谷亞嘯,江靜華,謝秋媛,馬愛斌,2,高正
In合金化及固溶處理對(duì)Mg-6Al-1Zn陽極材料組織和電化學(xué)性能的影響
谷亞嘯1,江靜華1,謝秋媛1,馬愛斌1,2,高正1
(1.河海大學(xué) 力學(xué)與材料學(xué)院,南京 211100;2.宿遷市河海大學(xué)研究院,江蘇 宿遷 223800)
研究合金化及后續(xù)熱處理下的鎂陽極電化學(xué)性能,開發(fā)出一種新型鎂合金陽極材料。利用熔煉法制備Mg-6%Al-1%Zn-0.5%In(質(zhì)量分?jǐn)?shù))并做海水激活電池陽極材料,采用光學(xué)顯微鏡(OM)、掃描電鏡(SEM)、X射線衍射(XRD)和一系列電化學(xué)測(cè)試方法研究在3.5%NaCl溶液中In元素的添加和后續(xù)固溶處理對(duì)Mg-6%Al-1%Zn(AZ61)合金顯微組織及其電化學(xué)性能的影響。合金元素In的添加及后續(xù)熱處理可提升鎂陽極的放電活性和利用效率。AZ61+0.5%In合金經(jīng)420 ℃固溶16 h后,在10 mA/cm2和50 mA/cm2下有更負(fù)的平均放電電位,分別為?1.545 V(vs. SHE)和?1.229 V(vs. SHE),利用效率在2種電流密度下分別達(dá)56.2%與59.3%。向AZ61合金中加入0.5%In,其會(huì)與Al存在競(jìng)爭(zhēng)溶解機(jī)制,促進(jìn)第二相Mg17Al12的生成。不連續(xù)分布的第二相和In自身的溶解-再沉積作用破壞了腐蝕產(chǎn)物膜的連續(xù)性,大幅提升了AZ61的放電活性。經(jīng)420 ℃固溶處理16 h后,可在不增大晶粒尺寸的前提下使得第二相Mg17Al12基本溶入基體。此時(shí)腐蝕產(chǎn)物膜的穩(wěn)定性進(jìn)一步降低,合金成分更均勻,鎂陽極的放電活性也得以提升。
鎂合金陽極;固溶處理;合金化;放電活性;第二相
近年來隨著海洋資源開發(fā)的迅速發(fā)展,各種海下設(shè)備如魚雷、自主潛水器及水下探測(cè)器等需求也日益增大[1-2]。鎂因其低密度(1.74 g/cm3)、高理論比容量(2.2 Ah/g)和負(fù)電極電位(?2.37 V,vs. SHE),可用作較為理想的化學(xué)電源負(fù)極材料[3-5]。然而,鎂陽極在使用過程中仍存在陽極極化嚴(yán)重、腐蝕產(chǎn)物不易脫落、陽極利用率低等問題,限制了其進(jìn)一步的發(fā)展和應(yīng)用[6-8]。研究表明,添加適量的活性元素、改善熱處理工藝可有效解決此類問題。
Al、Hg、Sn、Ga、Zn、In等是鎂陽極中常用的活性元素[9]。Al與鎂會(huì)形成弱陰極β-Mg17Al12相。當(dāng)β相含量足夠高時(shí),其能與α-Mg基體耦合成具有一定保護(hù)作用的表面抗蝕性膜,提高鎂陽極的耐蝕性;但當(dāng)β-Mg17Al12相體積分?jǐn)?shù)少且在晶界不連續(xù)分布時(shí),則主要作為陰極加速了α-Mg的腐蝕[4,10-11]。Zn會(huì)在合金凝固過程中產(chǎn)生成分過冷,破壞平界面,形成樹枝晶,且二次枝晶會(huì)隨著Zn元素的增加而增多,使得枝晶間距減小,從而起到細(xì)化合金晶粒的作用[12]。Ga和Hg元素在鎂基體中可發(fā)揮溶解-再沉積作用,破壞鈍化膜的連續(xù)性,降低鎂的陽極極化,使鎂陽極處于活性溶解態(tài)[13]。當(dāng)合金中存在Pb元素時(shí),溶解的Pb2+在放電時(shí)可以容易地以氧化物形式沉積到鎂表面,當(dāng)與Al共同工作時(shí)還可促進(jìn)Al3+以Al(OH)3形式沉積,并以Al(OH)3·2Mg(OH)2形式剝落腐蝕產(chǎn)物[14],從而維持放電活性和放電電壓。雖然添加Hg、Ga、Pb元素的合金陽極放電性能較優(yōu),但除了成本偏高之外,這些重金屬有毒元素也不適合環(huán)境友好的目標(biāo),逐漸被民用領(lǐng)域所淘汰[15]。In一直被認(rèn)為是激活A(yù)l陽極的合適元素。最近有關(guān)其在提升Mg陽極電化學(xué)性能方面的報(bào)道也有所涉及。Li等[16]報(bào)道在AZ63中加入In可通過產(chǎn)生保護(hù)性更弱的腐蝕產(chǎn)物來減緩電位遲滯現(xiàn)象并促進(jìn)Mg的溶解。更為重要的是,In在我國有著世界第一存儲(chǔ)量,更是增加了其廣闊的運(yùn)用前景。
