亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        山區(qū)公路邊坡工程智能分析與設(shè)計研究進展

        2022-11-14 18:05:52陳昌富李偉張嘉睿廖佳卉呂曉璽
        關(guān)鍵詞:巖土滑坡邊坡

        陳昌富 李偉 張嘉睿 廖佳卉 呂曉璽

        摘要:隨著我國高速公路建設(shè)不斷向中西部山區(qū)延伸,形成了大量高陡邊坡,打破了原有山體的地質(zhì)和生態(tài)平衡,極易誘發(fā)滑坡、坍塌、泥石流等地質(zhì)災(zāi)害,嚴重威脅人民的生命和財產(chǎn)安全.因此,山區(qū)高陡邊坡的穩(wěn)定性分析、設(shè)計、處治、監(jiān)測等問題一直是巖土工程中研究的熱點和難點.由于巖土高陡邊坡具有高不確定性、強非線性和動態(tài)演化的特征,基于經(jīng)典理論的分析和計算方法對上述問題進行研究難以獲得合理的解答,而人工智能技術(shù)方法具有處理非線性復(fù)雜系統(tǒng)的獨特優(yōu)勢,現(xiàn)已成為解決公路邊坡工程問題的有效手段.本文總結(jié)了最近10余年山區(qū)公路邊坡工程中邊坡穩(wěn)定性智能分析計算與評價方法、邊坡防護與加固智能設(shè)計計算方法、邊坡智能監(jiān)測技術(shù)、滑坡智能識別和預(yù)測、巖質(zhì)邊坡結(jié)構(gòu)面智能識別以及巖士體參數(shù)智能反演等方面的主要研究進展,并簡要說明了在山區(qū)公路邊坡穩(wěn)定性分析與加固設(shè)計、現(xiàn)場監(jiān)測和滑坡預(yù)測等方面推進智能化建設(shè)的進一步發(fā)展方向.

        關(guān)鍵詞:邊坡;人工智能;智能算法;機器學(xué)習(xí);深度學(xué)習(xí);神經(jīng)網(wǎng)絡(luò);穩(wěn)定性;邊坡防護與加固;邊坡監(jiān)測與預(yù)測

        中圖分類號:U418.5文獻標志碼:A

        State-of-the-Art of Intelligent Analysis and Design in Slope Engineering of Highways in Mountainous Areas

        CHEN Changfu1,2,LI Wei1,2,ZHANG Jiarui1,2,LIAO Jiahui1,2,LU Xiaoxi1,2

        (1. Key Laboratory of Building Safety and Energy Efficiency of Ministry of Education (Hunan University),Changsha 410082,China;2. College of Civil Engineering,Hunan University,Changsha 410082,China)

        Abstract:As the construction of highways extend to the mountainous areas in the central and western regions in China,a large number of high-steep slopes have been generated. The construction process not only broke the geological and ecological balance of the original mountains,but also easily to induce geological disasters such as land - slides,collapses and debris flows,which seriously threaten people's lives and property safety. Therefore,some problems of high-steep slopes in mountainous areas have always been the key and difficult points in geotechnical engineering,including stability analysis,design,treatment and monitoring. However,due to the characteristics of high uncertainty,strong nonlinearity and dynamic evolution of high-steep slopes,it is difficult to obtain reasonable answers to the above problems based on analysis and calculation methods of classical theory. Artificial intelligencetechnology has the unique advantage of dealing with nonlinear complex systems,and it has become an effective means to solve slope engineering problems in highway. Therefore,this paper summarizes the main research progress in several fields of slope engineering of highway in mountainous areas in the past 10 years,including intelligent analysis calculation and evaluation method of slope stability,calculation method for intelligent design of slope protection and reinforcement,intelligent monitoring technology of slope,intelligent identification and prediction of landslides,intelligent inversion of rock and soil parameters,intelligent identification of rock slope structural planes,and so on. Furthermore,the further development direction of intelligent construction of slope engineering in highway is briefly explained in the fields of slope stability analysis and reinforcement design,on-site monitoring and landslide prediction.

        Key words:slope;artificial intelligence;intelligent algorithm;machine learning;deep learning;neural network;stability;protection and reinforcement of slope;monitoring and prediction of slope

        隨著我國高速公路建設(shè)不斷向主要由丘陵或山地組成的中西部山區(qū)延伸,不可避免地需要進行大填大挖,從而必然形成大量的高陡邊坡.高陡邊坡的開挖施工不僅打破了地表原有的地質(zhì)和生態(tài)平衡,對公路沿線周邊的地質(zhì)和生態(tài)環(huán)境產(chǎn)生重要影響,而且在強降雨或地震荷載作用下,高陡邊坡極易誘發(fā)滑坡、坍塌、泥石流等地質(zhì)災(zāi)害,嚴重威脅人民的生命和財產(chǎn)安全.因此,國內(nèi)外學(xué)者為確保山區(qū)公路邊坡安全,在邊坡穩(wěn)定性分析、防護與加固設(shè)計、現(xiàn)場監(jiān)測和滑坡預(yù)測等方面做了大量的研究,并取得了豐碩的成果.

        邊坡穩(wěn)定性分析的關(guān)鍵是邊坡中最危險滑動面的搜索.然而,山區(qū)公路邊坡因受到復(fù)雜地形地質(zhì)條件和各種工程等因素的綜合影響,具有高度不確定性、強非線性和動態(tài)演化的特征,這導(dǎo)致在最危險滑動面搜索過程中經(jīng)常面臨安全系數(shù)計算公式為隱函數(shù)、目標函數(shù)為高維且具有多極值點的非凸函數(shù)等突出問題,采用經(jīng)典的分析計算方法難以求解. 近年來,隨著人工智能(AI)技術(shù)的快速發(fā)展,智能算法和機器學(xué)習(xí)模型被廣泛應(yīng)用到邊坡工程的穩(wěn)定性分析中,建立了大量收斂能力強、計算精度高、搜索速度快的全局優(yōu)化搜索方法[1-6],可有效解決復(fù)雜邊坡的穩(wěn)定性分析和最危險滑動面搜索問題.

        對于欠穩(wěn)定或已失穩(wěn)邊坡(滑坡),為保證工程安全,必須對其進行加固處理.在工程中,由于邊坡處治涉及的因素眾多、建模困難、計算復(fù)雜,如何合理選擇邊坡處治加固形式并對其進行優(yōu)化設(shè)計,以獲得經(jīng)濟合理、技術(shù)可靠的邊坡加固設(shè)計方案,一直是邊坡處治的重點和難點.為此,一些學(xué)者采用智能算法[7]、機器學(xué)習(xí)[8]、模糊計算[9]、自適應(yīng)神經(jīng)模糊推理系統(tǒng)[10]等人工智能方法,對邊坡處治進行智能設(shè)計,取得了良好的效果.

        滑坡和泥石流是山區(qū)公路的高發(fā)地質(zhì)災(zāi)害,防災(zāi)減災(zāi)任務(wù)十分艱巨.其中,滑坡的精準監(jiān)測和預(yù)測預(yù)警是邊坡防災(zāi)減災(zāi)的關(guān)鍵環(huán)節(jié).隨著航空航天和光學(xué)遙感技術(shù)的發(fā)展,新型的邊坡監(jiān)測技術(shù)不斷涌現(xiàn),并逐漸向高精度、自動化、智能化、遠程化的方向發(fā)展[11].同時,監(jiān)測內(nèi)容也日益豐富,除最常見的位移外,還拓展到裂縫、地下水、氣象等多項監(jiān)測指標[12].智能監(jiān)測雖然可獲得大量多維度的、非線性的、高分辨率的多源監(jiān)測數(shù)據(jù),但也使多源數(shù)據(jù)的融合和關(guān)鍵信息的識別和提取成為技術(shù)難點.而機器學(xué)習(xí)方法可以在復(fù)雜的數(shù)據(jù)中建立目標對象與屬性特征之間的關(guān)系框架;智能算法可以優(yōu)化模型參數(shù),提高搜索能力.因此,它們被廣泛應(yīng)用于滑坡的智能識別與預(yù)測預(yù)警、巖體結(jié)構(gòu)面的智能辨識等研究中,并且成效顯著.

        為展示國內(nèi)外山區(qū)公路邊坡智能分析和設(shè)計方面的最近研究進展,本文在查閱大量文獻的基礎(chǔ)上,重點對最近10余年來公路邊坡穩(wěn)定性智能分析與設(shè)計計算方法、邊坡處治智能設(shè)計計算方法、邊坡智能化監(jiān)測技術(shù)、滑坡的智能預(yù)測、巖土體參數(shù)智能反演以及巖質(zhì)邊坡結(jié)構(gòu)面智能識別等方面的研究進展進行較系統(tǒng)的總結(jié),并就人工智能用于解決山區(qū)公路復(fù)雜邊坡穩(wěn)定性分析與加固設(shè)計、現(xiàn)場監(jiān)測與滑坡預(yù)測等問題的發(fā)展方向給予展望.

        1山區(qū)公路邊坡智能分析與設(shè)計計算方法研究進展

        1.1概述

        邊坡穩(wěn)定性分析是公路邊坡設(shè)計和施工的理論基礎(chǔ).目前,常用的邊坡穩(wěn)定性分析方法眾多,其分類如表1所示.本節(jié)將系統(tǒng)地回顧人工智能方法應(yīng)用于邊坡的確定性分析和非確定性(可靠性)分析,以及工程邊坡優(yōu)化設(shè)計的最新研究進展.

        1.2山區(qū)公路邊坡穩(wěn)定性智能分析方法

        邊坡穩(wěn)定性分析的實質(zhì)是尋找一條使邊坡的安全系數(shù)最小的滑動路徑,這條路徑可稱為最危險滑動面(亦稱臨界滑動面).由于邊坡系統(tǒng)的復(fù)雜性,臨界滑動面的目標函數(shù)通常是一個復(fù)雜且不可微的多峰函數(shù),采用傳統(tǒng)的搜索方法極易陷入局部最優(yōu)解.近年來,諸多學(xué)者基于人工智能算法和機器學(xué)習(xí),提出了眾多收斂能力強、高效、穩(wěn)定的全局優(yōu)化分析方法來定位邊坡臨界滑動面和計算邊坡的穩(wěn)定性.在智能算法方面,有遺傳算法[1]、模擬退火算法[2]、進化算法[3]、改進徑向移動算法[4]、群優(yōu)化算法(粒子群算法[15]、蟻群算法[14]、萬有引力算法[15]、人工蜂群算法[16]、鯨魚算法[17]、灰狼優(yōu)化算法[18])等;在機器學(xué)習(xí)方面,有單模型(如支持向量機[5])、聚類算法、概率模型、神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)[19]、集成學(xué)習(xí)[20]等,詳細分類如圖1所示.上述人工智能模型均可獨立用于解決邊坡穩(wěn)定性問題,但也各有不完善之處,因此諸多學(xué)者通過對它們進行不同方式的組合或融合,提出了一些適應(yīng)性更強的改進算法.

        1.2.1基于遺傳算法(GA)的邊坡穩(wěn)定性分析

        針對傳統(tǒng)遺傳算法(GA)的局部尋優(yōu)能力不足,易因選擇壓力過大而產(chǎn)生早熟收斂的問題[21],Zhu 和Chen[22]將局部禁忌搜索策略植入遺傳算法的重組和循環(huán)中,提高了局部尋優(yōu)速度.Cen等[23]將遺傳算法和模擬退火算法相結(jié)合,對生成的每個子滑面采用模擬退火操作,實現(xiàn)了快速收斂.Zhou等[24]通過在上一代最優(yōu)解區(qū)域附近生成新種群,并與初始種群遺傳重組的方式擴大種群多樣性,加快了收斂速度.Xu等[25]結(jié)合改進的量子遺傳算法和隨機森林回歸方法,通過動態(tài)調(diào)整策略控制種群的更新和演化方向得到全局最優(yōu)解,有效地避免了過早收斂.

        1.2.2基于模擬退火算法(SA)的邊坡穩(wěn)定性分析

        1983年,Kirkpatrick等[26]將熱力學(xué)中的退火思想引入組合優(yōu)化領(lǐng)域,提出了一種求解大規(guī)模組合優(yōu)化問題的有效近似算法——模擬退火算法(SA).然而,由于在模擬退火過程中很難保證退火充分,導(dǎo)致在解的搜索過程中極易陷入局部最優(yōu)解,全局搜索能力較差.Cheng[2]提出了一種動態(tài)邊界模擬退火技術(shù),可準確且快速地確定圓弧和非圓弧滑動面的最小安全系數(shù).劉華強等[27]通過增加算法的記憶功能和聯(lián)合搜索能力,給出了一套邊坡穩(wěn)定分析的非圓弧滑動面搜索方法.李亮等[28]引入禁忌搜索技術(shù),避免了對退火中新解的重復(fù)、迂回搜索,形成了全局尋優(yōu)能力極強的禁忌模擬退火復(fù)合形法.

        1.2.3基于粒子群算法(PSO)的邊坡穩(wěn)定性分析

        粒子群算法(PSO)[13]是采用速度-位置搜索模型,各粒子代表解空間中的一個候選解,通過定義適應(yīng)值函數(shù)來評價各粒子的優(yōu)劣程度,該算法的適應(yīng)性和兼容性較強,但也存在計算時比較依賴慣性因子的取值、易陷入局部最優(yōu)解、計算量大等缺點.李亮等[29]借鑒和聲算法直接模擬群體的位置更新,通過對簡化Janbu法的拓展,實現(xiàn)了對邊坡三維臨界滑動面的快速搜索.徐飛等[30]結(jié)合投影尋蹤算法、粒子群優(yōu)化算法和邏輯斯諦曲線函數(shù),建立了邊坡穩(wěn)定性評價的粒子群優(yōu)化投影尋蹤模型(PSO-PP).楊善統(tǒng)等[31]通過變異操作增強了粒子群跳出局部最優(yōu)解的能力,并用二次序列規(guī)劃加速局部搜索,大大提高了粒子群算法獲得全局最優(yōu)的能力.

