亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        羅爾定理中輔助函數(shù)的構(gòu)造法

        2022-12-01 01:09:14郭元春陳思源馬曉燕
        科技風(fēng) 2022年32期

        郭元春 陳思源 馬曉燕

        1.西安思源學(xué)院基礎(chǔ)部 陜西西安 710038;2.西安思源學(xué)院高等教育營(yíng)銷(xiāo)研究中心 陜西西安 710038

        微分中值定理在微積分學(xué)中占有十分重要的地位,是用函數(shù)局部性質(zhì)推斷整體性質(zhì)的有力工具。羅爾定理是微分中值定理中最為基礎(chǔ)的一個(gè),定理內(nèi)容:若函數(shù)f(x)滿足在閉區(qū)間[a,b]上連續(xù),在開(kāi)區(qū)間(a,b)內(nèi)可導(dǎo),且f(a)=f(b),則存在某個(gè)中值ξ∈(a,b),使得等式f′(ξ)=0。利用羅爾定理證明中值等式問(wèn)題的難點(diǎn)就是輔助函數(shù)的構(gòu)造。劉文武、張軍、肖俊等人[1-3]采用逆向思維法對(duì)該類(lèi)問(wèn)題做了相應(yīng)的研究。逆向思維法是從結(jié)果出發(fā)分析中值等式的特點(diǎn),選擇適當(dāng)?shù)姆椒?gòu)造輔助函數(shù)。

        微分中值等式問(wèn)題常見(jiàn)的形式是:已知函數(shù)f(x)滿足在閉區(qū)間[a,b]上連續(xù),在開(kāi)區(qū)間(a,b)內(nèi)可導(dǎo),且f(x)滿足某些附加條件,求證存在某個(gè)中值ξ∈(a,b),使得等式F(ξ,f(ξ),f′(ξ))=0。該等式左邊看作是某個(gè)函數(shù)g(x)在點(diǎn)ξ處的導(dǎo)數(shù),即g′(ξ)=0。由拉格朗日中值定理可知,g(x)=C是滿足該等式的最簡(jiǎn)單的函數(shù)。顯然這個(gè)隱函數(shù)是原微分方程的通解,因此,在微分中值問(wèn)題中,一般把通解中的積分常數(shù)令為輔助函數(shù)。本文采用逆向思維法,對(duì)微分中值問(wèn)題中構(gòu)造輔助函數(shù)的常見(jiàn)題型作歸納和總結(jié)。

        一、利用分離變量法構(gòu)造輔助函數(shù)

        (一)證明的等式是關(guān)于ξ,f(ξ),f′(ξ)的微分方程

        例1[4]:設(shè)函數(shù)f(x)在閉區(qū)間[0,π]上連續(xù),在開(kāi)區(qū)間(0,π)內(nèi)可導(dǎo),證明:在開(kāi)區(qū)間(0,π)內(nèi)至少存在一點(diǎn)ξ,使得f′(ξ)sinξ=-f(ξ)cosξ。

        證明:令F(x)=f(x)sinx,顯然,F(xiàn)(x)在閉區(qū)間[0,π]上連續(xù),在開(kāi)區(qū)間(0,π)內(nèi)可導(dǎo),且F(0)=F(π),故由羅爾定理知,在開(kāi)區(qū)間(0,π)內(nèi)至少存在一點(diǎn)ξ,使得F′(ξ)=0,而F′(ξ)=f′(ξ)sinξ+f(ξ)cosξ,也就是說(shuō),在開(kāi)區(qū)間(0,π)內(nèi)至少存在一點(diǎn)ξ,使得f′(ξ)sinξ=-f(ξ)cosξ。

        顯然,F(xiàn)(x)在閉區(qū)間[η,1]?[0,1]上連續(xù),在開(kāi)區(qū)間(η,1)?(0,1)內(nèi)可導(dǎo),且F(η)=e-η2f(η),F(xiàn)(1)=e-1f(1),即F(η)=F(1),由羅爾定理知,在開(kāi)區(qū)間(η,1)?(0,1)內(nèi)至少存在一點(diǎn)ξ,使得F′(ξ)=0。

        又F′(ξ)=-2ξe-ξ2f(ξ)+e-ξ2f′(ξ)=e-ξ2[f′(ξ)-2ξf(ξ)],且e-ξ2≠0,故f′(ξ)-2ξf(ξ)=0。也就是說(shuō),在開(kāi)區(qū)間(0,π)內(nèi)至少存在一點(diǎn)ξ,使得f′(ξ)sinξ=-f(ξ)cosξ。