本文擬結(jié)合In合金化和固溶處理實(shí)現(xiàn)Mg-6%Al- 1%Zn(即AZ61)合金陽極材料電化學(xué)性能的提升。首先利用熔煉法制備出Mg-6%Al-1%Zn-0.5%In(簡(jiǎn)寫為AZI)合金,進(jìn)而結(jié)合顯微組織表征和電化學(xué)分析技術(shù)研究固溶處理對(duì)AZI合金陽極材料綜合電化學(xué)性能的影響,旨在為進(jìn)一步優(yōu)化大功率海水激活電池用鎂合金陽極的設(shè)計(jì)提供指導(dǎo)意義。
試驗(yàn)合金AZ61鑄錠在720 ℃電阻爐中、CO2和SF6的保護(hù)氣氛下熔煉,熔化后加入預(yù)先稱好的0.5%In,攪拌5 min,并靜置20 min。將熔融態(tài)的合金倒入預(yù)熱到220 ℃的鋼模(30 mm×50 mm)中,冷卻到室溫。將鑄態(tài)AZ61+0.5%In分為兩部分,其中一部分經(jīng)固溶處理(420 ℃,16 h+水淬)。采用電感耦合等離子體原子發(fā)射光譜儀分析In合金化前后的鑄態(tài)合金成分,分別為Mg-5.8%Al-0.95%Zn-0.2%Mn和Mg-6.1%Al-0.93%Zn-0.54%In-0.17%Mn。為方便起見,鑄態(tài)含In合金命名為AZI,固溶態(tài)含In合金則命名為AZIT。
將試樣用金相砂紙打磨至2000號(hào),拋光成鏡面,并用苦味酸(1 ml乙酸+0.42 g苦味酸+7 ml乙醇+ 1 ml蒸餾水)腐蝕,在OLYMPUS-BX51M型顯微鏡下觀察其金相形貌。采用BRUKER-D8衍射儀分析試樣的物相組成,其掃描速度為1.5 (°)/min,掃描范圍為10°~90°。用Sirion200型掃描電鏡的背散射電子圖像進(jìn)一步觀察其第二相的分布及改變。
析氫和失重測(cè)試被用來評(píng)價(jià)試樣在長時(shí)間浸泡下的腐蝕速率。樣品經(jīng)鑲嵌料密封并留出10 mm×10 mm的工作面,逐級(jí)打磨至2000號(hào)砂紙,拋光成鏡面,干燥后用精度為0.000 1 g的分析天平稱其原始質(zhì)量。將樣品置于3.5%NaCl中浸泡180 h,試驗(yàn)溫度保持25 ℃,每隔2 h記錄氫氣析出量,裝置如圖1a所示。浸泡結(jié)束后,在鉻酸(200 g/L鉻酸+10 g/L硝酸銀)中浸泡5 min清洗腐蝕產(chǎn)物,烘干后再次稱量。為保證試驗(yàn)的準(zhǔn)確性,析氫和失重試驗(yàn)重復(fù)至少3次。
圖1 浸泡測(cè)試(a)和電池測(cè)試(b)
試樣的放電表現(xiàn)和腐蝕行為采用CHI660E電化學(xué)工作站結(jié)合三電極體系進(jìn)行電化學(xué)測(cè)試,其中試樣為工作電極,飽和甘汞電極為參比電極(SCE),鉑電極為輔助電極,電解液為3.5%NaCl。動(dòng)電位極化曲線的掃描速度為1 mV/s,掃描范圍為?2.2 ~ ?1.2 V。交流阻抗測(cè)試在1 h后的開路電位下進(jìn)行,擾動(dòng)電壓為5 mV,頻率范圍為100 kHz~0.01 Hz,試驗(yàn)結(jié)果用ZSimDemo軟件進(jìn)行擬合。恒電流極化曲線分別是在50 mA/cm2放電2 h,10 mA/cm2下放電10 h,放電后腐蝕產(chǎn)物用Sirion200掃描電鏡觀察,待鉻酸清洗后再次觀察其放電形貌。放電過程中的陽極利用率采用公式(1)計(jì)算[16]。
式中:為陽極利用率;theoretical和actual分別為陽極的理論質(zhì)量損失和實(shí)際質(zhì)量損失,其中理論質(zhì)量損失根據(jù)式(2)得出。
(2)
式中:為放電電流密度,mA/cm2;為放電時(shí)間,s;為法拉第常數(shù),=96 500 C/mol;、、分別為第種合金元素的質(zhì)量分?jǐn)?shù)、化合價(jià)、原子質(zhì)量。為了數(shù)據(jù)準(zhǔn)確性,所有的測(cè)試至少重復(fù)3次。
組裝的電池系統(tǒng)用來評(píng)價(jià)鎂陽極用作海水激活電池時(shí)的放電表現(xiàn)。如圖1b所示,自制的氯化銀電極作為陰極,試樣用作陽極,兩者的面積都為1 cm2,電解液為3.5% NaCl,選用10 mA/cm2和50 mA/cm2電流密度來評(píng)價(jià)電池的電壓和能量密度。