        1.2.4基于蟻群算法(ACO)的邊坡穩(wěn)定性分析

        蟻群算法(ACO)[14]具有開放性、魯棒性、并行性和全局收斂性等優(yōu)點,但也存在早熟收斂、收斂速度慢和求解質(zhì)量差等問題.為了克服原有算法的缺點,陳昌富等[32]引入混沌擾動算子,改變了螞蟻的選擇機制,增加解的多樣性,提高了全局尋優(yōu)能力.石露等[33]對蟻群算法的結(jié)構(gòu)和螞蟻轉(zhuǎn)移概率計算方式進行了改進,并與遺傳算法結(jié)合,克服了蟻群算法初期因信息素匱乏導(dǎo)致計算速度慢的不足.Gao[34]引入獎懲策略,增加較優(yōu)路徑與普通路徑的信息素差異,加快了收斂速度,也避免早熟收斂;他還基于螞蟻正反向搜索相遇形成完整路徑的原理,提出了一種相遇蟻群算法,提高了搜索效率和精度[35].Yang等[35]將MAX-MIN蟻群優(yōu)化算法應(yīng)用于穩(wěn)定性分析的滑動面搜索上,提出一種基于數(shù)值流行法的數(shù)值模型,算例表明其具有較好的適用性.

        1.2.5基于萬有引力算法(GSA)的邊坡穩(wěn)定性分析

        萬有引力算法(GSA)是由Rashedi等人提出,利用萬有引力定律和模擬物體間的相互作用,得到一種粒子群體智能優(yōu)化算法.考慮到萬有引力算法局部搜索能力不足,易出現(xiàn)最優(yōu)值振蕩發(fā)散的現(xiàn)象,Khajehzadeh等[15]采用自適應(yīng)最大速度約束,提高了全局探索能力和收斂速度.Raihan等[37]將萬有引力算法與順序二次規(guī)劃(SQP)相結(jié)合,提出了一種GSA-SQP優(yōu)化算法.蔣建國等[38]通過限制粒子的速度和更改算法參數(shù)對萬有引力算法進行改進,顯著提高了算法中粒子的探索與開發(fā)能力.

        1.2.6基于新型群優(yōu)化算法的邊坡穩(wěn)定性分析

        目前新的群優(yōu)化算法層出不窮,而且不斷被應(yīng)用于邊坡穩(wěn)定性分析中.比如:Ma等[39]根據(jù)仿生學(xué)原理和海豚的捕食行為,基于領(lǐng)導(dǎo)者海豚群算法(LDHA)創(chuàng)建了邊坡穩(wěn)定性分析的非線性多目標優(yōu)化模型,計算結(jié)果表明LDHA在計算精度和效率上明顯優(yōu)于其他算法.Li等[40]比較了8種新型優(yōu)化算法[灰狼優(yōu)化算法(GWO)、粒子群優(yōu)化算法(PSO)、鯨魚優(yōu)化算法(WOA)、Salp群算法(SSA)、多元優(yōu)化算法(MVO)、螞蟻獅子優(yōu)化算法(ALO)、布谷鳥搜索算法(CS)和平衡優(yōu)化算法(EO)]確定邊坡臨界滑坡面的能力,結(jié)果表明,平衡優(yōu)化算法在解的質(zhì)量、收斂速率和魯棒性方面優(yōu)于其他算法.

        1.2.7基于支持向量機(SVM)的邊坡穩(wěn)定性分析

        支持向量機(SVM)是一種支持小樣本的機器學(xué)習(xí),以結(jié)構(gòu)風(fēng)險最小化為準則,縮小模型泛化誤差,提高泛化能力,但在求解大規(guī)模樣本數(shù)據(jù)時,具有效率低、魯棒性差等問題[5].考慮到SVM的準確性與核函數(shù)和懲罰參數(shù)的取值相關(guān),陳光耀等[41]基于正態(tài)云模型改進果蠅算法,并用于求解SVM分類模型的最優(yōu)參數(shù)組合,提出了一種有效、可行的邊坡穩(wěn)定性評價方法.Suykens等[42]通過在目標函數(shù)中增加誤差平方和項,將原有的不等式約束求解過程變成等式方程求解,節(jié)省計算時間,提出了最小二乘支持向量機(LSSVM)方法,加快了求解速度.Xue[43]采用PSO算法改進LSSVM方法,在收斂速度和精度上較經(jīng)典的遺傳算法和粒子群算法更優(yōu).Zeng等[44]采用引力搜索算法和鯨魚優(yōu)化算法分別討論了LSSVM方法的正確控制參數(shù).Cai等[45]采用混沌遺傳算法對LSSVM參數(shù)進行優(yōu)化,提高了并行計算和全局優(yōu)化搜索的能力.Li等[46]提出了基于量子化粒子群(QPSO)的LSSVM算法,相比于PSO-LSSVM和LSSVM算法,具有更快的搜索速度和最佳的收斂性能,更適合于邊坡穩(wěn)定性分析.

        1.2.8基于人工神經(jīng)網(wǎng)絡(luò)(ANN)的邊坡穩(wěn)定性分析

        人工神經(jīng)網(wǎng)絡(luò)(ANN)是一種模擬人腦神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)和功能的計算模型,通常由一層或多層互連的神經(jīng)元或節(jié)點組成.人工神經(jīng)網(wǎng)絡(luò)能夠充分考慮各因素間的非線性關(guān)系,實現(xiàn)對任意函數(shù)的逼近,已經(jīng)得到了較為廣泛的應(yīng)用[19].但是,人工神經(jīng)網(wǎng)絡(luò)模型在訓(xùn)練中易出現(xiàn)信息重疊和過擬合現(xiàn)象,從而導(dǎo)致泛化能力差等問題.陳昌富和楊宇[47]采用基于人工神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)構(gòu)建的T-S型模糊推理系統(tǒng),利用混合遺傳算法訓(xùn)練該模型,避免了隸屬函數(shù)難以確定的問題,提高了搜索效率.Gordan等[48]借助粒子群算法(PSO)確定ANN的權(quán)重和偏差問題,提出一種PSO-ANN模型來預(yù)測邊坡的穩(wěn)定安全系數(shù),提高了搜索精度.Das等[49]分別采用差分進化神經(jīng)網(wǎng)絡(luò)(DENN)、貝葉斯正則化法神經(jīng)網(wǎng)絡(luò)(BRNN)和Levenberg-Marquardt神經(jīng)網(wǎng)絡(luò)(LMNN)模型計算邊坡的安全系數(shù),對比計算結(jié)果發(fā)現(xiàn),DENN模型計算精度更高.Khajehzadeh等[50]提出了一種ANN模型與自適應(yīng)正余弦算法結(jié)合的智能分析方法,并用于評估和預(yù)測均質(zhì)邊坡在靜態(tài)和動態(tài)載荷下的安全系數(shù).Foong和Moayedi[51]使用平衡優(yōu)化和渦流搜索算法優(yōu)化多層感知器神經(jīng)網(wǎng)絡(luò)模型來預(yù)測單層土坡的安全系數(shù).

        誤差反饋神經(jīng)網(wǎng)絡(luò)(BPNN)[52]是一種改進的人工神經(jīng)網(wǎng)絡(luò)模型,在其輸入層和輸出層之間至少有一個隱含層,每個互連都分配有一個關(guān)聯(lián)權(quán)重,具有向前和向后傳遞兩個過程,因而能夠?qū)⑤敵鰧硬粶蚀_的結(jié)果向前傳遞,通過更新連接權(quán)重使誤差最小化,提高預(yù)測精度.胡軍等[53]結(jié)合協(xié)調(diào)粒子群算法和BP神經(jīng)網(wǎng)絡(luò),建立了邊坡穩(wěn)定性與各影響因素之間復(fù)雜的非線性關(guān)系,避免了BP神經(jīng)網(wǎng)絡(luò)易陷入局部最優(yōu)的問題.考慮到卷積神經(jīng)網(wǎng)絡(luò)(CNN)在圖像分析方面具有更好的表現(xiàn),Hsiao等[54]將CNN模型與ANN模型用于隨機場邊坡的安全系數(shù)和臨界滑動面搜索,以平均絕對誤差來判斷性能差異,結(jié)果表明,CNN模型在復(fù)雜邊坡情況下精確度比ANN模型更高,同時縮短了運算時間.

        1.2.9基于集成學(xué)習(xí)的邊坡穩(wěn)定性分析

        集成學(xué)習(xí)[20]通過構(gòu)建并結(jié)合多個弱學(xué)習(xí)器,形成基于個體學(xué)習(xí)的強學(xué)習(xí)器,它可以獲得更準確的預(yù)測結(jié)果,具有更好的泛化性能和更廣泛的應(yīng)用. Qi和Tang[55]采用自適應(yīng)增強決策樹(ABDT)、二次判別分析、支持向量機(SVM)、人工神經(jīng)網(wǎng)絡(luò)(ANN)、高斯過程回歸(GPR)和k-最近鄰(KNN)作為弱學(xué)習(xí)器,通過加權(quán)多數(shù)投票法組合構(gòu)建了集成學(xué)習(xí)分類器.另外,他們也采用螢火蟲算法調(diào)整超參數(shù),并驗證和討論了6種綜合方法[Logistic回歸、隨機森林(RF)、決策樹、梯度提升機(GBM)、多層感知器神經(jīng)網(wǎng)絡(luò)和支持向量機(SVM)]在邊坡穩(wěn)定性預(yù)測中的可行性,結(jié)果表明,集成學(xué)習(xí)方法大大提高了邊坡穩(wěn)定性預(yù)測性能[56].Sun等[57]提出了貝葉斯優(yōu)化的集成學(xué)習(xí)算法,對4種回歸算法的超參數(shù)進行優(yōu)化,提高了邊坡安全系數(shù)的預(yù)測精度.

        1.2.10基于其他機器學(xué)習(xí)方法的邊坡穩(wěn)定性分析

        不同的機器學(xué)習(xí)方法對同一類型的數(shù)據(jù)有不同的敏感度,同一類別的數(shù)據(jù)在不同方法下的分類精度也會有所不同,每個分類方法都有其獨特性和局限性.因此,Lin等[58]基于349個邊坡案例的數(shù)據(jù)集,評價了11種用于邊坡穩(wěn)定性評價的機器學(xué)習(xí)模型在不同輸入?yún)?shù)組合下預(yù)測邊坡安全系數(shù)的能力,通過數(shù)理統(tǒng)計分析發(fā)現(xiàn)支持向量機(SVM)、梯度提升回歸(GBR)和裝袋(Bagging)方法是相對較好的回歸方法.Mahmoodzadeh等[59]基于高斯過程回歸(GPR)、支持向量回歸(SVR)、決策樹(DT)、長短期記憶(LSTM)神經(jīng)網(wǎng)絡(luò)、卷積神經(jīng)網(wǎng)絡(luò)(CNN)和k-最近鄰(KNN)模型分析327個案例邊坡的穩(wěn)定性,并與數(shù)值分析計算結(jié)果對比發(fā)現(xiàn),GPR模型的預(yù)測更加準確.Karir等[60]基于支持向量回歸(SVR)、人工神經(jīng)網(wǎng)絡(luò)(ANN)、隨機森林(RF)、梯度提升(GB)和極端梯度提升(XGBoost)機器學(xué)習(xí)方法,建模并分析了邊坡安全系數(shù),與數(shù)值分析計算結(jié)果對比發(fā)現(xiàn),RF、GB和XGB模型等基于樹的算法具有出色的預(yù)測性能.Lin等[61]對比了4種監(jiān)督學(xué)習(xí)算法[隨機森林(RF)、萬有引力算法(GSA)、支持向量機(SVM)和樸素貝葉斯算法]在邊坡穩(wěn)定性評價中的性能差異,其中萬有引力算法可以獲得最好的結(jié)果.目前的研究表明,還沒有完善的機器學(xué)習(xí)方法能夠?qū)τ绊戇吰路€(wěn)定性的眾多因素進行較全面和有效的分析,仍需要不斷尋找精度更高、適用性強的機器學(xué)習(xí)方法來建立邊坡穩(wěn)定性評價模型,以獲得更好的預(yù)測結(jié)果.

        1.3山區(qū)公路邊坡可靠度智能分析方法

        自然邊坡受長期風(fēng)化、搬運、沉積、后沉積等地質(zhì)作用的影響,土體強度參數(shù)往往具有隨機性和不確定性.而常用的穩(wěn)定性分析僅是在確定性參數(shù)條件下求解安全系數(shù),不能有效地考慮實際荷載和邊坡參數(shù)的隨機性和不確定性,易使評價結(jié)果偏離實際.因此,國內(nèi)外衍生出許多以概率表征的邊坡可靠度分析方法,它們能夠定量、客觀地考慮這些不確定性因素對邊坡穩(wěn)定性的影響.而隨著計算機和智能技術(shù)的蓬勃發(fā)展,引入人工智能技術(shù)的邊坡可靠度分析研究也在日益增加.

