王子寅,唐萬鵬,劉秉儒,趙曉玉,李子豪
植被毯覆蓋對(duì)旱區(qū)露天煤礦土壤生態(tài)化學(xué)計(jì)量及酶活性的影響
王子寅1,2,3,唐萬鵬1,劉秉儒1,2,3※,趙曉玉1,2,3,李子豪1
(1. 北方民族大學(xué)生物科學(xué)與工程學(xué)院,銀川 750021;2. 國家民委黃河流域農(nóng)牧交錯(cuò)區(qū)生態(tài)保護(hù)重點(diǎn)實(shí)驗(yàn)室,銀川 750021;3. 寧夏特殊生境微生物資源開發(fā)與利用重點(diǎn)實(shí)驗(yàn)室,銀川 750021)
為闡明不同材質(zhì)植被毯覆蓋對(duì)干旱地區(qū)露天煤礦土壤養(yǎng)分及酶活性的影響,以寧夏賀蘭山自然保護(hù)區(qū)大峰礦為研究對(duì)象,分析秸稈、椰絲及秸稈-椰絲3種不同材質(zhì)植被毯覆蓋后礦區(qū)土壤有機(jī)碳、全氮、全磷、脲酶、蛋白酶、堿性磷酸酶和過氧化氫酶及生態(tài)化學(xué)計(jì)量比特征。結(jié)果表明:1)植被毯覆蓋增加土壤表層有機(jī)碳和總氮含量且最大值為椰絲植被毯覆蓋土壤,總磷含量無明顯變化,10~20 cm土壤有機(jī)碳、總氮、總磷含量無明顯變化;2)植被毯覆蓋增加C/P、N/P且最大值同樣為椰絲植被毯覆蓋土壤,C/N無明顯變化;3)植被毯覆蓋土壤脲酶和堿性磷酸酶活性顯著高于裸地,且0~10 cm大于10~20 cm,蛋白酶活性無顯著變化,過氧化氫酶活性僅有椰絲植被毯的0~10 cm顯著高于10~20 cm;4)土壤酶活性與環(huán)境因子的相關(guān)性和冗余分析結(jié)果顯示:土壤TP、C/N是制約酶活性的主要影響因子,而N/P、TN是驅(qū)動(dòng)酶活性的主要因子。三種植被毯覆蓋后,土壤表層養(yǎng)分含量增加,同時(shí)增加了土壤表層的C/P和N/P,且促進(jìn)表層土壤酶活性。此外,4種酶活性之間也存在顯著正相關(guān)關(guān)系(<0.01)。相對(duì)于秸稈、秸稈-椰絲植被毯,椰絲植被毯提供土壤養(yǎng)分的能力更強(qiáng)。土壤酶活性與環(huán)境因子的相關(guān)性和冗余分析結(jié)果顯示:土壤TP、C/N是制約酶活性的主要影響因子,而N/P、TN是驅(qū)動(dòng)酶活性的主要因子。上述結(jié)果表明,植被毯覆蓋后增加了土壤表層養(yǎng)分,同時(shí)促進(jìn)表層土壤的酶活性。研究結(jié)果能夠?yàn)楹祬^(qū)露天煤礦土壤植被毯生態(tài)修復(fù)技術(shù)的實(shí)施提供一定理論依據(jù)。
土壤;酶活性;生態(tài)化學(xué)計(jì)量;碳氮磷;植被毯;礦區(qū);賀蘭山
生態(tài)化學(xué)計(jì)量學(xué)(Ecological Stoichiometry)是結(jié)合生物學(xué)、化學(xué)和物理學(xué)等基本學(xué)科,研究生物體所需、并能影響生態(tài)系統(tǒng)生產(chǎn)力、營養(yǎng)循環(huán)以及食物鏈網(wǎng)的碳、氮、磷等元素之間動(dòng)態(tài)平衡的一門新型交叉學(xué)科,旨在揭示生態(tài)系統(tǒng)的穩(wěn)態(tài)轉(zhuǎn)化機(jī)制[1],為研究各營養(yǎng)級(jí)動(dòng)態(tài)、生物多樣性和生物地球化學(xué)循環(huán)提供新的研究觀點(diǎn)[2]。