圖2為各樣品的光學(xué)顯微組織。由圖2a可見,在AZ61中網(wǎng)狀第二相β-Mg17Al12主要沿著晶界分布,晶內(nèi)第二相較少。由圖2b可見,In元素加入后,晶粒明顯細(xì)化且第二相的數(shù)量顯著增多,根據(jù)截線法,AZ61的晶粒尺寸約為176 μm,AZI的晶粒尺寸約為116 μm。增多的第二相正是源于溶解的In對(duì)Al元素存在排斥作用,促進(jìn)Al以第二相β-Mg17Al12形式析出。由圖2c可見,經(jīng)420 ℃固溶16 h后,第二相基本溶入基體中,且晶粒并未異常長大。圖3的背散射電子圖像進(jìn)一步證實(shí)了In元素促進(jìn)了第二相的析出,固溶處理后只剩熱力學(xué)穩(wěn)定性較高的Al-Mn相存在。圖4為合金組織的XRD圖譜,可見分布于鎂基體的晶界及晶內(nèi)的第二相為Mg17Al12,依據(jù)Mg-In二元相圖,In在鎂中的固溶度可達(dá)53.2%,合金中不會(huì)存在含In相(如Mg3In相)[17],從XRD中也證實(shí)了無法檢測(cè)出。
圖2 試驗(yàn)合金的金相組織
圖3 試驗(yàn)合金的掃描電鏡背散射像
圖4 鑄態(tài)AZ61、AZI、固溶態(tài)AZIT的XRD衍射圖譜
圖5a為試樣在3.5%NaCl溶液中于開路電位下測(cè)得的電化學(xué)阻抗譜,其可以反映合金初期的耐蝕性。根據(jù)Nyquist圖可知,AZ61由在高頻率的容抗弧和在中頻及低頻的感抗組成。其中高頻的電容元件指代電極/電解液界面的雙電層,容抗弧的直徑對(duì)應(yīng)電極與溶液界面的電荷轉(zhuǎn)移電阻[18]。中頻和低頻的電感元件分別與腐蝕產(chǎn)物的去吸附和Mg+與H2O反應(yīng)有關(guān)[19-20]。值得注意的是,在阻抗譜中還出現(xiàn)了曲線擾動(dòng),則是由于點(diǎn)蝕的出現(xiàn)。AZI和AZIT在整個(gè)頻率范圍內(nèi)由2個(gè)電容元件組成。據(jù)之前的研究報(bào)道[21-22],其高頻的電容線圈與覆蓋電極表面的氧化膜有關(guān),低頻的電容線圈則與電極/電解液界面的電荷轉(zhuǎn)移相關(guān)。圖5b為合金的Bode圖及擬合曲線,由圖可知,AZI和AZIT的相位角曲線有2個(gè)峰,更清晰地說明了合金存在2個(gè)電容線圈。
圖5 試樣的電化學(xué)阻抗譜
圖6 根據(jù)電化學(xué)阻抗譜得到的等效電路
表1 擬合等效電路的電化學(xué)參數(shù)
Tab.1 Electrochemical parameters of the fitted equivalent circuits
圖7a給出了試樣在3.5%NaCl中浸泡3 600 s的開路電位曲線。由圖可知,合金化后的開路電位曲線較AZ61更加平穩(wěn),說明In元素的加入可以起到穩(wěn)定電位的作用。其次,結(jié)合表2還可得出開路電位與腐蝕電位具有一致性的規(guī)律,即AZ61>AZIT>AZI,也從熱力學(xué)的角度反映出In可以提升鎂陽極的活性。
圖7 試樣在3.5%NaCl溶液中的開路電位曲線(a)和動(dòng)電位極化曲線(b)
圖7b為試樣的動(dòng)電位極化曲線。由圖可知,極化曲線的陽極和陰極分支不具有對(duì)稱性,陽極分支和陰極分支分別與鎂合金電極表面的氧化溶解和析氫還原反應(yīng)有關(guān)[24]。腐蝕電流密度可通過陰極分支外推得出,外推范圍為較腐蝕電位負(fù)120~250 mV[25]。一般來說,鎂合金的腐蝕速率與腐蝕電位無必然聯(lián)系,但腐蝕速率的大小能依據(jù)腐蝕電流密度判斷,大的腐蝕電流密度象征著高的腐蝕速率,即較差的耐蝕性。由表2可以看到,隨著In元素的加入,合金的腐蝕電流密度從7.9mA/cm2增至40.0mA/cm2,歸因于增多的陰極性第二相與基體構(gòu)成的微觀原電池使合金的耐蝕性變差。固溶處理后,合金的腐蝕電流密度陡升至81.4mA/cm2,則是由于In元素的進(jìn)一步分布均勻,能充分發(fā)揮其溶解再沉積的作用,使得表面膜的穩(wěn)定性降低[16]。
表2 極化曲線相關(guān)電化學(xué)參數(shù)擬合結(jié)果
Tab.2 Fitting results of the investigated electrodes evaluated from polarization curves.