        邊坡可靠度計算問題可以分為兩類[62]:一類是極限狀態(tài)方程是基本隨機變量的顯式功能函數(shù);另一類是極限狀態(tài)方程是基本隨機變量的隱式功能函數(shù),后者更為常見.當功能函數(shù)為不易求解的高度非線性的隱式函數(shù)時,一般采用代理模型法構(gòu)建隨機變量與功能函數(shù)之間的映射關(guān)系,如響應(yīng)面法[63]、支持向量機(SVM)模型[64-65]等,并在此基礎(chǔ)上應(yīng)用各種可靠度計算方法來計算邊坡可靠度指標.在代理模型的建立中運用人工智能技術(shù),可大大提高計算效率,減少時間成本.Li等[64]基于支持向量機(SVM)代理模型構(gòu)建功能函數(shù),然后采用蒙特卡洛方法計算邊坡可靠度指標,提出了一種基于SVM的邊坡可靠度分析方法.Samui等[66]建立了相關(guān)向量機(RVM)在隱式功能函數(shù)的極限狀態(tài)下的可靠性分析模型.蘇永華等[67]基于Kriging模型建立了各向異性關(guān)聯(lián)映射方法,再結(jié)合蒙特卡洛模擬和主動學(xué)習(xí)方法求解了邊坡的失效概率.Kang等[68]提出了一種基于最小二乘向量機(LSSVM)和粒子群算法(PSO)結(jié)合的土質(zhì)邊坡系統(tǒng)失效概率評估可靠度方法.朱彬等[69]基于高斯過程回歸算法構(gòu)建代理模型,并用蒙特卡洛模擬求解邊坡失穩(wěn)概率,在保證計算精度的同時減少了對邊坡穩(wěn)定性分析程序的調(diào)用.張?zhí)忑埖萚70]提出了基于主動學(xué)習(xí)徑向基函數(shù)的代理模型,加快了模型訓(xùn)練的收斂速度,然后結(jié)合蒙特卡洛模擬計算邊坡的系統(tǒng)失穩(wěn)概率.謝夢龍等[71]引入LASSO算法壓縮數(shù)據(jù)系數(shù),消除變量間的共線性問題,建立了邊坡土體強度參數(shù)與安全系數(shù)的關(guān)系,與普通線性回歸算法相比,其預(yù)測效果更有優(yōu)勢.

        巖土體變異性包括地層變異性和巖土體參數(shù)的空間變異性[72].針對巖土體參數(shù)變異性對邊坡穩(wěn)定性分析的影響,許多學(xué)者引入隨機場模擬不均勻參數(shù)的分布,并對穩(wěn)定性進行了大量的探討,提出了許多有效的可靠度評估方法[73].Li等[74]基于理論自相關(guān)函數(shù),提出了一種考慮巖土體抗剪強度參數(shù)空間變異性的多響應(yīng)面邊坡可靠性分析方法.Qin等[75]考慮了土體參數(shù)的空間變異性對開挖邊坡變形行為的影響,提出了一種基于隨機有限元方法的貝葉斯更新框架,能夠根據(jù)現(xiàn)場測量數(shù)據(jù)對邊坡進行有效的安全性評估.楊智勇等[76]采用概率故障樹模型構(gòu)建了邊坡多失效模式系統(tǒng)可靠度分析模型.姬建等[77]建立邊坡土體隨機場數(shù)字圖像與功能函數(shù)值之間隱式關(guān)系的卷積神經(jīng)網(wǎng)絡(luò)(CNN)代理模型,顯著提高了考慮隨機場模擬的邊坡可靠度分析計算效率.Zai等[78]提出了廣義概率密度演化方法來評估邊坡的系統(tǒng)可靠性,對于隱式函數(shù)和多參數(shù)變量的復(fù)雜斜坡分析具有很好的適應(yīng)性.另外,在考慮巖土體地層軟硬交替的變異性方面,Li等[79]根據(jù)鉆孔資料結(jié)合耦合馬爾可夫鏈模型模擬地層的不確定性,并對邊坡進行穩(wěn)定性分析,表明地層變異性對安全系數(shù)和失效概率不確定性有重要影響.Liu等基于現(xiàn)場有限的鉆孔數(shù)據(jù),采用一維馬爾可夫鏈模型研究了地層邊界不確定和土體參數(shù)空間變異性對邊坡可靠性分析的影響.鄧志平等[72]提出了同時考慮地層變異性和土體參數(shù)固有變異性的邊坡可靠度分析方法,有效地反映了這兩種土體變異性對邊坡可靠度的影響.

        對于呈線狀分布的山區(qū)高速公路,因其線路長、場地勘察難度大,有關(guān)巖土參數(shù)的數(shù)據(jù)獲取困難,導(dǎo)致用于可靠度分析的數(shù)據(jù)嚴重不足.為了解決數(shù)據(jù)樣本量不足的問題,Yi等[81]在Kriging建模中引入粒子群算法以獲得最優(yōu)相關(guān)參數(shù),通過對未監(jiān)測點的插值和外推,可以增加初始數(shù)據(jù),有效解決了小樣本的參數(shù)不足.Xiao等[82]將改進的自適應(yīng)遺傳算法與時空Kriging插值法相結(jié)合來解決監(jiān)測數(shù)據(jù)缺失的問題,其插值精度較傳統(tǒng)時空Kriging和高斯過程回歸(GPR)方法提高了約1倍.姬建等[83]運用概率密度權(quán)重法對邊坡系統(tǒng)可靠度進行概率分析,實現(xiàn)了在低樣本量下對高維、隱式極限狀態(tài)方程的邊坡可靠度的分析.另外,也有一些學(xué)者借助貝葉斯網(wǎng)絡(luò)框架建立代理模型對樣本數(shù)據(jù)進行合理的更新.比如,Yao等[84]提出了基于結(jié)構(gòu)可靠度和貝葉斯更新的邊坡可靠度更新方法,可以基于較少的樣本數(shù)據(jù),進行有效和準確的邊坡可靠性分析;Contreras和Brown[85]基于貝葉斯方法構(gòu)建了多維后驗概率分布來推斷邊坡參數(shù),并采用馬爾科夫鏈蒙特卡洛方法進行了邊坡可靠度分析;劉陽等[86]以貝葉斯網(wǎng)絡(luò)為框架,結(jié)合模糊理論與支持向量機模型,提出了一種公路邊坡地震失穩(wěn)規(guī)模的評估方法,克服了樣本量少引起網(wǎng)絡(luò)參數(shù)誤差過大的缺陷.

        1.4山區(qū)公路邊坡智能設(shè)計方法

        在給定的工程場地(地質(zhì)地形條件已知)和荷載條件下,山區(qū)公路邊坡設(shè)計的關(guān)鍵是合理確定坡形和坡角.但由于影響邊坡穩(wěn)定性的地層物理力學(xué)參數(shù)和工程荷載等因素通常具有隨機性、模糊性及離散性,故邊坡的設(shè)計是一個復(fù)雜的非線性問題[87].在邊坡坡角的智能設(shè)計中,張志軍等[88]根據(jù)邊坡的巖土力學(xué)參數(shù)及邊坡高度,采用人工神經(jīng)網(wǎng)絡(luò)(ANN)方法和自適應(yīng)神經(jīng)模糊推理系統(tǒng)(ANFIS)方法,在滿足安全系數(shù)要求下對圓弧破壞邊坡的邊坡角反演設(shè)計,結(jié)果發(fā)現(xiàn)ANFIS反演設(shè)計效果更好.徐沖等[87]采用基于組合核函數(shù)的高斯過程回歸網(wǎng)絡(luò)模型對邊坡坡角進行智能設(shè)計,提高了預(yù)測精度和泛化能力,同時可較好地處理坡角設(shè)計中的非線性問題.Zhou等[89]將貝葉斯推理、概率運動學(xué)分析和立體投影應(yīng)用于不連續(xù)性控制的巖石邊坡不穩(wěn)定性分析,計算出各開挖邊坡潛在不穩(wěn)定區(qū)塊的破壞角. Yan等[90]結(jié)合運動學(xué)分析、貝葉斯估計和蒙特卡洛模擬,提出了一種確定邊坡節(jié)理巖邊坡的最大安全角的方法.Xie等[91]基于影響巖質(zhì)邊坡角的10個主要影響因素,構(gòu)建了一種基于隨機森林算法預(yù)測巖質(zhì)邊坡穩(wěn)定坡角的新方法.

        2山區(qū)公路邊坡處治智能設(shè)計計算方法研究進展

        2.1概述

        山區(qū)公路修建時,不可避免地要對沿線邊坡進行開挖、削坡和爆破等施工作業(yè),會形成大量的深路塹和高路堤邊坡.不僅破壞了沿線的生態(tài)景觀,也容易引發(fā)水土流失、滑坡和坍塌等災(zāi)害,影響邊坡的穩(wěn)定性.為了保證公路安全、邊坡穩(wěn)定、生態(tài)平衡,應(yīng)采取科學(xué)合理的邊坡處治措施.而在邊坡處治設(shè)計中往往涉及的因素眾多,導(dǎo)致建模困難、計算復(fù)雜,因此,一些學(xué)者采用智能算法和機器學(xué)習(xí)模型方法對邊坡處治進行智能設(shè)計,取得了良好的效果. 本節(jié)將對邊坡不同防護與加固形式的智能設(shè)計研究進展進行較為詳細的闡述.

        2.2山區(qū)公路邊坡植物防護智能分析計算方法

        邊坡防護主要有工程防護和植物防護兩種形式,工程防護主要有噴護、錨桿掛網(wǎng)噴漿和砌塊防護等,由于這些措施景觀效果不好,已經(jīng)不提倡使用,因此邊坡防護的主要途徑以植物防護為主[92].目前有關(guān)山區(qū)公路邊坡防護智能分析計算方法的研究很少.Sari等[10]針對草、灌木和喬木防護的邊坡,考慮根系加固作用,提出了一種高性能低誤差的邊坡穩(wěn)定性ANFIS分析方法.隨后,Safa等[93]考慮根系拉力作用,分別采用ANN、ANFIS和ABC-ANN(人工蜂群與神經(jīng)網(wǎng)絡(luò)混合)算法,對生態(tài)防護的黏性土質(zhì)邊坡的安全系數(shù)進行計算,結(jié)果發(fā)現(xiàn),ANFIS算法具有更好的性能.此外,Liu等[94]建立了公路植物邊坡穩(wěn)定性評價指標體系,并運用粗糙集理論和層次分析法確定了邊坡評價指標的權(quán)重,提出了一種有效且可靠的預(yù)測公路植物邊坡防護質(zhì)量的評價模型.Liu等[95]提出了一種結(jié)合遺傳算法和BP神經(jīng)網(wǎng)絡(luò)回歸的模型,結(jié)合氣象和土壤濕度監(jiān)測數(shù)據(jù),可以對生態(tài)防護高邊坡的水分進行合理預(yù)測.

        2.3山區(qū)公路邊坡加固智能分析計算方法

        由于場地工程地質(zhì)和工程條件的復(fù)雜性,邊坡加固方式千差萬別.目前,常用的公路邊坡加固方法有加筋土坡、重力式或加筋土擋墻、土釘支護(土釘墻)、錨桿(索)擋墻、抗滑樁等.

        加筋土坡因填方量少、施工期短、經(jīng)濟安全、抗震性能好等優(yōu)點,在邊坡工程中應(yīng)用廣泛,其相關(guān)的研究也較多.Ponterosso和Fox[7]提出了一種基于遺傳算法的加筋土坡優(yōu)化設(shè)計方法,并發(fā)現(xiàn)應(yīng)用遺傳算法可有效節(jié)省加固費用.Farshidfar等[96]采用遺傳算法搜索加筋土坡的臨界滑動面,提出了一種水平條分的加筋土邊坡穩(wěn)定性分析方法.Shinoda和Miyata[97]采用粒子群優(yōu)化算法計算加筋土坡的安全系數(shù),驗證了案例邊坡的穩(wěn)定性,提高了計算精度和設(shè)計效率.Bahootoroody等[98]利用分層貝葉斯和馬爾科夫鏈蒙特卡洛方法來評價土工布加筋土坡的失穩(wěn)概率,提出了一種加固邊坡可靠度分析計算方法.

        擋土墻結(jié)構(gòu)因抗滑能力強、布置靈活、施工方便、結(jié)構(gòu)形式多樣等優(yōu)點而應(yīng)用廣泛.Gandomi等[99]采用加速粒子群優(yōu)化、螢火蟲算法和布谷鳥搜索等三種群體智能優(yōu)化算法對懸臂式擋土墻的幾何形狀參數(shù)進行優(yōu)化設(shè)計,發(fā)現(xiàn)在低成本和低耗材設(shè)計優(yōu)化方面,布谷鳥搜索算法更精確.侯超群等[100]采用遺傳算法確定地震作用下臨水加筋土擋墻的臨界滑動面,在滿足其內(nèi)部穩(wěn)定條件下,得到了筋材拉力系數(shù)的優(yōu)化設(shè)計結(jié)果.

        土釘支護(土釘墻)的穩(wěn)定性分析中多采用極限平衡法計算土釘支護結(jié)構(gòu)穩(wěn)定性安全系數(shù).朱劍鋒等[101]提出一種新型的自適應(yīng)禁忌變異遺傳搜索優(yōu)化算法,該算法能獲取土釘墻任意形狀最危險滑動面及相應(yīng)安全系數(shù),快速確定邊坡的穩(wěn)定性.董建華和朱彥鵬[102]提出了地震作用下土釘支護邊坡永久位移計算方法,其中采用遺傳算法搜索土釘支護邊坡的臨界滑動面.惠趁意等[103]運用遺傳算法對復(fù)合土釘支護結(jié)構(gòu)邊坡的最危險滑動面進行動態(tài)搜索,加快了設(shè)計速度.房光文等[104]為了切實反映土釘加固邊坡的實際狀態(tài),考慮土體參數(shù)模糊隨機性和邊坡模糊過渡區(qū)間,提出了一種土釘加固邊坡可靠度分析方法.

        對于錨桿(索)擋墻的設(shè)計,可先假定錨桿長度為一定值,然后通過逐步試算安全系數(shù)確定最優(yōu)設(shè)計方案.羅輝等[105]應(yīng)用可靠度反分析法設(shè)計邊坡錨桿,采用遺傳算法求得目標可靠度下的錨桿優(yōu)化設(shè)計長度.尹志凱等[106]基于改進的差分進化算法,對三維邊坡錨固位置進行合理優(yōu)化,優(yōu)化后可有效節(jié)約錨桿數(shù)量.周蘇華等[9]建立了預(yù)應(yīng)力錨索加固順層邊坡的穩(wěn)定性評價指標體系,提出了基于模糊層次分析法的邊坡穩(wěn)定性評定模型,并通過數(shù)值正交試驗發(fā)現(xiàn)結(jié)構(gòu)面強度和坡后角(即坡頂?shù)孛鎯A角)比邊坡的高度和坡度對邊坡的穩(wěn)定性影響要顯著. 謝全敏等[107]基于灰色關(guān)聯(lián)度分析與模糊識別理論,建立了既有加固邊坡錨桿結(jié)構(gòu)健康狀態(tài)診斷方法,其評估結(jié)果能夠較全面、系統(tǒng)地反映既有錨桿加固邊坡工程的整體健康狀態(tài).