目前,國內(nèi)外學(xué)者針對(duì)生態(tài)化學(xué)計(jì)量特征的研究主要集中于草地、沙漠、濕地及森林生態(tài)系統(tǒng)等[3]方面,開展了一系列研究,并取得了許多成就。Wang等[4]通過對(duì)高寒退化草地的研究,結(jié)果發(fā)現(xiàn)草地退化對(duì)土壤碳、氮和磷的影響不同,導(dǎo)致土壤中碳氮和磷的降低,以及土壤微生物量中碳、氮和磷的含量降低。Wang等[5]發(fā)現(xiàn)對(duì)于喀斯特石漠化生態(tài)系統(tǒng)而言,不同采樣點(diǎn)石漠化程度或植被覆蓋率之間的土壤養(yǎng)分含量或化學(xué)計(jì)量比存在顯著差異,且降水、溫度、巖石裸露和土地覆蓋是影響喀斯特石漠化生態(tài)系統(tǒng)土壤養(yǎng)分化學(xué)計(jì)量特征的主要環(huán)境因素。生態(tài)系統(tǒng)中碳氮磷等元素的循環(huán)是近二十年全球一直關(guān)注的前沿,已經(jīng)廣泛應(yīng)用到微生物營養(yǎng)、生物共生關(guān)系、生態(tài)系統(tǒng)演替、群落結(jié)構(gòu)與動(dòng)態(tài)等方面的研究[6-7],而土壤在陸地生態(tài)系統(tǒng)中具有重要地位,是植物生長發(fā)育的基礎(chǔ),為植物的生長和發(fā)育提供了必要的營養(yǎng)元素[8-9]。此外有研究表明,土壤的物理化學(xué)、微生物和生物化學(xué)特征都取決于酶,酶也是衡量土壤質(zhì)量或生產(chǎn)力變化的重要指標(biāo)[10]。趙雪等[11]研究發(fā)現(xiàn)土壤-1,4-葡萄糖苷酶活性、酶活性碳氮比、碳磷比顯著下降,而-1,4-N-乙酰氨基葡萄糖苷酶、亮氨酸氨基肽酶、堿性磷酸酶、酶活性氮磷比顯著升高,表明油井跡地土壤自然恢復(fù)過程中石油污染物含量顯著降低,碳、氮養(yǎng)分不斷積累,土壤微生物養(yǎng)分限制狀況有所緩解。因此,探索土壤碳、氮、磷生態(tài)化學(xué)計(jì)量及酶活性特征,能夠揭示土壤的養(yǎng)分調(diào)控因素、反映土壤的質(zhì)量狀況,對(duì)于掌控生態(tài)系統(tǒng)的物質(zhì)循環(huán)具有重要意義[12]。
煤炭露天開采不僅破壞生態(tài)環(huán)境,而且還會(huì)惡化當(dāng)?shù)氐纳鷳B(tài)系統(tǒng),使得依靠自然生態(tài)恢復(fù)變得極為困難[13]。研究表明,目前全球約有670萬hm2的土地被采礦破壞,其中中國占四分之一,且每年以4萬hm2的速度增長[14-15][14][15]。賀蘭山作為中國三大沙漠(毛烏素沙地、烏蘭布和騰格里沙漠)與銀川平原的分界線,是中國西北地區(qū)最后的生態(tài)保護(hù)屏障[16]。賀蘭山煤礦資源的露天開采不僅破壞當(dāng)?shù)氐乇碇脖?,而且造成水土流失,誘發(fā)滑坡等地質(zhì)災(zāi)害,切斷了生態(tài)保護(hù)區(qū)的生物走廊,對(duì)保護(hù)區(qū)的景觀、水環(huán)境和生物多樣性產(chǎn)生了巨大影響[17]。因此,賀蘭山露天煤礦廢棄地生態(tài)修復(fù)是一個(gè)迫在眉睫的環(huán)境問題。植被毯又稱生態(tài)保護(hù)纖維毯[18],廣泛用于礦區(qū)的邊坡防護(hù)、土壤侵蝕和生態(tài)恢復(fù)。