同時(shí)進(jìn)行的析氫和失重測(cè)試是用來評(píng)價(jià)試樣在長時(shí)間浸泡下的耐蝕性。從圖8a可直觀地發(fā)現(xiàn)析氫量隨時(shí)間呈線性關(guān)系且最終的析氫總量與質(zhì)量損失規(guī)律具有一致性。AZ61的析氫量遠(yuǎn)低于合金化后的試樣,說明合金化后的試樣在長時(shí)間浸泡后自腐蝕速率遠(yuǎn)大于鑄態(tài)AZ61,與動(dòng)電位極化和電化學(xué)阻抗譜測(cè)得的初期耐蝕性的結(jié)果相統(tǒng)一。由圖8b的失重測(cè)試可知,AZI的自腐蝕速率為(18.5±3.1)mm/a,較AZ61的(7.1±0.7)mm/a迅速增大源于In與Al競(jìng)爭(zhēng)溶解機(jī)制,呈島狀分布的第二相Mg17Al12加劇了電偶腐蝕效應(yīng),從而促進(jìn)了氫氣的大量析出。值得注意的是,AZIT的析氫量遠(yuǎn)大于AZI,這是由于固溶處理后腐蝕產(chǎn)物膜的穩(wěn)定性降低,腐蝕產(chǎn)物易脫落,浸泡過程中起不到隔離氯離子的作用,大大降低了合金的耐蝕性。
鎂陽極在一定電流密度下的放電性能可以通過相應(yīng)的電位-時(shí)間曲線反映。圖9a和圖9b分別為試樣在10 mA/cm2和50 mA/cm2電流密度下的電位-時(shí)間曲線。鎂合金陽極的放電電位是一個(gè)重要的電化學(xué)參數(shù),因?yàn)殛枠O和陰極間的電位差是電子傳遞的驅(qū)動(dòng)力,較負(fù)的陽極電極電位也象征著更強(qiáng)的放電活性。在本項(xiàng)工作中,10 mA/cm2電流密度用來測(cè)試試樣在小功率、長周期體系下的放電性能,而50 mA/cm2電流密度則用來反映試樣在大功率應(yīng)用下的放電活性。從圖9可見,電流密度為10 mA/cm2時(shí)試樣放電電位更負(fù),放電曲線也更加平穩(wěn),隨著電流密度的增大,放電電位正移,放電曲線波動(dòng)明顯。說明鎂陽極在小電流密度下具有較好的放電活性,而電流密度越大,陽極極化更為嚴(yán)重,電極放電活性也因此減弱。從圖9a和圖9b中還可發(fā)現(xiàn),鎂陽極在2種電流密度下表現(xiàn)相似的放電行為。一開始電極電位的明顯負(fù)移是由于刺激性氯離子環(huán)境導(dǎo)致鎂陽極表面氧化膜的破裂[26],隨后電極電位的上升歸因于放電過程中腐蝕產(chǎn)物在陽極表面的生成和積累,減弱了放電活性[27]。隨著放電過程的深入,電極電位達(dá)到穩(wěn)定狀態(tài),此時(shí)產(chǎn)物的積累和脫落也達(dá)到了動(dòng)態(tài)平衡[28]。
試樣在10 mA/cm2和50 mA/cm2下在3.5%NaCl溶液中的平均放電電位和陽極利用效率列于表3。由表3可知,在10 mA/cm2和50 mA/cm2下試樣放電電位的順序皆為AZIT 圖8 試樣在開路電位下的析氫測(cè)試(a)和失重測(cè)試(b) 圖9 試樣在恒定電流密度下的放電行為 表3 合金試樣在10 mA/cm2和50 mA/cm2下在3.5% NaCl溶液中的平均放電電位和陽極利用效率 Tab.3 Average discharge potential and anodic efficiency of the investigated alloys measured at 10 mA/cm2 and 50 mA/cm2 in 3.5% NaCl solution 通常來說,鎂合金陽極利用效率的高低與放電過程中金屬顆粒的脫落、自腐蝕析氫有關(guān)。圖10給出了鎂陽極放電后的腐蝕截面圖。直觀上,各鎂合金陽極在小電流密度下的塊體效應(yīng)明顯強(qiáng)于其在大電流密度下,反映了小電流密度下的塊體脫落對(duì)效率損失所占比重更大。在10 mA/cm2電流密度下,在AZ61的腐蝕截面中可見明顯的凹凸?fàn)?,說明較為劇烈的塊體效應(yīng)存在;與之對(duì)應(yīng)的AZI及AZIT腐蝕截面則較為均勻。特別是AZIT,不僅放電截面光滑,且產(chǎn)物疏松易脫落,體現(xiàn)了其均勻且充分的放電過程。在50 mA/cm2的電流密度下,各鎂合金陽極的腐蝕產(chǎn)物都已剝落,金屬顆粒脫落現(xiàn)象大為減弱,此時(shí)放電過程中的析氫對(duì)鎂陽極的效率降低占主導(dǎo)。圖11給出了各陽極在不同電流密度下的實(shí)時(shí)析氫。這里為了減輕由于脫落的塊體產(chǎn)生的氣體影響,析氫試驗(yàn)只記錄相對(duì)較短的時(shí)間,分別為10 mA/cm2下2 h,50 mA/cm2下1 h。由于負(fù)差數(shù)效應(yīng)的存在,陽極極化下的氣體析出速度遠(yuǎn)大于開路電位下。此外,不同于開路電位下的自腐蝕析氫,恒流極化下AZI的析氫速度要低于AZ61。這也與Deng的報(bào)道相一致,即銦的添加有助于抑制負(fù)差數(shù)效應(yīng)并減弱鎂陽極放電過程中的無效損耗[30]。 圖10 試樣在10 mA/cm2下放電10 h和50 mA/cm2下放電2 h的截面圖 圖11 試樣在10 mA/cm2(a)和50 mA/cm2(b)放電電流密度下的析氫曲線 試樣的放電表現(xiàn)也可由放電后的腐蝕形貌解釋。圖12a、圖12c、圖12e為鎂試樣在10 mA/cm2下放電10 h后帶有放電產(chǎn)物的微觀形貌。圖13a、圖13c、圖13e為鎂試樣在50 mA/cm2下放電2 h后帶有放電產(chǎn)物的微觀形貌。在放電過程中,積累的放電產(chǎn)物對(duì)腐蝕抗力的增加不起作用,卻會(huì)阻礙溶液與鎂基體的有效接觸,從而降低放電活性。從圖12a和圖13a可見無論在10 mA/cm2或50 mA/cm2都可在AZ61表面發(fā)現(xiàn)致密的腐蝕產(chǎn)物,而在圖12c和圖13c中可在AZI電極表面腐蝕產(chǎn)物層見到明顯的裂紋。這一現(xiàn)象也說明隨著放電反應(yīng)進(jìn)一步發(fā)生,鎂合金基體逐漸溶解,不均勻分布的第二相Mg17Al12更容易脫落,有利于破壞陽極材料表面的鈍化膜結(jié)構(gòu)。其次,溶解的In3+可通過置換反應(yīng)沉積到鎂基體表面,從而起到隔離腐蝕產(chǎn)物的作用[31]。 3Mg (s) + 2In3+(aq) = 3Mg2+(aq) + 2In (s) (3) 圖12b、圖12d、圖12f為鎂試樣在10 mA/cm2下放電10 h后去除放電產(chǎn)物后的微觀形貌。圖13b、圖13d、圖13f為鎂試樣在50 mA/cm2下放電2 h后去除放電產(chǎn)物后的微觀形貌。從圖12b和圖13b中可在放電后的AZ61陽極表面見到大量棱角清晰的腐蝕坑,說明AZ61在2種電流密度下的放電過程都經(jīng)歷了嚴(yán)重的晶體脫落,脫落的金屬顆粒不能釋放電子對(duì)外做功,導(dǎo)致陽極利用率降低[32-33]。其次AZ61放電后復(fù)雜的表面形貌也增加了產(chǎn)物剝落的難度,導(dǎo)致放電過程中電極電位的正移。反觀AZI,放電形貌光滑,合金晶界處的第二相Mg17Al12為弱陰極相,因此其在放電過程中腐蝕溶解均勻且不存在大塊的基體脫落,使其陽極效率升高。固溶態(tài)的AZIT由于成分均勻,試樣腐蝕表面較鑄態(tài)的AZI更為平坦,均勻腐蝕的程度進(jìn)一步得到提升。 圖12 試樣在10 mA/cm2下放電10 h后帶有和清除放電產(chǎn)物的腐蝕形貌 Fig.12 Corrosion morphologies of the investigated alloys with and without discharge products afterdischarging at 10 mA/cm2for 10 h 圖13 試樣在50 mA/cm2下放電2 h后帶有和清除放電產(chǎn)物的腐蝕形貌 以不同鎂陽極組裝的鎂-氯化銀電池可用來進(jìn)一步測(cè)試樣的放電表現(xiàn)。