        (二)證明的等式是關(guān)于f(ξ),f′(ξ),g(ξ),g′(ξ)的微分方程

        例2[5]:設(shè)f(x)和g(x)在上[a,b]連續(xù),在(a,b)內(nèi)可導(dǎo),且f(a)=f(b)=0,g(x)≠0證明在(a,b)內(nèi)至少存在一點(diǎn)ξ使得f′(ξ)g(ξ)+2f(ξ)g′(ξ)=0。

        證明:令F(x)=f(x)g2(x),顯然,F(xiàn)(x)在閉區(qū)間[a,b]上連續(xù),在開(kāi)區(qū)間(a,b)內(nèi)可導(dǎo),且F(a)=F(b),故由羅爾定理知,在開(kāi)區(qū)間(a,b)內(nèi)至少存在一點(diǎn)ξ,使得F′(ξ)=0,而F′(ξ)=g(ξ)[f′(ξ)g(ξ)+2f(ξ)g′(ξ)],又g(x)≠0,故在開(kāi)區(qū)間(0,π)內(nèi)至少存在一點(diǎn)ξ,使得f′(ξ)g(ξ)+2f(ξ)g′(ξ)=0。

        應(yīng)用實(shí)例:若函數(shù)f(x)在閉區(qū)間[0,1]上連續(xù),在開(kāi)區(qū)間(0,1)內(nèi)可導(dǎo),并且f(0)=0,如果x∈(0,1),f(x)≠0,證明在(0,1)內(nèi)至少存在一點(diǎn)ξ使得f′(ξ)f(1-ξ)=f(ξ)f′(1-ξ)。

        二、利用一階線性方程的通解構(gòu)造輔助函數(shù)

        應(yīng)用實(shí)例:設(shè)f(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),且f(a)=f(b)=0,則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得2f(ξ)=f′(ξ)。

        證明:令F(x)=e-2xf(x),顯然,F(xiàn)(x)在閉區(qū)間[a,b]上連續(xù),在開(kāi)區(qū)間(a,b)內(nèi)可導(dǎo),且F(a)=F(b)=0,故由羅爾定理知,在開(kāi)區(qū)間(a,b)內(nèi)至少存在一點(diǎn)ξ,使得F′(ξ)=0,而F′(ξ)=-2e-2ξf(ξ)+e-2ξf′(ξ)=e-2ξ[-2f(ξ)+f′(ξ)],又e-2ξ≠0,故在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得2f(ξ)=f′(ξ)。

        例5:若函數(shù)f(x)在閉區(qū)間[0,1]上連續(xù),在開(kāi)區(qū)間(0,1)內(nèi)可導(dǎo),且f(0)=f(1)=2,證明在(0,1)內(nèi)至少存在一點(diǎn)ξ使得f′(ξ)+f(ξ)=2。

        證明:令F(x)=ex[f(x)-2],F(xiàn)(x)在閉區(qū)間[0,1]上連續(xù),在開(kāi)區(qū)間(0,1)內(nèi)可導(dǎo),且F(0)=F(1)=0,故由羅爾定理知,在開(kāi)區(qū)間(0,1)內(nèi)至少存在一點(diǎn)ξ,使得F′(ξ)=0。而F′(ξ)=eξ[f(ξ)-2]+eξf′(ξ)=eξ[f(ξ)+f′(ξ)-2],又eξ≠0,故在(0,1)內(nèi)至少存在一點(diǎn)ξ,使得f′(ξ)+f(ξ)=2。

        在利用一階線性方程的通解公式構(gòu)造輔助函數(shù)時(shí),一定要仔細(xì)觀察中值等式的特點(diǎn),找到P(x),Q(x),求出通解。

        三、利用降階的思想構(gòu)造輔助函數(shù)

        (一)利用可降階方程降階一次后得到的解構(gòu)造輔助函數(shù)

        形如y″=f(x,y′)的方程稱為不顯含y的可降階微分方程[6],該方程的特點(diǎn)是方程中同時(shí)含有y′,y″,且不顯含y。在計(jì)算時(shí)可令y′=p(x),則y″=p′(x),原方程可化為一階方程p′=f(x,p),利用分離變量法或一階線性齊次方程的通解公式可得φ(x,p)=C,從而可構(gòu)造出輔助函數(shù)。