礦區(qū)排土場植被毯修復(fù)技術(shù)是指通過使用天然無污染材料(如椰殼、秸稈、棉纖維)或廢棄的合成材料(如聚乙烯、聚酯)制成的植被毯,為植物生長提供良好的生存環(huán)境,從而改善露天煤礦排土場地表土壤的結(jié)構(gòu)和肥力,促進(jìn)礦山生態(tài)系統(tǒng)的恢復(fù)[19]。目前,植被毯技術(shù)多運(yùn)用于地震滑坡、公路邊坡、沙化地及礦山廢棄地等區(qū)域植被修復(fù)[20],張俊嬌等[21]僅對(duì)不同模式植被毯覆蓋后植被和土壤水熱肥變化進(jìn)行研究,但對(duì)于植被毯覆蓋后礦山廢棄地土壤微生物群落結(jié)構(gòu)的變化少有研究。因此,研究不同材質(zhì)植被毯覆蓋后的土壤理化指標(biāo)和微生物群落結(jié)構(gòu)對(duì)礦區(qū)生態(tài)恢復(fù)具有重要意義。
本研究以寧夏干旱半干旱地區(qū)露天煤礦排土場為研究對(duì)象,選取便宜易得的秸稈和椰絲兩種材料制作成植被毯,探討秸稈、秸稈-椰絲、椰絲3種不同材質(zhì)的植被毯,并選取裸地作為對(duì)照,對(duì)其土壤碳、氮、磷生態(tài)化學(xué)計(jì)量以及酶活性特征進(jìn)行研究,揭示農(nóng)牧交錯(cuò)帶露天煤礦不同材質(zhì)植被毯覆蓋的土壤養(yǎng)分循環(huán)規(guī)律,為西北干旱半干旱礦區(qū)生態(tài)系統(tǒng)的修復(fù)和植被重建提供參考。
研究區(qū)位于寧夏回族自治區(qū)石嘴山市大武口區(qū)汝箕溝大峰礦排土場(39°2′~39°9′N,106°1′~106°15′E)。該地區(qū)面積約為200 km2,海拔約為1 823~2 120 m。氣候?yàn)榇箨懶詺夂颍旯挝鞅憋L(fēng),最大風(fēng)速約31 m/s,干燥且降雨量少,晝夜溫差大,無地表徑流[22]。礦區(qū)排土場的土壤主要由經(jīng)大型機(jī)械篩選后的粗骨土、礦渣土和采礦廢料組成,并在其表層覆蓋20 cm左右表土。礦區(qū)植物主要為灌木和草本植物,優(yōu)勢(shì)植物有灰榆(L.)、沙東青((Maxim. ex Kom.)Cheng f.)、中亞紫菀木(Novopokr.)、白莖鹽生草(Moq.)、斜莖黃芪(Jacquin)等干旱、半干旱植物[23]。
本研究于2021年5月在大峰礦排土場的秸稈(JG)、椰絲(YS)、秸稈-椰絲(JY)3種不同材質(zhì)的植被毯覆蓋下,并以裸地(CK)為對(duì)照,隨機(jī)選取每鐘材質(zhì)植被毯的4個(gè)1 m×1 m樣方作為對(duì)照,按照五點(diǎn)取樣法,根據(jù)土壤剖面0~10和>10~20 cm分層采集土壤樣品,在每個(gè)樣方隨機(jī)采集5個(gè)土壤樣品作為復(fù)合樣品。從3種植被毯類型和裸地共采集32個(gè)土樣,裝入消毒后的自封袋中,進(jìn)行預(yù)處理(用鑷子去除可見的植被毯碎屑和碎石),放入保溫箱立即運(yùn)回實(shí)驗(yàn)室。一部分土樣于實(shí)驗(yàn)室自然干燥,用于土壤理化性質(zhì)的測(cè)定,另一部分鮮土過1 mm篩后儲(chǔ)存于4 ℃冰箱,用于酶活性的測(cè)定。手套、工具、袋子和其他采樣物品使用前都經(jīng)過消毒殺菌處理。