圖14展示了試樣在10 mA/cm2和50 mA/cm2電流密度下的平均電池電壓和能量密度。從圖14a可見,由于電流提升后的陽極極化和元件電阻,平均電池電壓隨著電流密度上升呈下降趨勢(shì)[34]。AZIT為陽極的電池在2種電流密度下都展示了理想的電池電壓,表明AZ61添加0.5%In,并在420 ℃固溶16 h的鎂陽極利于電池的放電表現(xiàn),這也與上述討論的AZIT擁有最強(qiáng)的放電活性一致。其次,以AZIT為陽極的能量密度在50 mA/cm2下可達(dá)49 mW/cm2,進(jìn)一步證明了其對(duì)AZ61綜合電化學(xué)性能的提升。 圖14 不同鎂陽極組裝的鎂-氯化銀的放電行為 1)向AZ61合金中加入0.5%In,其會(huì)與Al存在競(jìng)爭(zhēng)溶解機(jī)制,促進(jìn)第二相Mg17Al12的生成。不連續(xù)分布的第二相和In自身的溶解再沉積作用破壞了腐蝕產(chǎn)物膜的連續(xù)性,在恒電流密度下的陽極極化減弱,大幅提升了AZI的放電活性。 2)對(duì)鑄態(tài)AZI在420 ℃固溶16 h,在沒有增大晶粒尺寸的前提下第二相Mg17Al12基本溶入基體,In元素也進(jìn)一步分布均勻,能充分發(fā)揮其溶解再沉積的作用,使得腐蝕產(chǎn)物膜的穩(wěn)定性降低,更易脫落,合金成分更為均勻,放電活性進(jìn)一步提升,陽極利用率也較鑄態(tài)AZ61有了顯著增強(qiáng)。 3)相較于AZ61在50 mA/cm2下的峰值能量密度40.1 mW/cm2,AZIT可達(dá)49 mW/cm2,充分證明其有良好的電化學(xué)活性,較AZ61更適合用作海水激活電池的陽極材料。 [1] 劉勇, 陳洪鈞. 魚雷電池進(jìn)展[J]. 電源技術(shù), 2012, 36(3): 444-445. LIU Yong, CHEN Hong-jun. Review of Battery for Tor-pedo[J]. Chinese Journal of Power Sources, 2012, 36(3): 444-445. [2] 馮艷, 王日初, 彭超群. 海水電池用鎂陽極的研究與應(yīng)用[J]. 中國有色金屬學(xué)報(bào), 2011, 21(2): 259-268. FENG Yan, WANG Ri-chu, PENG Chao-qun. Researches and Applications of Magnesium Anode Materials in Sea-water Battery[J]. The Chinese Journal of Nonferrous Met-als, 2011, 21(2): 259-268. [3] 鄧姝皓, 易丹青, 趙麗紅, 等. 一種新型海水電池用鎂負(fù)極材料的研究[J]. 電源技術(shù), 2007, 31(5): 402-405. DENG Shu-hao, YI Dan-qing, ZHAO Li-hong, et al. Study on Mg Alloy Anode Material for Seawater Bat-tery[J]. Chinese Journal of Power Sources, 2007, 31(5): 402-405. [4] HAHN R, MAINERT J, GLAW F, et al. Sea Water Mag-nesium Fuel Cell Power Supply[J]. Journal of Power Sou-rces, 2015, 288: 26-35. [5] WANG Nai-guang, WANG Ri-chu, PENG Chao-qun, et al. Enhancement of the Discharge Performance of AP65 Magnesium Alloy Anodes by Hot Extrusion[J]. Corrosion Science, 2014, 81: 85-95. [6] THOMAS S, MEDHEKAR N V, FRANKEL G S, et al. Corrosion Mechanism and Hydrogen Evolution on Mg[J]. Current Opinion in Solid State and Materials Science, 2015, 19(2): 85-94. [7] WANG Nai-guang, WANG Ri-chu, PENG Chao-qun, et al. Effect of Hot Rolling and Subsequent Annealing on Elec-trochemical Discharge Behavior of AP65 Magnesium Alloy as Anode for Seawater Activated Battery[J]. Corro-sion Science, 2012, 64: 17-27. [8] DENG Min, WANG Lin-qian, H?CHE D, et al. Clari-fying the Decisive Factors for Utilization Efficiency of Mg Anodes for Primary Aqueous Batteries[J]. Journal of Power Sources, 2019, 441: 227201. [9] 張嘉佩. 合金元素及熱加工工藝對(duì)鎂陽極組織和性能的影響[D]. 長沙: 中南大學(xué), 2011. ZHANG Jia-pei. Effect of Alloy Elements and Hot Wor-king Process on Microstructure and Properties of Magne-sium Anode[D]. Changsha: Central South University, 2011. [10] SONG G L, ATRENS A. Corrosion Mechanisms of Mag-nesium Alloys[J]. Advanced Engineering Materials, 1999, 1(1): 11-33. [11] SONG Guang-ling, ATRENS A, WU Xian-liang, et al. Corrosion Behaviour of AZ21, AZ501 and AZ91 in Sod-ium Chloride[J]. Corrosion Science, 1998, 40(10): 1769-1791. [12] 王萍, 李建平, 郭永春, 等. Zn對(duì)Mg-Al-Pb-Zn系鎂陽極材料組織結(jié)構(gòu)及電化學(xué)性能的影響[J]. 