        抗滑樁是邊坡支護中廣泛采用的支擋結(jié)構(gòu)形式.在抗滑樁設(shè)計時,一般是在指定的安全系數(shù)下計算出抗滑樁受到的下滑力,并據(jù)此設(shè)計確定樁距、樁徑、樁長和配筋.唐曉松等[8]、楊波等[108]采用GASVM算法對埋入式和雙排全長式抗滑樁的合理樁位和樁長進行了分析計算.梁冠亭等[109]基于改進M-P法建立了抗滑樁支護邊坡的穩(wěn)定性分析模型,并引入自適應(yīng)遺傳優(yōu)化算法,實現(xiàn)了最危險滑動面的自動搜索.Gong等[110]基于隨機馬爾可夫隨機場方法,研究了地層不確定性對抗滑樁加固邊坡失穩(wěn)概率的影響,以最小化加固邊坡的失穩(wěn)概率和樁的成本為雙目標函數(shù),優(yōu)化設(shè)計了單排抗滑樁的設(shè)計參數(shù),提高了加固邊坡的性能.

        3山區(qū)公路邊坡智能監(jiān)測與滑坡預(yù)測研究進展

        3.1邊坡智能監(jiān)測

        山區(qū)公路運營期間,公路邊坡可能出現(xiàn)不同程度的變形,甚至發(fā)生滑坡、坍塌等強破壞性災(zāi)害,嚴重影響公路的正常使用.監(jiān)測邊坡的位移、土體內(nèi)部應(yīng)力、地下水和外部誘發(fā)因素,對邊坡的穩(wěn)定性評價和滑坡等災(zāi)害的預(yù)測和預(yù)警意義重大.

        近年來,邊坡監(jiān)測技術(shù)取得了長足發(fā)展,并逐漸向高精度、自動化、智能化的方向邁進.常用的公路邊坡監(jiān)測技術(shù)主要有光纖光柵傳感技術(shù)(FBG)、三維激光掃描技術(shù)、數(shù)字化近景攝影測量技術(shù)、合成孔徑雷達干涉技術(shù)(inSAR)和全球?qū)Ш叫l(wèi)星系統(tǒng)(GNSS)等[12]高新技術(shù),它們在公路邊坡監(jiān)測中都有成功應(yīng)用.比如,李時宜等[111]開發(fā)了分布式布里淵光纖傳感技術(shù),可以擴展光纜對局部變形的耐受度,同時提高了監(jiān)測的準確度;謝謨文等[112]運用三維激光掃描技術(shù)對金坪子滑坡表面變形進行了監(jiān)測研究;賈曙光等[113]基于無人機攝影測量技術(shù),實現(xiàn)了高陡邊坡的數(shù)字化巖體產(chǎn)狀測量;王慧敏等[114]基于GNSS高速公路自動化監(jiān)測系統(tǒng),實現(xiàn)了地表位移和深層位移的實時管理和分析.凌建明等[12]對上述五種智能化監(jiān)測技術(shù)的特點、適用性以及發(fā)展和應(yīng)用現(xiàn)狀進行了詳細的回顧,并展望了該領(lǐng)域的發(fā)展方向.也有學(xué)者提出了一些其他的監(jiān)測技術(shù),比如:江勝華等[115]基于磁測原理,采用磁性標簽制作智能石頭,通過磁力梯度儀和智能石頭建立邊坡變形監(jiān)測系統(tǒng),并通過改進遺傳算法,反演智能石頭的運動軌跡,實現(xiàn)了基于磁場梯度的磁性目標定位,進而得到邊坡的位移狀態(tài);梁苗等[116]基于LoRa區(qū)域無線傳輸技術(shù)實現(xiàn)區(qū)域聚集監(jiān)測數(shù)據(jù),再傳輸至后臺處理的深部位移監(jiān)測系統(tǒng),實現(xiàn)了對西南山區(qū)某高速公路邊坡變形遠程自動化監(jiān)測,成功解決了偏遠山區(qū)網(wǎng)絡(luò)信號差和監(jiān)測數(shù)據(jù)回傳難的問題.

        3.2滑坡智能預(yù)測

        基于已有邊坡監(jiān)測數(shù)據(jù)對邊坡變形進行快速、合理的預(yù)測是一項關(guān)鍵工作,它有助于進一步快速評價邊坡失穩(wěn)風(fēng)險和對未來滑坡災(zāi)害進行中長期預(yù)測.邊坡因受到巖土體材料特性、工程水文地質(zhì)條件、荷載條件、地表植被等多因素影響,其變形發(fā)展變化規(guī)律以及災(zāi)變過程難以用傳統(tǒng)方法進行快速、準確預(yù)測.機器學(xué)習(xí)方法具有很強的處理非線性問題的能力,它在邊坡智能預(yù)測中得到了廣泛應(yīng)用,尤其以人工神經(jīng)網(wǎng)絡(luò)(ANN)和支持向量機(SVM)模型為基礎(chǔ)的機器學(xué)習(xí)方法在邊坡預(yù)測中應(yīng)用最為普遍,并發(fā)展出不同的改進方法.

        在各類神經(jīng)網(wǎng)絡(luò)的應(yīng)用方面,Chen等[117]基于模糊神經(jīng)網(wǎng)絡(luò)對監(jiān)測數(shù)據(jù)進行位移預(yù)測,具有較高的預(yù)測精度和適用性.Cheng和Hoang[118]采用模糊k最近鄰算法和螢火蟲算法結(jié)合來優(yōu)化模型超參數(shù),提出了一種新型的預(yù)測邊坡坍塌的模型——基于實例學(xué)習(xí)的群優(yōu)化模糊(SOFIL)模型;相似地,他們還基于貝葉斯框架和k最近鄰算法,提出了邊坡坍塌評估的概率分析方法[119],并采用我國臺灣地區(qū)高速公路的邊坡樣本數(shù)據(jù)驗證了該方法的有效性.Wang等[120]采用基于人工魚群算法(AFSA)的Elman神經(jīng)網(wǎng)絡(luò)模型對無人機攝影測量的位移數(shù)據(jù)進行訓(xùn)練并預(yù)測位移變化,與現(xiàn)有的Elman網(wǎng)絡(luò)方法相比,具有更好的精度和收斂性,適用于邊坡關(guān)鍵測點的位移預(yù)測.

        在深度學(xué)習(xí)的應(yīng)用方面,Yin等[121]利用卷積神經(jīng)網(wǎng)絡(luò)(CNN)處理心電圖儀(ECG)輸出信號的方法創(chuàng)建了一種空間預(yù)測模型,并選取合理的空間預(yù)測因子,在GIS的支持下對博山區(qū)公路邊坡的滑坡易發(fā)性進行了預(yù)測.Das等[122]基于貝葉斯邏輯回歸對印度公路沿線的滑坡敏感性進行了評估.黃武彪等[123]基于層數(shù)自適應(yīng)、通道加權(quán)的CNN方法對川藏交通廊道沿線滑坡易發(fā)性進行了評價.

        由于支持向量機(SVM)模型可以較好地解決監(jiān)測數(shù)據(jù)量不足、維數(shù)高和非線性等一系列問題,因此,鄭志成等[124]通過構(gòu)造基于混合核函數(shù)改進的最小二乘支持向量機(LSSVM)模型,并引入粒子群算法(PSO),提出了邊坡位移時序預(yù)測的PSO-LSSVM算法,同時提高了預(yù)測精度和泛化能力;而Gong等[125]提出了一種結(jié)合雙輸出最小二乘支持向量機和粒子群優(yōu)化算法的滑坡位移區(qū)間預(yù)測新方法,該方法可為滑坡位移的中長期區(qū)間預(yù)測提供準確、可靠的結(jié)果.

        另外,一些其他的智能方法也應(yīng)用到滑坡預(yù)測中,王志穎等[126]構(gòu)造一種基于PSO-Prophet的邊坡變形分析與預(yù)測模型,較好地解決了邊坡變形分析與預(yù)測中周期項提取方法不確定性大和組合預(yù)測模型復(fù)雜度高的問題.仉文崗等[127]采用多元自適應(yīng)回歸樣條曲線和集成學(xué)習(xí)LightGBM模型構(gòu)建了一種基于數(shù)理-機制雙驅(qū)動的滑坡變形預(yù)測方法,可在考慮巖土體參數(shù)不確定性的基礎(chǔ)上對邊坡坡腳變形進行預(yù)測.Liu等[128]先采用粗糙集理論和核主成分分析方法(RS-KPCA)提取輸入數(shù)據(jù),然后采用量子化粒子群算法和最小二乘支持向量機方法(QPSO- LSSVM)創(chuàng)建優(yōu)化預(yù)測模型,最后采用蒙特卡洛模擬法校正預(yù)測結(jié)果,從而提出了一套邊坡位移預(yù)測模型和預(yù)警方法,該模型方法具有良好的精度、收斂性和泛化能力.

        地震是滑坡的主要誘因之一,常用Newmark滑塊位移法來計算邊坡的震后位移[129].該方法雖然原理簡單、計算方便且適用性強,但若要考慮邊坡土體強度參數(shù)變化、地震動強度、屈服加速度、地下水位等多因素對邊坡震動位移預(yù)測的影響,機器學(xué)習(xí)方法則更為靈活.Gade等[130]基于數(shù)據(jù)驅(qū)動的人工神經(jīng)網(wǎng)絡(luò)模型,構(gòu)建了一種新的Newmark滑動位移預(yù)測方程,可用于考慮地震震級、焦點機理、破裂距離、土壤頂部30 m平均橫波速度和邊坡屈服加速度因素下邊坡位移預(yù)測.Nayek和Gade[131]采用相同的方法,針對地震動強度參數(shù)和邊坡屈服加速度值的不同組合預(yù)測了邊坡位移.Cho等[132]基于邊坡位移有限元數(shù)據(jù),采用ANN模型和經(jīng)典回歸模型對邊坡地震位移進行預(yù)測,對比分析結(jié)果表明,ANN模型預(yù)測的位移隨參數(shù)變化更平滑.Huang等[133]基于大規(guī)模振動臺試驗數(shù)據(jù),分別采用簡化的循環(huán)神經(jīng)網(wǎng)絡(luò)(Simple-RNN)模型、長短期記憶(LSTM)神經(jīng)網(wǎng)絡(luò)模型和循環(huán)門單元(GRU)神經(jīng)網(wǎng)絡(luò)模型對地震荷載動態(tài)響應(yīng)的時序位移進行預(yù)測,結(jié)果表明,Simple- RNN模型在分析邊坡的地震動力響應(yīng)方面表現(xiàn)較好.Wang等[134]提出了一個利用極端梯度提升模型(XGBoost)和子集仿真(SS)的機器學(xué)習(xí)框架(SS- XGBoost)來預(yù)測邊坡滑動位移.Macedo等[135]提出了多種機器學(xué)習(xí)模型來估計地震引起的邊坡位移量,其中,Logistic回歸和Bray-Macedo模型(即BM2019模型)出錯率較低.

        3.3滑坡智能識別

        在大面積滑坡災(zāi)害發(fā)生時快速獲取滑坡區(qū)域分布、數(shù)量、規(guī)模等災(zāi)情信息對救援決策和防災(zāi)減災(zāi)都有著重要意義[136]隨著航空航天技術(shù)和光學(xué)遙感技術(shù)的發(fā)展,高分辨率、多/高光譜、多平臺、多時相遙感成像為滑坡的檢測識別和災(zāi)情快速提取提供了新的技術(shù)手段.滑坡的識別結(jié)果可以反映滑坡分布情況,是滑坡易發(fā)性等風(fēng)險評價研究的基礎(chǔ)[137].巨袁臻等[138]利用掩膜區(qū)域卷積神經(jīng)網(wǎng)絡(luò)(Mask R- CNN)目標檢測模塊對中國典型黃土滑坡進行了自動識別.陳善靜等[136]提出了一種基于多源遙感時空譜特征融合的滑坡災(zāi)害檢測方法,其中基于SVM實現(xiàn)了對滑坡目標地物的精確識別.余加勇等[139]基于無人機傾斜攝影測量數(shù)據(jù),重構(gòu)了公路邊坡三維實景模型和三維點云模型,引入多尺度模型與模型點云比較(M3C2)算法對三維點云數(shù)據(jù)進行分析,實現(xiàn)了滑坡、坍塌、落石等災(zāi)害場景的自動識別.

        3.4巖質(zhì)邊坡結(jié)構(gòu)面智能識別

        巖體中結(jié)構(gòu)面調(diào)查和產(chǎn)狀分析是開展巖體穩(wěn)定性分析研究的基礎(chǔ).隨著監(jiān)測和測量技術(shù)的不斷發(fā)展,新型的非接觸式測量技術(shù)被廣泛用于規(guī)模較大、地質(zhì)環(huán)境復(fù)雜的邊坡工程,具有便捷、可靠、安全的特點.比如,三維激光掃描技術(shù)可以短時間內(nèi)獲得巖體結(jié)構(gòu)面的高精度點云數(shù)據(jù)[140];無人機攝影測量技術(shù)隨著運動恢復(fù)結(jié)構(gòu)(SfM)和多視圖立體匹配(MVS)算法的成熟,可以輕松地對拍攝照片進行三維模型重建,更加適應(yīng)復(fù)雜地形的監(jiān)測[141].而后,基于生成的點云數(shù)據(jù)或三維巖體結(jié)構(gòu)模型智能識別結(jié)構(gòu)面參數(shù)的研究也快速發(fā)展起來.Chen等[142]基于k均值聚類算法,提出了一種從三維點云中自動提取不連續(xù)性方向的新方法.葛云峰等[143]利用改進的區(qū)域生長法與解析幾何理論對點云數(shù)據(jù)處理,實現(xiàn)了巖體結(jié)構(gòu)面智能識別與信息提取.寧浩等[144]通過基于霍夫空間變換算法和深度學(xué)習(xí)計算了點云的法向量,并對點云進行賦色,提出了一種自動識別結(jié)構(gòu)面及產(chǎn)狀信息的方法.王培濤等[145]基于敏感性參數(shù)近鄰點數(shù)、夾角閾值和過濾因子的結(jié)構(gòu)面識別算法,實現(xiàn)了對三維復(fù)雜點云的優(yōu)勢結(jié)構(gòu)面傾向、傾角產(chǎn)狀信息快速識別.陳昌富等[146]基于k最近鄰(KNN)聚類算法及主成分分析法(PCA)確定了邊坡三維模型中結(jié)構(gòu)面的位置和產(chǎn)狀參數(shù).

