-06-01 06:23:54
        溝口雄三的中國(guó)社會(huì)主義歷史基體論述評(píng)
        原道(2022年2期)2022-02-17 00:59:12
        鈮-鋯基體中痕量釤、銪、釓、鏑的連續(xù)離心分離技術(shù)
        鋼基體上鍍鎳層的表面質(zhì)量研究
        磷對(duì)鋅-鎳合金耐蝕性的影響
        AZ31B鎂合金復(fù)合鍍鎳層的制備及其耐蝕性研究
        水熱還是空氣熱?
        超級(jí)奧氏體不銹鋼254SMo焊接接頭耐蝕性能
        焊接(2016年9期)2016-02-27 13:05:20
        簡(jiǎn)述ZSM-5分子篩水熱合成工藝
        一維Bi2Fe4O9納米棒陣列的無模板水熱合成
        国产精品极品美女自在线观看免费| 日韩精品中文字幕综合| 亚洲男人的天堂色偷偷| 国产成人综合日韩精品无| 视频一区视频二区亚洲| 丁香五月缴情在线| 男女车车的车车网站w98免费| 国产一区二区不卡老阿姨| 在线天堂中文一区二区三区| 亚洲午夜久久久精品国产| 亚洲精品成人久久av| 青青草亚洲视频社区在线播放观看 | 亚洲精品无码久久久久牙蜜区| 亚洲综合网在线观看首页| 国产小屁孩cao大人免费视频| 中文字幕一区二区三区亚洲 | 国产高清亚洲精品视频| 精品国产精品三级在线专区| 正在播放国产多p交换视频| 热99re久久精品这里都是免费| 国产不卡一区二区av| 中文字幕女优av在线| 欧洲熟妇色xxxx欧美老妇多毛 | 东北寡妇特级毛片免费| 99精品久久久中文字幕| 亚洲天堂av高清在线| 国产成年人毛片在线99| 亚洲av片一区二区三区| 国产女人精品视频国产灰线 | 麻豆一区二区三区蜜桃免费| 日韩www视频| 肉丝高跟国产精品啪啪| 久久精品中文字幕女同免费| 亚洲av之男人的天堂网站| 永久免费看免费无码视频| 国产av一区二区三区天美| 西西午夜无码大胆啪啪国模| 漂亮人妻被黑人久久精品| 蜜桃视频在线免费观看完整版| 日本精品一区二区三区二人码| 真实国产老熟女粗口对白|