硅酸鹽學(xué)報(bào), 2011, 39(12): 1988-1992. WANG Ping, LI Jian-ping, GUO Yong-chun, et al. Effects of Zinc on Microstructure and Electrochemistry Proper-ties of Mg-Al-Pb-Zn Magnesium Alloys Anode Mate-rials[J]. Journal of the Chinese Ceramic Society, 2011, 39(12): 1988-1992. [13] FENG Yan, WANG Ri-chu, YU Kun, et al. Activation of Mg-Hg Anodes by Ga in NaCl Solution[J]. Journal of Alloys and Compounds, 2009, 473(1-2): 215-219. [14] WANG Nai-guang, WANG Ri-chu, PENG Chao-qun, et al. Influence of Aluminium and Lead on Activation of Mag-nesium as Anode[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(8): 1403-1411. [15] PAPA S, BARTOLI G, PELLEGRINO A, et al. Microbial Activities and Trace Element Contents in an Urban Soil[J]. Environmental Monitoring and Assessment, 2010, 165(1): 193-203. [16] LI Jia-run, ZHANG Bin-bin, WEI Qin-yi, et al. Electroc-hemical Behavior of Mg-Al-Zn-in Alloy as Anode Mate-rials in 3.5 WT.% NaCl Solution[J]. Electrochimica Acta, 2017, 238: 156-167. [17] 金和喜. 合金元素及固溶處理對(duì)AP65鎂陽極組織和性能的影響[D]. 長沙: 中南大學(xué), 2012. JIN He-xi. Effect of Alloying Elements and Solution Tre-atment on Microstructure and Properties of AP65 Magne-sium Anode[D]. Changsha: Central South University, 2012. [18] WANG Nai-guang, WANG Ri-chu, FENG Yan, et al. Dis-charge and Corrosion Behaviour of Mg-Li-Al-Ce-Y-Zn Alloy as the Anode for Mg-Air Battery[J]. Corrosion Sci-ence, 2016, 112: 13-24. [19] ZHANG Tao, MENG Guo-zhe, SHAO Ya-wei, et al. Cor-rosion of Hot Extrusion AZ91 Magnesium Alloy. Part II: Effect of Rare Earth Element Neodymium (Nd) on the Corrosion Behavior of Extruded Alloy[J]. Corrosion Scie-nce, 2011, 53(9): 2934-2942. [20] CHEN Jian, WANG Jian-qiu, HAN En-hou, et al. AC Impedance Spectroscopy Study of the Corrosion Behavior of an AZ91 Magnesium Alloy in 0.1 M Sodium Sulfate Solution[J]. Electrochimica Acta, 2007, 52(9): 3299-3309. [21] YENNY C, DEXIN Zhao, LUCAS N, et al. 動(dòng)態(tài)再結(jié)晶和應(yīng)變誘導(dǎo)動(dòng)態(tài)沉淀對(duì)部分再結(jié)晶MG-9Al-LZN合金腐蝕行為的影響[J]. 鎂合金學(xué)報(bào)(英文), 2020(4): 1016- 1037. YENNY C, DEXIN Zhao, LUCAS N, et al. Effects of Dynamic Recrystallization and Strain-Induced Dynamic Precipitation on the Corrosion Behavior of Partially Recr-ystallized Mg-9Al-lZn Alloys[J]. Journal of Magnesium and Alloys, 2020(4): 1016-1037. [22] LIU W, CAO F, CHEN A, et al. Effect of Chloride Ion Concentration on Electrochemical Behavior and Corro-sion Product of AM60 Magnesium Alloy in Aqueous Solutions[J]. CORROSION, 2012, 68(4): 45001-1. [23] 馮艷. Mg-Hg-Ga陽極材料合金設(shè)計(jì)及性能優(yōu)化[D]. 長沙: 中南大學(xué), 2009. FENG Yan. Alloy Design and Properties Optimization of Mg-Hg-Ga Anode Materials[D]. Changsha: Central South University, 2009. [24] TAMAR Y, MANDLER D. Corrosion Inhibition of Mag-nesium by Combined Zirconia Silica Sol-Gel Films[J]. Electrochimica Acta, 2008, 53(16): 5118-5127. [25] FENG Yan, XIONG Wen-hui, ZHANG Jun-chang, et al. Electrochemical Discharge Performance of the MgAlPbCeY Alloy as the Anode for Mg air Batteries[J]. Journal of Materials Chemistry A, 2016, 4(22): 8658-8668. [26] ZHANG Chun-hong, HUANG Xiao-mei, ZHANG Mi-lin, et al. Electrochemical Characterization of the Corrosion of a Mg-Li Alloy[J]. Materials Letters, 2008, 62(14): 2177-2180. [27] YUASA M, HUANG Xin-sheng, SUZUKI K, et al. Disc-harge Properties of Mg-Al-Mn-Ca and Mg-Al-Mn Alloys as Anode Materials for Primary Magnesium-Air Batte-ries[J]. Journal of Power Sources, 2015, 297: 449-456. [28] SURESH KANNAN A R, MURALIDHARAN S, SARANGAPANI K B, et al. Corrosion and Anodic Beha-viour of Zinc and Its Ternary Alloys in Alkaline Battery Electrolytes[J]. Journal of Power Sources, 1995, 57(1-2): 93-98. [29] 胡程旺, 王日初, 彭超群, 等. 