        在充足的數(shù)據(jù)樣本下,深度學(xué)習(xí)方法的識別效果更有優(yōu)勢,王鵬宇和王述紅[147]基于Tensorflow建立了巖質(zhì)邊坡圖像分析的CNN模型,并對模型進行了訓(xùn)練和測試,實現(xiàn)了巖質(zhì)邊坡巖石的自動識別與分類,該模型具有良好的魯棒性.張紫杉等[148]采用空洞卷積算法與高斯混合模型-最大期望算法(GMM-EM)結(jié)合,對巖體坡面裂隙網(wǎng)絡(luò)進行快速智能識別與參數(shù)化表征,達到了較高的準確率.

        3.5巖土體力學(xué)參數(shù)智能反演

        巖土體參數(shù)的分析與確定是邊坡穩(wěn)定性評價和設(shè)計的基礎(chǔ).反演分析方法可為準確估計巖土體參數(shù)提供有效的手段.近年來,隨著計算技術(shù)和人工智能技術(shù)的發(fā)展,ANN、GA、SA、SVM等人工智能方法被廣泛引入反分析領(lǐng)域,巖土工程反分析正朝著多維化、智能化和高效化方向發(fā)展.

        邊坡位移反分析法是確定邊坡巖土體參數(shù)值的一種有效方法.漆祖芳等[149]基于粒子遷徙和變異的粒子群優(yōu)化算法(MVPSO)搜索最佳的支持向量機(v-SVR)模型參數(shù),提出了一種位移反分析方法,該法與基于遺傳算法BP神經(jīng)網(wǎng)絡(luò)模型(BP-GA)和v-SVR-GA相比,反演精度和效率更高.Liu等[150]基于梯度提升決策樹算法構(gòu)建元模型,分別構(gòu)建了以頻率推理的確定性反分析和以貝葉斯推理的概率反分析兩種位移反分析方法.由于兩種方法對參數(shù)空間具有不同的敏感度,可以互補分析邊坡的參數(shù)與位移關(guān)系.

        概率反分析方法可以更好地考慮地質(zhì)力學(xué)參數(shù)的不確定性.Zhang等[151]在貝葉斯框架下評估了邊坡土體中水力參數(shù)、黏聚力和內(nèi)摩擦角的不確定性及其對邊坡穩(wěn)定性預(yù)測的影響.Wang等[152]基于最大似然估計和馬爾可夫鏈蒙特卡羅模擬(MCMC)反算了臺北3號高速公路滑坡中巖土體的內(nèi)摩擦角和錨固力參數(shù).Li等[153]集成貝葉斯方法和多輸出支持矢量機模型提出了一種概率反分析方法,并合理地應(yīng)用于龍?zhí)端娬編r質(zhì)邊坡的楊氏模量和側(cè)壓系數(shù)分析.Jiang等[154]提出基于結(jié)構(gòu)可靠度進行貝葉斯更新(BUS)的方法,對空間變異的土體不排水抗剪強度參數(shù)進行概率反分析和邊坡可靠性更新,有效地避免了“維數(shù)災(zāi)難”和似然乘數(shù)評估,顯著提高了計算精度.江巍等[155]提出了利用BP神經(jīng)網(wǎng)絡(luò)實現(xiàn)巖土體抗剪強度參數(shù)的逆向迭代修正反演的方法.Liu等[156]使用基于子集模擬的貝葉斯更新的方法和邊坡監(jiān)測數(shù)據(jù),反演出土體的水力參數(shù).仇文崗等[127]基于有限的孔壓實測數(shù)據(jù),運用DREAM_zs算法,對降雨入滲非飽和土坡的巖土體變形、水力和強度參數(shù)進行了概率反演和有效更新,該方法計算效率高且收斂速度快.

        4展望

        1)在邊坡的確定性分析方法中,基于中值安全系數(shù)的極限平衡法或極限分析法仍然是最重要的兩種分析手段,但由于其在建模時假定條件較多,無法較全面地考慮山區(qū)復(fù)雜的地質(zhì)條件和環(huán)境因素對公路邊坡穩(wěn)定性的影響,導(dǎo)致其對山區(qū)公路邊坡穩(wěn)定性的評價往往與工程實際不符.雖然基于智能算法和機器學(xué)習(xí)的分析方法,可以考慮多種因素對邊坡穩(wěn)定性的影響,但由于其理論尚不完善、計算相對繁瑣、實用性不強,目前尚未被業(yè)界廣泛接受.因此,對于復(fù)雜環(huán)境和工況下的山區(qū)公路邊坡,亟須發(fā)展方法可靠、計算高效、適用性強的穩(wěn)定性分析智能計算方法.

        2)雖然業(yè)界已普遍認識到山區(qū)公路邊坡穩(wěn)定性分析中存在大量的隨機性和不確定性因素,并逐漸接受了采用可靠度方法來評價邊坡的穩(wěn)定性,而且大量智能算法和機器學(xué)習(xí)方法也在邊坡可靠度計算中得到成功應(yīng)用,但由于對山區(qū)巖土體物理力學(xué)參數(shù)的統(tǒng)計分析嚴重缺乏,導(dǎo)致可靠度分析結(jié)果往往與實際差異較大.因此,應(yīng)引入現(xiàn)代試驗技術(shù)與方法、數(shù)據(jù)挖掘技術(shù)和人工智能方法,大力開展公路邊坡巖土體參數(shù)的數(shù)理統(tǒng)計分析,并加強對邊坡可靠度計算模型和可靠性評價標準的研究.

        3)在山區(qū)公路邊坡處治智能設(shè)計方面,人工智能技術(shù)的應(yīng)用還不夠成熟,相關(guān)的研究還較少.今后應(yīng)加強引入人工智能方法和智能試驗技術(shù),開展邊坡加固結(jié)構(gòu)工作機理和實用的智能優(yōu)化設(shè)計計算方法研究.

        4)在山區(qū)公路邊坡智能監(jiān)測和預(yù)測方面,嘗試采用基于人工智能的“天-空-地”一體化聯(lián)合監(jiān)測方法對公路沿線邊坡開展多層次、多角度、系統(tǒng)性的監(jiān)測,實時監(jiān)控并分析邊坡的變形發(fā)育特征,及時識別滑坡災(zāi)害并做出預(yù)測預(yù)警.

        參考文獻

        [1]SENGUPTA A,UPADHYAY A. Locating the critical failure surface in a slope stability analysis by genetic algorithm [J]. Applied Soft Computing,2009,9(1):387-392.

        [2]CHENG Y M. Global optimization analysis of slope stability by simulated annealing with dynamic bounds and Dirac function[J]. Engineering Optimization,2007,39(1):17-32.

        [3]陳昌富,楊宇.邊坡穩(wěn)定性分析水平條分法及其進化計算[J].湖南大學(xué)學(xué)報(自然科學(xué)版),2004,31(3):72-75.

        CHEN C F,YANG Y. Horizontal slice method of slope stability analysis based on evolutionary algorithm [J]. Journal of Hunan University (Natural Sciences),2004,31(3):72-75. (In Chinese)

        [4]金亮星,馮琦璇,潘卓夫.基于Morgenstern-Price法和改進徑向移動算法的邊坡穩(wěn)定性分析[J].中國公路學(xué)報,2018,31 (2):39-47.

        JIN L X,F(xiàn)ENG Q X,F(xiàn)AN Z F. Slope stability analysis based on Morgenstern-Price method and improved radial movement optimization algorithm [J]. China Journal of Highway and Transport,2018,31(2):39-47. (In Chinese)

        [5]SAMUI P. Slope stability analysis:a support vector machine ap- proach[J]. Environmental Geology,2008,56(2):255-267.

        [6]SINGH J,BANKA H,VERMA A K. A BBO-based algorithm for slope stability analysis by locating critical failure surface[J]. Neural Computing and Applications,2018,31(10):6401-6418.

        [7]PONTEROSSO P,F(xiàn)OX D S. Optimization of reinforced soil embankments by genetic algorithm [J]. International Journal for Numerical and Analytical Methods inGeomechanics,2000,24(4):425-433.

        [8]唐曉松,鄭穎人,段永勝,等.人工智能在埋入式抗滑樁設(shè)計中的應(yīng)用[J].地下空間與工程學(xué)報,2010,6(2):375-381.

        TANG X S,ZHENG YR,DUAN YS,et al. Application of artifi- cal intelligence in the design of embedded anti-slide piles[J]. Chinese Journal of Underground Space and Engineering,2010,6 (2):375-381.(In Chinese)

        [9]周蘇華,邢靜康,張運強,等.基于模糊層次分析法的預(yù)應(yīng)力錨索加固順層邊坡穩(wěn)定性評價[J].安全與環(huán)境學(xué)報,2020,20 (5):1695-1704.

        ZHOU S H,XING J K,ZHANG Y Q,et al. An assessment model based on the hierarchical fuzzy analysis process for the bedding slope with the prestressed anchor cable frame reinforcement[J]. Journal of Safety and Environment,2020,20(5):1695-1704. (In Chinese)

        [10]SARI P A,SUHATRIL M,OSMAN N,et al. Developing a hybrid adoptive neuro-fuzzy inference system in predicting safety of factors of slopes subjected to surface eco-protection techniques [J]. Engineering with Computers,2019,36(4):1347-1354.

        [11]何滿潮,任樹林,陶志剛.滑坡地質(zhì)災(zāi)害牛頓力遠程監(jiān)測預(yù)警系統(tǒng)及工程應(yīng)用[J].巖石力學(xué)與工程學(xué)報,2021,40(11):2161-2172.

        HE M C,REN S L,TAO Z G. Remote monitoring and forecasting system of Newton force for landslide geological hazards and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(11):2161-2172.(In Chinese)

        [12]凌建明,張玉,滿立,等.公路邊坡智能化監(jiān)測體系研究進展[J].中南大學(xué)學(xué)報(自然科學(xué)版),2021,52(7):2118-2136.

        LING J M,ZHANG Y,MAN L,et al. Research progress of intelligent monitoring system for highway slope[J]. Journal of Central South University (Scienceand Technology),2021,52(7):2118-2136.(In Chinese)

        [13]KENNEDY J,EBERHART R. Particle swarm optimization [C]//Proceedings of ICNN,95. New York:IEEE,1995:1942-1948.

        [14]DORIGO M,GAMBARDELLA L M. Ant colony system:a cooperative learning approach to the travelling salesman problem[J]. IEEE Transactions on Evolutionary Computation,1997,1(1):53-66.

        [15]KHAJEHZADEH M,TAHA M R,EL-SHAFIE A,et al. A modified gravitational search algorithm for slope stability analysis[J]. Engineering Applications of Artificial Intelligence,2012,25(8):1589-1597.

        [16]KANG F,LI J,MA Z. An artificial bee colony algorithm for locating the critical slip surface in slope stability analysis[J]. Engineering Optimization,2013,45(2):207-223.

        [17]LISH,WULZ,LUO X H. A novel method for locating the critical slip surface of a soil slope[J]. Engineering Applications of Artificial Intelligence,2020,94(1):103733.

        [18]HIMANSHU N,KUMAR V,BURMAN A,et al. Grey wolf optimization approach for searching critical failure surface in soil sloped[J]. Engineering with Computers,2020,37(3):2059-2072.

        [19]NI S H,LU P C,JUANG C H. A fuzzy neural network approach to evaluation of slope failure potential[J]. Computer-Aided Civil and Infrastructure Engineering,1996,11(1):59-66.

        [20]LIN S,ZHENG H,HAN B,et al. Comparative performance of eight ensemble learning approaches for the development of models of slope stability prediction[J]. Acta Geotechnica,2022,17(4):1477-1502.

        [21]GOH A T. Genetic algorithm search for critical slip surface in multiple-wedge stability analysis[J]. Canadian Geotechnical Jour- nal,1999,36(2):382-391.

        [22]ZHU J F,CHEN C F. Search for circular and noncircular critical slip surfaces in slope stability analysis by hybrid genetic algorithm [J]. Journal of Central South University,2014,21(1):387-397.

        [23]CEN W,LUO J,YU J,et al. Slope stability analysis using genetic simulated annealing algorithm in conjunction with finite element method[J]. KSCE Journal of Civil Engineering,2019,24 (1):30-37.

        [24]ZHOU X P,HUANG X C,ZHAO X F. Optimization of the critical slip surface of three-dimensional slope by using an improved genetic algorithm [J]. International Journal of Geomechanics,2020,20(8):04020120.

        [25]XU Z,ZHOU X. Determination of the critical slip surface of slope based on the improved quantum genetic algorithm and random forest [J]. KSCE Journal of Civil Engineering,2022,26(5):2126- 2138.

        [26]KIRKPATRICK S,GELATT C D J,VECCHI M P. Optimization by simulated annealing[J].Science,1983,220(4598):671-680.

        [27]劉華強,陸明志,殷宗澤.基于模擬退火算法的邊坡臨界滑面搜索方法[J].巖石力學(xué)與工程學(xué)報,2008,27(S2):3686-3691.