經(jīng)過處理后的土壤樣品,進(jìn)行土壤有機(jī)碳(Soil Organic Carbon, SOC)、全氮(Total Nitrogen, TN)、全磷(Total Phosphorus, TP)、脲酶(Urease)、蛋白酶(Protease)、堿性磷酸酶(Alkaline phosphatase, AKP)、過氧化氫酶(Catalase)等的測(cè)定。SOC采用TOC測(cè)定儀測(cè)定;TP采用硫酸-高氯酸消煮-鉬銻抗比色法測(cè)定;TN采用硫酸鉀-硫酸銅-硒粉消煮,定氮儀自動(dòng)分析法測(cè)定[24]。脲酶活性用苯酚鈉-次氯酸鈉比色法測(cè)定;蛋白酶活性用茚三酮比色法測(cè)定;堿性磷酸酶(AKP)活性用對(duì)硝基苯磷酸二鈉法測(cè)定;過氧化氫酶活性用高錳酸鉀滴定法測(cè)定[25]。
使用Excel 2019對(duì)數(shù)據(jù)進(jìn)行整理分類;使用IBM SPSS Statistics 24.0進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析,采用單因素方差分析(One-Way ANOVA)進(jìn)行檢驗(yàn),土壤差異用新復(fù)極差法(Duncan)進(jìn)行多重差異性分析,用皮爾森(Person)相關(guān)系數(shù)進(jìn)行相關(guān)性分析,同時(shí)結(jié)合Origin 2021作圖。
由表1可知,YS、JG、JY植被毯覆蓋0~20 cm土壤土層有機(jī)碳含量的平均值分別為39.009、34.510、33.929 g/kg,CK植被毯為31.132 g/kg,YS植被毯土壤有機(jī)碳含量顯著高于裸地。3種植被毯覆蓋及CK土壤有機(jī)碳含量在0~10 cm土層具有顯著差異(<0.05),表現(xiàn)為YS顯著大于CK和JY,JG和YS和JY沒有顯著差異,其中YS植被毯覆蓋土壤有機(jī)碳含量最高,為42.031 g/kg;而10~20 cm土壤土層有機(jī)碳含量沒有顯著差異。在垂直方向上,僅有JY植被毯覆蓋土壤有機(jī)碳含量隨土層深度增加而降低,其余處理無顯著差異。
YS、JG、JY植被毯覆蓋0~20 cm土壤土層總氮含量的平均值分別為0.605、0.568、0.569 g/kg,CK為0.510 g/kg。3種植被毯覆蓋及CK土壤總氮含量在0~10 cm土層具有顯著差異(<0.05),表現(xiàn)為YS和JG顯著大于CK,JY和YS、JG以及CK沒有顯著差異,其中YS植被毯覆蓋土壤總氮含量最高,為0.645 g/kg;而10~20 cm土壤土層總氮含量沒有顯著差異。在垂直方向上,3種不同材質(zhì)植被毯覆蓋土壤總氮與CK相比無顯著差異。
土壤總磷隨植被毯材質(zhì)及土層深度沒有顯著性變化。
表1 不同材質(zhì)植被毯覆蓋土壤SOC、TN、TP含量
注:同列不同大寫字母表示相同土壤指標(biāo)不同處理間差異顯著(<0.05),同行不同小寫字母表示相同土壤指標(biāo)不同土壤深度差異顯著(<0.05)。
Note: Different capital letters in the same column indicate significant differences among different treatments for the same soil index (<0.05), different lowercase letters in the same column indicate significant differences between soil depths for the same soil index (<0.05).