均勻化退火對(duì)Mg-6Al- 5Pb-0.6Ce鎂陽極組織和性能的影響[J]. 腐蝕與防護(hù), 2016, 37(3): 183-188. HU Cheng-wang, WANG Ri-chu, PENG Chao-qun, et al. Effect of Homogenization on Microstructure and Proper-ties of Mg-6Al-5Pb-0.6Ce Magnesium Anode[J]. Corro-sion & Protection, 2016, 37(3): 183-188. [30] DENG Min, WANG Lin-qian, H?CHE D, et al. Ca/in Micro Alloying as a Novel Strategy to Simultaneously Enhance Power and Energy Density of Primary Mg-Air Batteries from Anode Aspect[J]. Journal of Power Sou-rces, 2020, 472: 228528. [31] GORE P, FAJARDO S, BIRBILIS N, et al. Anodic Acti-vation of Mg in the Presence of In3+Ions in Dilute Sodium Chloride Solution[J]. Electrochimica Acta, 2019, 293: 199-210. [32] WEN Li, YU Kun, XIONG Han-qing, et al. Composition Optimization and Electrochemical Properties of Mg-Al- Pb-(Zn) Alloys as Anodes for Seawater Activated Bat-tery[J]. Electrochimica Acta, 2016, 194: 40-51. [33] 馮艷, 劉莉, 殷立勇, 等. 稀土元素La對(duì)Mg-6Al-5Pb鎂合金組織和腐蝕電化學(xué)行為的影響[J]. 中國有色金屬學(xué)報(bào), 2015, 25(10): 2623-2631. FENG Yan, LIU Li, YIN Li-yong, et al. Effect of Lant-hanum on Microstructure and Electrochemical Corrosion Behavior of Mg-6Al-5Pb Alloy[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(10): 2623-2631. [34] LV Yan-zhuo, LIU Min, XU Yan, et al. The Electroche-mical Behaviors of Mg-8Li-0.5Y and Mg-8Li-1Y Alloys in Sodium Chloride Solution[J]. Journal of Power Sou-rces, 2013, 239: 265-268. Effect of In and Solid Solution Treatment on Microstructure and Electrochemical Properties of Mg-6Al-1Zn Alloy Anode 1,1,1,1,2,1 (1. College of Mechanics and Materials, Hohai University, Nanjing 211100, China; 2. Suqian Institute, Hohai University, Jiangsu Suqian 223800, China) Seawater-activated battery has received tremendous attention due to the increasing demand for underwater devices. Mg alloy is one of the promising candidates for seawater-activated battery anodes due to the favorable electroc-hemical characteristics, such as a relatively negative electrode potential (?2.37 V vs. standard hydrogen electrode (SHE)), high theoretical specific capacity (2 189 mAh/g), and low density (1.74 g/cm3). However, the Mg-based anodes always exhibit severe self-discharge in the aqueous electrolyte and the generated products adhered to the anode strongly impede the active dissolution of anode materials. The intent of this work is to study the effect of indium addition and subsequent heat treatment on the electrochemical properties of magnesium anode, thus develop a novel magnesium anode material. Prepare the experimental AZI alloy by melting commercial AZ61 and pre-weighed 0.5wt.% In at 993 K in a resistance furnace. Inject the mixed atmosphere of CO2and SF6to prevent the molten metal from burning in air. Next, the molten metal is poured into a preheated mold (493 K) to remove the water in the mold, and then quenched in the water. The as-cast Mg-Al-Zn-In ingot is dimidiated, one-half experiences homogenization (420 ℃ for 16 h + water quenching) heat treatment, and then denoted as AZIT. Analyze the actual chemical composition of experimental alloy via inductively coupled plasma atomic emission spectrometry (ICP-AES) and identify the crystalline phases by an X-ray diffraction meter (XRD) using Cu Kα X-ray radiation from 10° to 90° with a scan speed of 1.5 (°)/min. Before OM and SEM observations, the samples are successively ground to 2000 girt SiC papers, followed by mechanical