        LIUHQ,LUMZ,YINZ Z. Analytical method of searching noncircular slip surface based on simulated annealing optimization algorithm [J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(S2):3686-3691. (InChinese)

        [28]李亮,遲世春,林皋.禁忌模擬退火復(fù)合形法及其在邊坡穩(wěn)定性分析中的應(yīng)用[J].巖石力學(xué)與工程學(xué)報,2006,24(18):3342-3349.

        LI L,CHI S C,LIN G. Tabu simulated annealing complex method and its application to slope stability analysis[J]. Chinese Journal of Rock Mechanics and Engineering,2006,24(18):3342-3349. (In Chinese)

        [29]李亮,陳祖煜,遲世春,等.基于NURBS表示的三維土坡穩(wěn)定分析[J].巖土工程學(xué)報,2008,30(2):212-218.

        LI L,CHEN Z Y,CHI S C,et al. Three-dimensional slope stability analysis based on NURBS simulation[J]. Chinese Journal of Geotechnical Engineering,2008,30(2):212-218.(In Chinese)[30]徐飛,徐衛(wèi)亞,劉造保,等.基于PSO-PP的邊坡穩(wěn)定性評價[J].巖土工程學(xué)報,2011,33(11):1708-1713.

        XU F,XU W Y,LIU Z B,et al. Slope stability evaluation based on PSO-PP [J]. Chinese Journal of Geotechnical Engineering,2011,33(11):1708-1713.(In Chinese)

        [31]楊善統(tǒng),姜清輝,尹濤,等.邊坡臨界滑面搜索的改進粒子群優(yōu)化算法[J].巖土工程學(xué)報,2015,37(8):1411-1417.

        YANG S T,JIANG Q H,YIN T,et al. Search of critical slip surface of slopes using improved particle swarm optimization method [J]. Chinese Journal of Geotechnical Engineering,2015,37(8):1411-1417.(In Chinese)

        [32]陳昌富,龔曉南.混沌擾動啟發(fā)式蟻群算法及其圓弧臨界滑動面搜索中的應(yīng)用[J].巖石力學(xué)與工程學(xué)報,2003,23(20):3450-3453.

        CHEN C F,GONG X N. Heuristic ant colony algorithm involving chaos operator and its application to search for critical slip surface of slope[J]. Chinese Journal of Rock Mechanics and Engineering,2003,23(20):3450-3453.(In Chinese)

        [33]石露,李小春,任偉,等.蟻群算法與遺傳算法融合及其在邊坡臨界滑動面搜索中的應(yīng)用[J].巖土力學(xué),2009,30(11):3486-3492.

        SHI L,LI X C,REN W,et al. Hybrid of ant colony algorithm and genetic algorithm and its application to searching critical slope slip surface[J]. Rock and Soil Mechanics,2009,30(11):3486- 3492.(In Chinese)

        [34]GAO W. Premium-penalty ant colony optimization and its application in slope stability analysis[J]. Applied Soft Computing,2016:480-488.

        [35]GAO W. Determination of the noncircular critical slip surface in slope stability analysis by meeting ant colony optimization[J]. Journal of Computing in Civil Engineering,2016,30(2):1-10.

        [36]YANG Y,WU W,ZHANG J,et al. Determination of critical slip surface and safety factor of slope using the vector sum numerical manifold method and MAX-MIN ant colony optimization algorithm [J]. Engineering Analysis with Boundary Elements,2021,127:64-74.

        [37]RAIHAN T M,MOHAMMAD K,MAHDIYEH E. A new hybrid algorithm for global optimization and slope stability evaluation[J]. Journal of Central South University,2013,20(11):3265-3273.

        [38]蔣建國,譚雅,董立明,等.改進的萬有引力搜索算法在邊坡穩(wěn)定分析中的應(yīng)用[J].巖土工程學(xué)報,2016,38(3):419-425. JIANG J G,TAN Y,DONG L M,WANG C,et al. Application of modified gravitational search algorithm in slope stability analysis [J]. Chinese Journal of Geotechnical Engineering,2016,38(3):419-425.(In Chinese)

        [39]MA L,ZHAO J,ZHANG J,et al. Slope stability analysis based on leader dolphins herd algorithm and simplified bishop method [J]. IEEE Access,2021,9:28251-28259.

        [40]LI S,ZHONG C,LUO X. Locating critical slip surfaces of soil slopes with heuristic algorithms:a comparative study[J]. Expert Systems with Applications,2022,191:116214.

        [41]陳光耀,汪明武,金菊良.基于CMFOA-SVM的邊坡穩(wěn)定性評價模型[J/OL].長江科學(xué)院院報:1-9(2021-09-02)[2022-07- 01].http://kns.cnki.net/kcms/detail/42.1171.TV.20210902.1602.008.html.

        CHEN G Y,WANG M W,JIN J L. CMFOA-SVM model for the evaluation of slope stability[J/OL]. Journal of Yangtze River Scientific Research Institute:1-9(2021-09-02)[2022-07-01]. http://kns.cnki.net/kcms/detail/42.1171.TV.20210902.1602.008.htm.(In Chinese)

        [42]SUYKENS JAK,VANDEW ALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters,1999,9(3):293-300.

        [43]XUE X. Prediction of slope stability based on hybrid PSO and LSSVM[J]. Journal of Computing in Civil Engineering,2017,31 (1):1-10.

        [44]ZENG F,NAIT A M,MOHAMMED A S,et al. Improving the performance of LSSVM model in predicting the safety factor for circular failure slope through optimization algorithms[J]. Engineering with Computers,2021:1-12.

        [45]CAI Z L,MENG Y D,WANG R Y,et al. Slope stability forecast of LS-SVM based on chaos genetic algorithm optimization[J]. Applied Mechanics and Materials,2013,405/406/407/408:2384- 2390.

        [46]LI B,LI D,ZHANG Z,et al. Slope stability analysis based on quantum-behaved particle swarm optimization and least squares support vector machine[J]. Applied Mathematical Modelling,2015,39(17):5253-5264.

        [47]陳昌富,楊宇.基于HGA-ANN驅(qū)動邊坡穩(wěn)定評價T-S型模糊推理系統(tǒng)[J].巖石力學(xué)與工程學(xué)報,2005,24(19):61-66. CHEN C F,YANG Y. Fuzzy reasoning system driven by HGA- ANN for estimation of slope stability[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(19):61-66.(In Chinese)

        [48]GORDAN B,JAHED ARMAGHANI D,HAJIHASSANI M,et al. Prediction of seismic slope stability through combination of particle swarm optimization and neural network[J]. Engineering with Computers,2015,32(1):85-97.

        [49]DAS S K,BISWAL R K,SIVAKUGAN N,et al. Classification ofslopes and prediction of factor of safety using differential evolution neural networks [J]. Environmental Earth Sciences,2011,64 (1):201-210.

        [50]KHAJEHZADEH M,TAHA M R,KEAWSAWASVONG S,et al. An effective artificial intelligence approach for slope stability evaluation[J]. IEEE Access,2022,10:5660-5671.

        [51]FOONG L K,MOAYEDI H. Slope stability evaluation using neural network optimized by equilibrium optimization and vortex search algorithm [J]. Engineering with Computers,2021,38 (S2):1269-1283.

        [52]LIAO Z,LIAO Z. Slope stability evaluation using backpropagation neural networks and multivariate adaptive regression splines [J]. Open Geosciences,2020,12(1):1263-1273.

        [53]胡軍,董建華,王凱凱,等.邊坡穩(wěn)定性的CPSO-BP模型研究[J].巖土力學(xué),2016,37(S1):577-582.

        HU J,DONG J H,WANG K K,et al. Research on CPSO-BP model of slope stability [J]. Rock and Soil Mechanics,2016,37 (S1):577-582.(In Chinese)

        [54]HSIAO C H,CHEN A Y,GE L,et al. Performance of artificial neural network and convolutional neural network on slope failure prediction using data from the random finite element method[J]. Acta Geotechnica,2022:1-11.

        [55]QI C,TANG X. A hybrid ensemble method for improved prediction of slope stability[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2018,42(15):1823-1839.

        [56]QI C,TANG X. Slope stability prediction using integrated metaheuristic and machine learning approaches:a comparative study [J]. Computers and Industrial Engineering,2018,118:112-122.

        [57]SUN J,WU S,ZHANG H,et al. Based on multi-algorithm hybrid method to predict the slope safety factor-stacking ensemble learning with bayesian optimization[J]. Journal of Computational Science,2022,59:101587.

        [58]LIN S,ZHENG H,HAN C,et al. Evaluation and prediction of slope stability using machine learning approaches[J]. Frontiers of Structural and Civil Engineering,2021,15(4):821-833.

        [59]MAHMOODZADEH A,MOHAMMADI M,F(xiàn)ARID H A H,et al. Prediction of safety factors for slope stability:comparison of machine learning techniques[J]. Natural Hazards,2021,111(2):1771-1799.

        [60]KARIR D,RAY A,KUMAR B A,et al. Stability prediction ofa natural and man-made slope using various machine learning algo- rithms[J]. Transportation Geotechnics,2022,34:1-13.

        [61]LIN Y,ZHOU K,LI J. Prediction of Slope Stability Using Four Supervised Learning Methods [J]. IEEE Access,2018,6:31169-31179.

        [62]李典慶,唐小松,周創(chuàng)兵.含相關(guān)非正態(tài)變量邊坡可靠度分析的認知聚類分區(qū)方法[J].巖土工程學(xué)報,2011,33 (6):875-882.

        LI D Q,TANG X S,ZHOU C B,Reliability analysis of slope stability involving correlated non-normal variables using knowledgebased clustered partitioning method[J]. Chinese Journal of Geotechnical Engineering,2011,33(6):875-882.(In Chinese)

        [63]蘇永華,趙明華,蔣德松,等.響應(yīng)面方法在邊坡穩(wěn)定可靠度分析中的應(yīng)用[J].巖石力學(xué)與工程學(xué)報,2006,25(7):14171424.

        SU Y H,ZHAO M H,JIANG D S,et al. Application of response surface method to reliability analysis of slope stability[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(7):1417-1424.(In Chinese)

        [64]LI S,ZHAO H B,RU Z. Slope reliability analysis by updated support vector machine and Monte Carlo simulation[J]. Natural Hazards,2013,65(1):707-722.

        [65]毛鳳山,陳昌富,朱世民.代理模型方法及其在巖土工程中的應(yīng)用綜述[J].地基處理,2020,2(4):295-306.

        MAO F S,CHEN C F,ZHU S M. Surrogate model method and its application in geotechnical engineering[J]. Journal of Ground Improvement,2020,2(4):295-306.(In Chinese)

        [66]SAMUI P,LANSIVAARA T,KIM D. Utilization relevance vector machine for slope reliability analysis[J]. Applied Soft Computing,2011,11(5):4036-4040.

        [67]蘇永華,羅正東,張盼鳳,等.基于Kriging的邊坡穩(wěn)定可靠度主動搜索法[J].巖土工程學(xué)報,2013,35(10):1863-1869.

        SU Y H,LUO Z D,ZHANG P F,et al. Active searching algorithm for slope stability reliability based on Kriging model[J]. Chinese Journal of Geotechnical Engineering,2013,35(10):1863- 1869.(In Chinese)

        [68]KANG F,LI J S,LI J J. System reliability analysis of slopes using least squares support vector machines with particle swarm optimization[J]. Neurocomputing,2016,209:46-56.

        [69]朱彬,裴華富,楊慶.基于高斯過程回歸的響應(yīng)面法及邊坡可靠度分析[J].巖土工程學(xué)報,2019,41(S1):209-212.

        ZHU B,PEI H F,YANG Q. Gaussian process regression-based response surface method and reliability analysis of slopes[J]. Chinese Journal of Geotechnical Engineering,2019,41(S1):209- 212.(In Chinese)

        [70]張?zhí)忑垼i,李天斌,等.基于主動學(xué)習(xí)徑向基函數(shù)的邊坡系統(tǒng)可靠度分析[J].巖土力學(xué),2020,41(9):3098-3108.

        ZHANG T L,ZENG P,LI T B,et al. System reliability analyses of slopes based on active-learning radial basis function[J]. Rock and Soil Mechanics,2020,41(9):3098-3108.(In Chinese)

        [71]謝夢龍,葉新宇,張升,等.LASSO算法及其在邊坡穩(wěn)定性分析中的應(yīng)用[J].巖土工程學(xué)報,2021,43(9):1724-1729.

        XIE M L,YE X Y,ZHANG S,et al. LASSO algorithm and its application in slope stability analysis[J]. Chinese Journal of Geotechnical Engineering,2021,43(9):1724-1729.(In Chinese)[72]鄧志平,李典慶,曹子君,等.考慮地層變異性和土體參數(shù)變異性的邊坡可靠度分析[J].巖土工程學(xué)報,2017,39(6):986-995.

        DENG Z P,LI D Q,CAO Z J,et al. Slope reliability analysis considering geological uncertainty and spatial variability of soil parameters[J]. Chinese Journal of Geotechnical Engineering,2017,39 (6):986-995.(In Chinese)

        [73]GRIFFITHS D V,HUANG J,F(xiàn)ENTON G A. Probabilistic infinite slope analysis[J]. Computers and Geotechnics,2011,38(4):577-584.

        [74]LI D Q,JIANG S H,CAO Z J,et al. A multiple response-surface method for slope reliability analysis considering spatial variability of soil properties [J]. Engineering Geology,2015,187:60-72.

        [75]QIN Y,ZHU F,XU D. Effect of the spatial variability of soil parameters on the deformation behavior of excavated slopes [J]. (Computers and Geotechnics,2021,136:1-15.

        [76]楊智勇,李典慶,曹子君,等.基于廣義子集模擬樣本加權(quán)法的邊坡多失效模式可靠度分析[J].巖石力學(xué)與工程學(xué)報,2018,37(3):630-641.

        YANG Z Y,LI D Q,CAO Z J,et al. Efficient analysis of slope reliability with multiple failure modes using sample weighting method in generalized subset simulation [J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(3):630-641. (In Chinese )

        [77]姬建,姜振,殷鑫,等.邊坡隨機場數(shù)字圖像特征CNN深度學(xué)習(xí)及可靠度分析[J/OL].巖土工程學(xué)報:1-11(2022-02-16)http://kns.cnki.net/kcms/detail/32.1124.TU.20220216.1457.002.html.