        例6:設(shè)函數(shù)f(x)在[0,1]上二階連續(xù)可導(dǎo),且f(0)=f(1)=2,證明:至少有一點(diǎn)ξ∈(0,1),使得2f′(ξ)+ξf″(ξ)=0。

        證明:由于函數(shù)f(x)在[0,1]上二階連續(xù)可導(dǎo),故f(x)在閉區(qū)間[0,1]上連續(xù),在開(kāi)區(qū)間(0,1)內(nèi)可導(dǎo),并且f(0)=f(1)=2,故由羅爾定理知,至少存在一點(diǎn)η∈(0,1),使得f′(η)=0。對(duì)F(x)=x2f′(x),在[0,η]上連續(xù),在(0,η)內(nèi)可導(dǎo),且F(0)=F(η)=0,再次利用羅爾定理,可證至少有一點(diǎn)ξ∈(0,η)?(0,1),使得2f′(ξ)+ξf″(ξ)=0。

        (二)利用分部積分法構(gòu)造輔助函數(shù)

        例7 設(shè)f(x)和g(x)在上[a,b]連續(xù),在(a,b)內(nèi)可導(dǎo),在(a,b)內(nèi)g(x)≠0,g″(x)≠0,且f(a)=f(b)=g(a)=g(b)=0,證明在(a,b)內(nèi)至少存在一點(diǎn)ξ使得f″(ξ)g(ξ)-f(ξ)g″(ξ)=0。

        分析:該微分中值等式屬于二階微分方程,但只含有兩個(gè)函數(shù)的二階導(dǎo)數(shù)f″(x),g″(x),不含f′(x),g′(x),為了使用降階的思想

        f″(x)g(x)=f(x)g″(x)

        兩邊同時(shí)對(duì)x積分,得:

        證明 令F(x)=f′(x)g(x)-f(x)g′(x),顯然,F(xiàn)(x)在閉區(qū)間[a,b]上連續(xù),在開(kāi)區(qū)間(a,b)內(nèi)可導(dǎo),且F(a)=F(b)=0,故由羅爾定理知,在開(kāi)區(qū)間(a,b)內(nèi)至少存在一點(diǎn)ξ,使得F′(ξ)=0,而F′(ξ)=f″(ξ)g(ξ)-f(ξ)g″(ξ),故在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得f″(ξ)g(ξ)-f(ξ)g″(ξ)=0。

        以上分析了羅爾定理證明微分中值等式問(wèn)題的幾個(gè)典型例題,都是從導(dǎo)數(shù)和積分的互逆性出發(fā),通過(guò)微分方程求解的方法或不定積分法等逆向思維法構(gòu)造輔助函數(shù)。在平常的教學(xué)過(guò)程中,可以借助此類(lèi)題型提高學(xué)生的邏輯思維能力和逆向思維能力,逐步培養(yǎng)學(xué)生綜合應(yīng)用微積分知識(shí)解決實(shí)際問(wèn)題的能力。

        久久亚洲国产中v天仙www| 豆国产96在线 | 亚洲| 五月丁香综合激情六月久久| 亚洲国产人在线播放首页| 音影先锋色天堂av电影妓女久久 | 免费无遮挡无码永久在线观看视频| 女人下面毛多水多视频| 亚洲男人的天堂精品一区二区| 一本色道久久88综合亚洲精品| 国产精品美女久久久网站三级| 欧美a级毛欧美1级a大片免费播放| 黄视频国产| 热门精品一区二区三区| 精品国产一区二区三区三级| 国产成人无码免费视频在线| 亚洲中文av一区二区三区| 一级二级三一片内射视频| 四虎影在永久在线观看| 300部国产真实乱| 国产91在线精品福利| 丰满巨臀人妻中文字幕| 亚洲av无码国产精品色午夜字幕| 成人无码区免费a片www| 丝袜人妻无码中文字幕综合网 | 中文字幕一区二区三区精华液| 日本香蕉久久一区二区视频| 白白色免费视频一区二区在线| 内射口爆少妇麻豆| 久久国产成人午夜av影院| 老肥熟女老女人野外免费区| 国产亚洲精品av一区| 高清破外女出血av毛片| 任你躁欧美一级在线精品免费| 国产精品麻豆一区二区三区| 亚洲国产成人一区二区精品区| 99精品视频69V精品视频| 国产情侣自拍一区视频| 音影先锋中文字幕在线| 婷婷亚洲久悠悠色悠在线播放| 91国在线啪精品一区| 亚洲国产成人av毛片大全|