土壤生態(tài)化學(xué)計(jì)量特征在不同材質(zhì)植被毯覆蓋間的變化規(guī)律如圖1和圖2所示。不同材質(zhì)植被毯覆蓋的土壤C/N、C/P、N/P的變化范圍分別是59.910~64.589、77.351~102.991、1.265~1.600,平均值分別為61.813、89.761、1.456,見圖1。其中:不同材質(zhì)植被毯覆蓋土壤的C/N無顯著差異(>0.05),YS植被毯覆蓋土壤的C/P顯著高于JG、JY和CK(<0.05),YS和JY植被毯覆蓋土壤的N/P顯著高于CK(<0.05)。
土壤C/N沒有隨植被毯材質(zhì)和土層深度的變化而產(chǎn)生顯著差異(圖2a),土壤C/P和N/P沒有隨土層深度的變化而產(chǎn)生顯著差異(圖2b、2c)。不同材質(zhì)植被毯覆蓋0~10 cm土壤的C/P表現(xiàn)為YS、JY、JG植被毯覆蓋土壤的C/P顯著大于CK,且YS植被毯覆蓋土壤的C/P最大(111.58)(圖2b)。不同材質(zhì)植被毯覆蓋0~10cm的土壤的N/P表現(xiàn)為YS、JY、JG植被毯覆蓋土壤的C/P顯著大于CK,同樣YS植被毯覆蓋土壤的N/P最大(1.709)(圖2c)。
注:不同小寫字母表示差異顯著(P<0.05)。
注:不同大寫字母表示在不同處理間差異顯著(P<0.05),不同小寫字母表示相同處理不同土層深度間差異顯著(P<0.05)。下同。
如圖3所示,不同材質(zhì)植被毯覆蓋的土壤脲酶、蛋白酶、堿性磷酸酶和過氧化氫酶活性的變化范圍分別是6.248~12.495、0.094~0.109、1.606~3.371g/(g·h)和5.423~6.415 mg/(g·h),平均值分別為10.369、0.104、2.404g/(g·h)和5.946 mg/(g·h),其中:不同材質(zhì)植被毯覆蓋土壤的蛋白酶、堿性磷酸酶和過氧化氫酶活性無顯著差異,YS、JG和JY植被毯覆蓋土壤的脲酶活性顯著高于CK,且JY的脲酶活性最高,為12.495g/(g·h)。
圖3 不同材質(zhì)植被毯覆蓋土壤酶活性
在土壤層次,不同酶活性變化趨勢(shì)不一致。不同材質(zhì)植被毯覆蓋0~10 cm土壤脲酶活性表現(xiàn)為JY、JG和YS顯著大于CK,且JY植被毯覆蓋土壤的脲酶活性最高(15.569g/(g·h));不同材質(zhì)植被毯覆蓋>10~20 cm土壤脲酶活性沒有隨植被毯材質(zhì)的變化而產(chǎn)生顯著差異;除CK和JY外,YS和JG植被毯覆蓋的0~10 cm土壤脲酶活性均顯著高于>10~20 cm土壤脲酶活性(圖4a)。土壤蛋白酶活性沒有隨植被毯材質(zhì)和土層深度的變化而產(chǎn)生顯著差異(圖4b)。不同材質(zhì)植被毯覆蓋0~10 cm土壤堿性磷酸酶活性表現(xiàn)為YS植被毯覆蓋的土壤磷酸酶活性顯著大于CK,酶活性為4.989g/(g·h),JG和JY植被毯覆蓋的土壤磷酸酶與YS和CK相比沒有顯著性差異;不同材質(zhì)植被毯覆蓋10~20 cm土壤堿性磷酸酶活性沒有隨植被毯材質(zhì)的變化而產(chǎn)生顯著差異;除CK和JG外,YS、JY植被毯覆蓋的0~10 cm土壤堿性磷酸酶活性均顯著高于>10~20 cm土壤堿性磷酸酶(圖4c)。土壤過氧化氫酶活性沒有隨植被毯材質(zhì)的變化而產(chǎn)生顯著差異;且只有YS植被毯覆蓋的0~10 cm土壤過氧化氫酶活性顯著高于>10~20 cm土壤過氧化氫酶活性,CK、JG、JY均無顯著差異(圖4d)。