        JI J,JIANG Z,YIN X,et al. Slope reliability analysis based on deep learning of digital images of random fields using CNN[J/OL]. Chinese Journal of Geotechnical Engineering:1-11(2022-02-16)http://kns.cnki.net/kcms/detail/32.1124.TU.20220216.1457.002.html.(In Chinese)

        [78]ZAI D,PANG R,XU B,et al. Slope system stability reliability analysis with multi-parameters using generalized probability density evolution method[J]. Bulletin of Engineering Geology and the Environment,2021,80(11):8419-8431.

        [79]LI D Q,QI X H,CAO Z J,et al. Evaluating slope stability uncertainty using coupled Markov chain[J]. Computers and Geotech- nics,2016,73:72-82.

        [80]LIU L L,CHENG Y M,PAN Q J,et al. Incorporating stratigraphic boundary uncertainty into reliability analysis of slopes in spatially variable soils using one-dimensional conditional Markov chain model[J]. Computers and Geotechnics,2020,118:1-13.

        [81]YI P,WEI K,KONG X,et al. Cumulative PSO-Kriging model for slope reliability analysis[J]. Probabilistic Engineering Mechan- ics,2015,39:39-45.

        [82]XIAO H,ZHANG Z,CHEN L,et al. An improved spatio-temporal kriging interpolation algorithm and its application in slope[J]. IEEE Access,2020,8:90718-90729.

        [83]姬建,王樂沛,廖文旺,等.基于WUS概率密度權(quán)重法的邊坡穩(wěn)定系統(tǒng)可靠度分析[J].巖土工程學(xué)報,2021,43(8):1492-1501.

        JI J,WANG L P,LIAO W W,et al. System reliability analysis of slopes based on weighted uniform simulation method[J]. Chinese Journal of Geotechnical Engineering,2021,43(8):1492-1501. (In Chinese)

        [84]YAO W,LI C,YAN C,et al. Slope reliability analysis through Bayesian sequential updating integrating limited data from multiple estimation methods[J]. Landslides,2022,19(5):1101-1117.

        [85]CONTRERAS L F,BROWN E T. Slope reliability and back analysis of failure with geotechnical parameters estimated using Bayesian inference[J]. Journal of Rock Mechanics and Geotechnical Engineering,2019,11(3):628-643.

        [86]劉陽,張建經(jīng),李孟芳,等.基于模糊理論與SVM的邊坡地震失穩(wěn)規(guī)模貝葉斯網(wǎng)絡(luò)評估方法[J].巖石力學(xué)與工程學(xué)報,2019,38(S1):2807-2815.

        LIU Y,ZHANG J J,LI M F,et al. Fuzzy theory- and SVM- based Bayesian network assessment method for slope seismic instability scale[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(S1):2807-2815.(In Chinese)

        [87]徐沖,劉保國,劉開云,等.基于組合核函數(shù)的高斯過程邊坡角智能設(shè)計[J].巖土力學(xué),2010,31(3):821-826.

        XU C,LIU B G,LIU K Y,et al. Slope angle intelligent design based on Gaussian process with combinatorial kernel function[J]. Rock and Soil Mechanics,2010,31(3):821-826.(In Chinese)[88]張志軍,熊正為,丁德馨,等.圓弧破壞邊坡反演設(shè)計的ANN方法與ANFIS方法的比較研究J].巖土力學(xué),2006,27(1):159-162.

        ZHANG Z J,XIONG Z W,DING D X,et al. A comparative study of ANN-based and ANFIS-based approaches for inverse design of circular failure slopes[J]. Rock and Soil Mechanics,2006,27 (1):159-162.(In Chinese)

        [89]ZHOU X,CHEN J,CHEN Y,et al. Bayesian-based probabilistic kinematic analysis of discontinuity-controlled rock slope instabilities[J]. Bulletin of Engineering Geology and the Environment,2016,76(4):1249-1262.

        [90]YAN J,CHEN J,LI Y,et al. Kinematic-based failure angle analysis for discontinuity-controlled rock slope instabilities:a case study of Ren Yi Peak Cluster in Fusong County,China[J]. Natural Hazards,2021,111(3):2281-2296.

        [91]XIE H,DONG J,DENG Y,et al. Prediction model of the slope angle of rocky slope stability based on random forest algorithm [J]. Mathematical Problems in Engineering,2022,2022:9441411.

        [92]《中國公路學(xué)報》編輯部.中國路基工程學(xué)術(shù)研究綜述·2021 [J].中國公路學(xué)報,2021,34(3):1-49.

        Editorial Department of China Journal of Highway and Transport. Review on China's subgrade engineering research·2021 [J]. China Journal of Highway and Transport,2021,34(3):1-49.(In Chinese)

        [93]SAFA M,SARI P A,SHARIATI M,et al. Development of neuro- fuzzy and neuro-bee predictive models for prediction of the safety factor of eco-protection slopes[J]. Physica A:Statistical Mechanics and its Applications,2020,550:1-18.

        [94]LIU L,DOU Y,QIAO J. Evaluation method of highway plant slope based on rough set theory and analytic hierarchy process:a case study in Taihang Mountain,Hebei,China[J]. Mathematics,2022,10(8):1-17.

        [95]LIU D,LIU C,TANG Y,et al. A GA-BP neural network regression model for predicting soil moisture in slope ecological protection[J]. Sustainability,2022,14(3):1386-1399.

        [96]FARSHIDFAR N,KESHAVARZ A,MIRHOSSEINI S M. Pseudo-static seismic analysis of reinforced soil slopes using the horizontal slice method [J]. Arabian Journal of Geosciences,2020,13(7):283-296.

        [97]SHINODA M,MIYATA Y. PSO-based stability analysis of unreinforced and reinforced soil slopes using non-circular slip surface [J].Acta Geotechnica,2018,14(3):907-919.

        [98]BAHOOTOROODY F,KHALAJ S,LEONI L,et al. Reliability estimation of reinforced slopes to prioritize maintenance actions [J]. International Journal of Environmental Research and Public Health,2021,18(2):373-384.

        [99]GANDOMI A H,KASHANI A R,ROKE D A,et al. Optimization of retaining wall design using recent swarm intelligence techniques [J]. EngineeringStructures,2015,103:72-84.

        [100]侯超群,檀奕,阮曉波,等.基于遺傳算法的臨水加筋土擋墻擬靜力內(nèi)部穩(wěn)定分析[J].公路交通科技,2022,39(1):65-71.

        HOU C Q,TAN Y,RUAN X B,et al. Analysis on seismic internal stability of waterfront reinforced retaining wall using pseudostatic approach based on genetic algorithm[J]. Journal of Highway and Transportation Research and Development,2022,39(1):65-71.(In Chinese)

        [101]朱劍鋒,陳昌富,徐日慶.土釘墻內(nèi)部穩(wěn)定性分析自適應(yīng)禁忌變異遺傳算法[J].巖土力學(xué),2010,31(5):1663-1669.

        ZHU JF,CHEN C F,XU R Q. Application of ATMGA to interior stability analysis of soil-nailing wall [J]. Rock and Soil Mechanics,2010,31(5):1663-1669.(In Chinese).

        [102]董建華,朱彥鵬.地震作用下土釘支護邊坡永久位移計算方法研究[J].工程力學(xué),2011,28(10):101-110.

        DONG J H,ZHU Y P. Permanent displacement assessment of slope protected by soil nailing retaining wall under earthquake[J]. Engineering Mechanics,2011,28(10):101-110.(In Chinese)

        [103]惠趁意,朱彥鵬,葉帥華.預(yù)應(yīng)力錨桿復(fù)合土釘支護邊坡穩(wěn)定性分析[J].巖土工程學(xué)報,2013,35(S2):325-329.

        HUI C Y,ZHU Y P,YE S H. Stability analysis of composite soilnailing wall with prestressed anchors[J]. Chinese Journal of Geotechnical Engineering,2013,35(S2):325-329.(In Chinese)

        [104]房光文,朱彥鵬,葉帥華,等.考慮模糊隨機性的土釘加固邊坡可靠度分析[J].巖土工程學(xué)報,2021,43(S1):122-126.

        FANG G W,ZHU Y P,YE S H,et al. Reliability analysis of soil nailing-reinforced slopes considering fuzzy randomness[J]. Chinese Journal of Geotechnical Engineering,2021,43(S1):122- 126.(In Chinese)

        [105]羅輝,楊仕教,喻清,等.基于FEM-RSM-GA的邊坡錨桿設(shè)計可靠性反問題研究[J].武漢理工大學(xué)學(xué)報,2010,32(9):93-96.

        LUO H,YANG S J,YU Q,et al. Research on inverse problem of slope anchor parameters design based on FEM-RSM-GA method [J]. Journal of Wuhan University of Technology,2010,32(9):93-96.(In Chinese)

        [106]尹志凱,盧坤林,石峰,等.基于改進差分進化算法的三維邊坡錨固位置優(yōu)化[J].巖土工程學(xué)報,2020,42(7):1322-1330.

        YIN Z K,LU K L,SHI F,et al. Optimization of anchorage location of three dimensional slopes based on improved differential evolution algorithm[J]. Chinese Journal of Geotechnical Engineering,2020,42(7):1322-1330.(In Chinese)

        [107]謝全敏,徐善柱,但山林,等.既有加固邊坡錨桿結(jié)構(gòu)健康狀態(tài)診斷方法及其應(yīng)用研究[J].湖南大學(xué)學(xué)報(自然科學(xué)版),2018,45(S0):69-73.

        XIE Q M,XU S Z,DAN S L,et al. Study on diagnosing methods and applications of health status for anchor structure in an existing reinforced slope[J]. Journal of Hunan University(Natural Sciences),2018,45(S0):69-73.(In Chinese)

        [108]楊波,鄭穎人,唐曉松,等.人工智能在雙排全長式抗滑樁設(shè)計中的應(yīng)用[J].地下空間與工程學(xué)報,2010,6(2):358-363.

        YANG B,ZHENG Y R,TANG X S,et al. Application of artifical intelligence in the design of full-length anti-slide pile[J]. Chinese Journal of Underground Space and Engineering,2010,6 (2):358-363.(In Chinese)

        [109]梁冠亭,陳昌富,朱劍鋒,等.基于M-P法的抗滑樁支護邊坡穩(wěn)定性分析[J].巖土力學(xué),2015,36(2):451-469.

        LIANG G T,CHEN C F,ZHU J F,et al. Stability analysis of pile stabilized slope based on Morgenstern-Price method[J]. Rock and Soil Mechanics,2015,36(2):451-469.(In Chinese)

        [110]GONG W,TANG H,WANG H,et al. Probabilistic analysis and design of stabilizing piles in slope considering stratigraphic uncertainty[J]. Engineering Geology,2019,259:1-14.

        [111]李時宜,李浩,季文斌.基于布里淵光時域反射儀的邊坡監(jiān)測光纖傳感器結(jié)構(gòu)[J].光子學(xué)報,2021,50(9):0906005.

        LI S Y,LI H,JI W B,et al. Optical fiber sensing structure for slope monitoring based on brillouin optical time domain reflectometer [J]. Acta PhotonicaSinica,2021,50(9):0906005.(In Chinese)

        [112]謝謨文,胡嫚,王立偉.基于三維激光掃描儀的滑坡表面變形監(jiān)測方法:以金坪子滑坡為例[J].中國地質(zhì)災(zāi)害與防治學(xué)報,2013,24(4):85-92.

        XIE M W,HU M,WANG L W. Landslide monitoring by threedimensional laser scanner-case study of the displacement detection of the Jinpingzi landslide(Southwest,China)[J]. ZhongguoDizhizaihai Yu FangzhiXuebao,2013,24(4):85-92.(In Chinese)

        [113]賈曙光,金愛兵,趙怡晴.無人機攝影測量在高陡邊坡地質(zhì)調(diào)查中的應(yīng)用[J].巖土力學(xué),2018,39(3):1130-1136.

        JIA S G,JIN A B,ZHAO Y Q. Application of UAV oblique photogrammetry in the field of geology survey at the high and steep slope [J]. Rock and Soil Mechanics,2018,39(3):1130-1136.(In Chinese)

        [114]王慧敏,羅忠行,肖映城,等.基于GNSS技術(shù)的高速公路邊坡自動化監(jiān)測系統(tǒng)[J].中國地質(zhì)災(zāi)害與防治學(xué)報,2020,31(6):60-68.

        WANG H M,LUO Z X,XIAO Y C,et al. Automatic monitoring system on highway slopes based on GNSS technique[J]. The Chinese Journal of Geological Hazard and Control,2020,31(6):60- 68.(In Chinese)

        [115]江勝華,周智,歐進萍.基于磁場梯度定位的邊坡變形監(jiān)測原理[J].巖土工程學(xué)報,2012,34(10):1944-1949.

        JIANG S H,ZHOU Z,OU J P. Slope deformation monitoring principle based on magnetic gradient tensor[J]. Chinese Journal of Geotechnical Engineering,2012,34(10):1944-1949.(In Chinese)

        [116]梁苗,鄔凱,邵江,等.LoRa技術(shù)在公路邊坡監(jiān)測中的應(yīng)用研究[J].地下空間與工程學(xué)報,2020,16(S2):1011-1016.

        LIANG M,WU K,SHAO J,et al. Application study on LoRa technology in highway slope monitoring[J]. Chinese Journal of Underground Space and Engineering,2020,16(S2):1011-1016. (In Chinese)

        [117]CHEN Y,WANG S,CHEN N,et al. Forecasting cohesionless soil highway slope displacement using modular neural network[J]. Discrete Dynamics in Nature and Society,2012,2012:504574.

        [118]CHENG M Y,HOANG N D. A swarm-optimized fuzzy instancebased learning approach for predicting slope collapses in mountain roads[J]. Knowledge-Based Systems,2015,76:256-263.