polishing with 1.5 μm diamond suspension, and then etched with a solution composition of 1 ml acetic acid + 0.42 g picric + 7 ml ethanol + 1 ml distilled water. Prior to conducting the electrochemical tests, the samples are encapsulated in epoxy resin expect for a 10 mm × 10 mmexposed surface. All the electrochemical tests, if not specified, are conducted at 25 ℃ with a three- electrode configuration (i.e., platinum sheet as the counter electrode, saturated calomel electrode as the reference electrode, specimen as the working electrode) in 3.5wt.% NaCl solution. Conduct the immersion test by placing the samples in 3.5wt.% NaCl for 7 days and collect the evolved hydrogen gas via a set-up of a burette combined with a funnel. Calculate the weight loss by removing the corrosion products in the mixed solution of 200 g/Lchromic acid + 10 g/L silver nitrate. Evaluate the discharge performance of samples as anodes for seawater batteries via the LANHE (CT2001A) battery testing systems. The cell voltage is measured at current densities of 10 mA/cm2and 50 mA/cm2. The novel anode material AZIT exhibits desirable discharge capability and thus is a promising candidate for seawater activated battery. Indium addition into AZ61 promotes the segregation of second phase β-Mg17Al12via competitive disso-lution mechanism with Al in Mg matrix. The discontinuous distribution of β-Mg17Al12phase and dissolving- repre-cipitation mechanism aroused by indium addition can destroy the continuity of corrosion product film, thus significantly improve the discharge properties of AZ61. After homogenization treatment at 420 ℃ for 16 h, the second phase Mg17Al12dissolves into magnesium matrix without increasing the grain size. At this time, the stability of corrosion product film is further reduced and alloy composition is more uniform, which lead to an improvement of the activity of magnesium anode. AZIT can provide anodic efficiencies of 56.2% and 59.3% at current densities of 10 mA/cm2and 50 mA/cm2, respectively. Furthermore, the peak power density of AZIT can reach 49 mW/cm2discharged at 50 mA/cm2. magnesium anode; solid solution; alloying; discharge activity; second phase TG172 A 1001-3660(2022)11-0412-11 10.16490/j.cnki.issn.1001-3660.2022.11.039 2021–09–24; 2022–01–23 2021-09-24; 2022-01-23 國家自然科學(xué)基金(51979099);江蘇省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(BE2017148);江蘇省自然科學(xué)基金(BK20191303) The Natural Science Foundation of China (51979099); Primary Research & Development Project of Jiangsu Province (BE2017148); Natural Science Foundation of Jiangsu Province (BK20191303) 谷亞嘯(1996—),男,碩士生,主要研究方向?yàn)殒V陽極在海水激活電池中的應(yīng)用。 GU Ya-xiao (1996-), Male, Postgraduate, Research focus: magnesium anode used in seawater-activated battery. 江靜華(1971—),女,博士,教授,主要研究方向?yàn)楦咝阅芙饘俳Y(jié)構(gòu)材料、特種功能材料、金屬表面強(qiáng)韌化與耐蝕化等。 JIANG Jing-hua (1971-), Female, Doctor, Professor, Research focus: high-performance metal structure materials, special functional materials, strengthening and corrosion resistance of metal surface. 谷亞嘯, 江靜華, 謝秋媛, 等. In合金化及固溶處理對(duì)Mg-6Al-1Zn陽極材料組織和電化學(xué)性能的影響[J]. 表面技術(shù), 2022, 51(11): 412-422. GU Ya-xiao, JIANG Jing-hua, XIE Qiu-yuan, et al. Effect of In and Solid Solution Treatment on Microstructure and Electrochemical Properties of Mg-6Al-1Zn Alloy Anode[J]. Surface Technology, 2022, 51(11): 412-422. 責(zé)任編輯:萬長清2.6 鎂-氯化銀電池特性
3 結(jié)論