        [119]CHENG M Y,HOANG N D. Slope corpse prediction using bayesian framework with k-nearest neighbor density estimation:case study in Taiwan[J]. Journal of Computing in Civil Engineering,2016,30(1):1-8.

        [120]WANG S,ZHANG Z,REN Y,et al. UAV photogrammetry and AFSA-Elman neural network in slopes displacement monitoring and forecasting[J]. KSCE Journal of Civil Engineering,2019,24 (1):19-29.

        [121]YIN C,WANG Z,ZHAO X. Spatial prediction of highway slope disasters based on convolution neural networks[J]. Natural Haz- ards,2022:1-19.

        [122]DAS I,STEIN A,KERLE N,et al. Landslide susceptibility mapping along road corridors in the Indian Himalayas using Bayesian logistic regression models [J]. Geomorphology,2012,179:116-125.

        [123]黃武彪,丁明濤,王棟,等.基于層數(shù)自適應(yīng)加權(quán)卷積神經(jīng)網(wǎng)絡(luò)的川藏交通廊道沿線滑坡易發(fā)性評價[J].地球科學(xué),2022,47(6):2015-2030.

        HUANG W B,DING M T,WANG D,et al. Evaluation of landslide susceptibility based on layer adaptive weighted convolutional neural network model along Sichuan-tibet traffic corridor[J]. Earth Science,2022,47(6):2015-2030.(In Chinese)

        [124]鄭志成,徐衛(wèi)亞,徐飛,等.基于混合核函數(shù)PSO-LSSVM的邊坡變形預(yù)測[J].巖土力學(xué),2012,33(5):1421-1426.

        ZHENG Z C,XU W Y,XU F,et al. Forecasting of slope displacement based on PSO-LSSVM with mixed kernel[J]. Rock and Soil Mechanics,2012,33(5):1421-1426.(In Chinese)

        [125]GONG W,TIAN S,WANG L,et al. Interval prediction of landslide displacement with dual-output least squares support vector machine and particle swarm optimization algorithms[J]. Acta Geotechnica,2022:1-19.

        [126]王志穎,李宗春,許文學(xué).用于邊坡變形分析與預(yù)測的PSO- Prophet模型[J].巖石力學(xué)與工程學(xué)報,2021,40(S1):2643-2652.

        WANG Z Y,LI Z C,XU W X. PSO-Prophet model for slope deformation analysis and prediction[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(S1):2643-2652.(In Chinese)

        [127]仉文崗,顧鑫,劉漢龍,等.基于貝葉斯更新的非飽和土坡參數(shù)概率反演及變形預(yù)測[J].巖土力學(xué),2022,43(4):11121122.

        ZHANG W G,GU X,LIU H L,et al. Probabilistic back analysisof soil parameters and displacement prediction of unsaturated slopes using Bayesian updating[J]. Rock and Soil Mechanics,2022,43(4):1112-1122.(In Chinese)

        [128]LIU C,JIANG Z,HAN X,et al. Slope displacement prediction using sequential intelligent computing algorithms [J]. Measurement,2019,134:634-648.

        [129]陳春舒,夏元友.基于極限分析的邊坡實時動態(tài)Newmark滑塊位移法[J].巖石力學(xué)與工程學(xué)報,2016,35(12):2507-2515.

        CHEN C S,XIA Y Y. A real-time dynamic Newmark sliding block method for slopes[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(12):2507-2515.(In Chinese)

        [130]GADE M,NAYEK P S,DHANYA J. A new neural networkbased prediction model for Newmark's sliding displacements [J]. Bulletin of Engineering Geology and the Environment,2020,80 (1):385-397.

        [131]NAYEK P S,GADE M. Artificial neural network-based fully data-driven models for prediction of newmark sliding displacement of slopes[J]. Neural Computing and Applications,2022,34 (11):9191-9203.

        [132]CHO Y,KHOSRAVIKIA F,RATHJE E M. Acomparison of artificial neural network and classical regression models for earthquake-induced slope displacements[J]. Soil Dynamics and Earthquake Engineering,2022,152:1-12.

        [133]HUANG Y,HAN X,ZHAO L. Recurrent neural networks for complicated seismic dynamic response prediction of a slope system [J]. Engineering Geology,2021,289:106198.

        [134]WANG M X,HUANG D,WANG G,et al. SS-XGBoost:a machine learning framework for predicting newmark sliding displacements of slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering,2020,146(9):1-17.

        [135]MACEDO J,LIU C,SOLEIMANI F. Machine-learning-based predictive models for estimating seismically-induced slope displacements [J]. Soil Dynamics and Earthquake Engineering,2021,148:106795.

        [136]陳善靜,向朝參,康青,等.基于多源遙感時空譜特征融合的滑坡災(zāi)害檢測方法[J].計算機研究與發(fā)展,2020,57(9):1877-1887.

        CHEN S J,XIANG C C,KANG Q,et al. Multi-source remote sensing based accurate landslide detection leveraging spatial- temporal-spectral feature fusion[J]. Journal of Computer Research and Development,2020,57(9):1877-1887.(In Chinese)

        [137]GUZZETTI F,REICHENBACH P,ARDIZZONE F,et al. Estimating the quality of landslide susceptibility models[J]. Geomorphology,2006,81(1/2):166-184.

        [138]巨袁臻,許強,金時超,等.使用深度學(xué)習(xí)方法實現(xiàn)黃土滑坡自動識別[J].武漢大學(xué)學(xué)報(信息科學(xué)版),2020,45(11):1747-1755.

        JU Y Z,XU Q,JIN S C,et al. Automatic object detection of loess landslide based on deep learning[J]. Geomatics and Information Science of Wuhan University,2020,45(11):1747-1755.(In Chinese)

        [139]余加勇,薛現(xiàn)凱,陳昌富,等.基于無人機傾斜攝影的公路邊坡三維重建與災(zāi)害識別方法[J].中國公路學(xué)報,2021,35 (4):77-86.

        YU J Y,XUE X K,CHEN C F,et al. Three-dimensional reconstruction and disaster identification of highway slope using unmanned aerial vehicle-based oblique photography technique [J]. China Journal of Highway and Transport,2021,35(4):77-86. (In Chinese)

        [140]FENG Q. Measuring fracture orientation at exposed rock faces by using a non-reflector total station [J]. Engineering Geology,2001,59:133-146.

        [141]FONSTAD M A,DIETRICH J T,COURVILLE B C,et al. Topographic structure from motion:a new development in photogrammetric measurement [J]. Earth Surface Processes and Landforms,2013,38(4):421-430.

        [142]CHEN J,ZHU H,LIX. Automatic extraction of discontinuity orientation from rock mass surface 3D point cloud[J]. Computers and Geosciences,2016,9:18-31.

        [143]葛云峰,夏丁,唐輝明,等.基于三維激光掃描技術(shù)的巖體結(jié)構(gòu)面智能識別與信息提取[J].巖土力學(xué)與工程學(xué)報,2017,36 (12):3051-3061.

        GE Y F,XIA D,TANG H M,et al. Intelligent identification and extraction of geometric properties of rock discontinuities based on terrestrial laser scanning[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(12):3051-3061.(In Chinese)

        [144]寧浩,董秀軍,劉謙,等.利用點云法向量實現(xiàn)巖體結(jié)構(gòu)面識別[J/OL].武漢大學(xué)學(xué)報(信息科學(xué)版):1-13.(2021-10-29)[2022-07-01]. http://kns.cnki.net/kcms/detail/42.1676.tn.20211028.1541.027.html.

        NING H,DONG X J,LIU Q,et al. Using point cloud normal vector to realize rock mass structural plane recognition [J/OL]. Geomatics and Information Science of Wuhan University:1-13. (2021-10-29)[2022-07-01].http://kns.cnki.net/kcms/detail/42.1676.tn.20211028.1541.027.html.(In Chinese)

        [145]王培濤,覃拓,黃正均,等.基于三維點云的巖體結(jié)構(gòu)面信息快速化識別方法研究[J].巖土力學(xué)與工程學(xué)報,2021,40 (3):503-519.

        WANG PT,QINT,HUANG ZJ,et al. Fast identification of geometric properties of rock discontinuities based on 3D point cloud [J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(3):503-519.(In Chinese)

        [146]陳昌富,何曠宇,余加勇,等.基于無人機貼近攝影的高陡邊坡結(jié)構(gòu)面識別[J].湖南大學(xué)學(xué)報(自然科學(xué)版),2022,49(1):145-154.

        CHEN C F,HE K Y,YU J Y,et al. Identification of discontinuities of high steep slope based on UAV nap-of-the-object photog- raphy[J]. Journal of Hunan University(Natural Sciences),2022,49(1):145-154.(In Chinese)

        [147]王鵬宇,王述紅.四類常見邊坡巖石類別識別和邊界范圍確定的方法[J].巖土工程學(xué)報,2019,41(8):1505-1512.

        WANG P Y,WANG S H. Method for identifying four common rock types of slopes and determining boundary range[J]. Chinese Journal of Geotechnical Engineering,2019,41(8):1505-1512. (In Chinese)

        [148]張紫杉,王述紅,王鵬宇,等.巖坡坡面裂隙網(wǎng)絡(luò)智能識別與參數(shù)提取[J].巖土工程學(xué)報,2021,43(12):2240-2248.

        ZHANG Z S,WANG S H,WANG P Y,et al. Intelligent identification and extraction of geometric parameters for surface fracture networks of rocky slopes[J]. Chinese Journal of Geotechnical En- gineering,2021,43(12):2240-2248.(In Chinese)

        [149]漆祖芳,姜清輝,周創(chuàng)兵,等.基于lSVR和MVPSO算法的邊坡位移反分析方法及其應(yīng)用[J].巖石力學(xué)與工程學(xué)報,2013,32(6):1185-1196.

        QI Z F,JIANG Q H,ZHOU C B,et al. A new slope displacement back analysis method based on v-SVR and MVPSO algorithm and its application[J]. Chinese Journal of Rock Mechanics and Engi- neering,2013,32(6):1185-1196.(In Chinese)

        [150]LIU Y,REN W,LIU C,et al. Displacement-based back- analysis frameworks for soil parameters of a slope:using Frequentist inference and Bayesian inference[J]. International Journal of Geomechanics,2022,22(4):04022026.

        [151]ZHANG L L,ZUO Z B,YE G L,et al. Probabilistic parameter estimation and predictive uncertainty based on field measurements for unsaturated soil slope[J]. Computers and Geotechnics,2013,48:72-81.

        [152]WANG L,HWANG J H,LUO Z,et al. Probabilistic back analysis of slope failure-A case study in Taiwan[J]. Computers and Geotechnics,2013,51:12-23.

        [153]LI S,ZHAO H,RU Z,et al. Probabilistic back analysis based on Bayesian and multi-output support vector machine for a high cut rock slope[J]. Engineering Geology,2015,203:178-190.

        [154]JIANG S H,HUANG J,QI X H,et al. Efficient probabilistic back analysis of spatially varying soil parameters for slope reliability assessment[J]. Engineering Geology,2020,271:105597.

        [155]江巍,歐陽曄,閆金洲,等.邊坡巖土體抗剪強度的逆向迭代修正反演方法[J].巖土力學(xué),2022,43(8):1-9.

        JIANG W,OUYANG Y,YAN J Z,et al. Inversion iterative correction method for estimating shear strength of rock and soil mass in slope engineering[J]. Rock and Soil Mechanics,2022,43(8):1-9.(In Chinese)

        [156]LIU X,WANG Y. Bayesian selection of slope hydraulic model and identification of model parameters using monitoring data and subset simulation[J]. Computers and Geotechnics,2021,139:104428.

        猜你喜歡
        巖土滑坡邊坡
        這邊山 那邊坡
        滑坡推力隱式解與顯式解對比分析——以河北某膨脹土滑坡為例
        淺談公路滑坡治理
        北方交通(2016年12期)2017-01-15 13:52:59
        水利水電工程高邊坡的治理與加固探討
        基于Fluent的滑坡入水過程數(shù)值模擬
        基于SLOPE/W的邊坡穩(wěn)定分析
        “監(jiān)管滑坡”比“渣土山”滑坡更可怕
        山東青年(2016年3期)2016-02-28 14:25:50
        基于不同軟件對高邊坡穩(wěn)定計算
        《巖土力學(xué)》2014年第9 期被EI 收錄論文(40 篇,收錄率100 %)
        《巖土力學(xué)》2014年第7 期被EI 收錄論文(40 篇,收錄率100 %)
        91精品国产综合久久久蜜| 国产精品青草视频免费播放| 久久天天躁狠狠躁夜夜中文字幕| 日本超骚少妇熟妇视频| 一区二区三区字幕中文| 亚洲日韩av无码| 色yeye免费视频免费看| 日韩精品夜色二区91久久久| 媚药丝袜美女高清一二区| 少妇愉情理伦片高潮日本| 成人影片麻豆国产影片免费观看 | 日韩一区二区中文字幕| 少妇被猛烈进入到喷白浆| 曰韩无码无遮挡a级毛片| 青草国产精品久久久久久| 欧美激情在线不卡视频网站| 淫欲一区二区中文字幕| 亚洲精品一区二区高清| 帮老师解开蕾丝奶罩吸乳网站 | 91av小视频| 亚洲av天堂久久精品| 精品国产一区二区av麻豆不卡| 在线观看一级黄片天堂| 精产国品一二三产品蜜桃| 狠狠久久亚洲欧美专区| 精品第一页| 大又黄又粗又爽少妇毛片| 一个人看的视频在线观看| 无码骚夜夜精品| 日韩精品区欧美在线一区| 久久亚洲av午夜福利精品西区| 亚洲av天堂免费在线观看| 99re热视频这里只精品| 国产精品毛片久久久久久l| 精品国精品自拍自在线| 亚洲av成人一区二区三区本码| 成熟丰满熟妇高潮xxxxx视频| 白白色发布在线播放国产| 国产爽快片一区二区三区| 中文字幕人妻熟女人妻| 成 人 免费 黄 色 视频 |