圖4 不同材質(zhì)植被毯覆蓋不同土層土壤酶活性
圖5相關(guān)性分析結(jié)果顯示,土壤有機(jī)碳與總氮呈極顯著正相關(guān),與脲酶、堿性磷酸酶、C/P和N/P呈顯著正相關(guān)。總氮與脲酶、堿性磷酸酶、C/P和N/P呈極顯著正相關(guān),與過氧化氫酶呈顯著正相關(guān),與C/N呈顯著負(fù)相關(guān)。脲酶與堿性磷酸酶、過氧化氫酶、N/P呈極顯著正相關(guān),與蛋白酶和C/P呈顯著正相關(guān)。堿性磷酸酶與過氧化氫酶、C/P和N/P呈極顯著正相關(guān)。過氧化氫酶與N/P呈顯著正相關(guān)。C/N與N/P呈極顯著正相關(guān)。
選取土壤有機(jī)碳、總氮、總磷等6個(gè)因子作為環(huán)境變量,4種酶活性作為響應(yīng)變量,使用Canoco 4.5軟件進(jìn)行冗余分析(表2)。排序軸第一軸和第二軸的土壤酶活性特征值分別為0.486和0.011,土壤酶活性與環(huán)境因子相關(guān)性分別為0.740和0.401,前兩軸環(huán)境因子對(duì)土壤酶活性累計(jì)解釋量為49.7%,對(duì)土壤酶活性-環(huán)境因子累計(jì)解釋量為99.6%。前兩軸能在一定水平上反映環(huán)境因子與土壤酶活性的關(guān)系,且主要有第一軸決定。
注:*表示在0.05級(jí)別(雙尾)具有顯著相關(guān)性,**表示在0.01級(jí)別(雙尾)具有顯著相關(guān)性。
表2 土壤酶活性冗余分析排序的特征值及累計(jì)解釋量
從土壤酶活性與環(huán)境因子冗余分析二維排序圖(圖6)可知,土壤N/P、TN、SOC和C/P的箭頭連線較長,能夠較好解釋土壤酶活性的差異。N/P和TN與4種酶活性的夾角較小,呈正相關(guān)關(guān)系,說明二者是促進(jìn)干旱地區(qū)露天煤礦酶活性的主導(dǎo)因子。
圖6 土壤酶活性-環(huán)境因子的冗余分析二維排序圖
進(jìn)一步研究環(huán)境因子影響土壤酶活性的重要性,對(duì)各環(huán)境因子進(jìn)行蒙特卡洛檢驗(yàn)排序(表3)。各環(huán)境因子的影響排序依次為N/P>TN>SOC>C/P>TP>C/N。其中N/P的解釋量達(dá)到29%,達(dá)到極顯著水平(<0.01),而土壤TN的解釋量為6%,達(dá)到顯著水平(<0.05),SOC(=0.194)、C/P(=0.714)、TP(=0.780)和C/N(=0.880)則對(duì)土壤酶活性沒有顯著性影響。
表3 環(huán)境因子變量解釋的重要性排序和顯著性檢驗(yàn)結(jié)果
土壤碳氮磷是土壤養(yǎng)分的重要組成部分,主要受到凋落物分解、植物根系分泌物、土壤微生物活動(dòng)及土壤呼吸等因素影響[26]。在本研究中,裸地養(yǎng)分含量低且風(fēng)蝕嚴(yán)重,覆蓋度幾近為零,當(dāng)采取人工措施進(jìn)行植被毯覆蓋后,風(fēng)蝕逐漸減弱,有效地避免陽光直射,植被毯在微生物、環(huán)境等綜合作用下逐漸分解,促使土壤碳氮的積累,與王星等[27]研究結(jié)果一致。本研究中,僅在0~10 cm土層中土壤有機(jī)碳和總氮以及JY覆蓋后不同深度的土壤有機(jī)碳有顯著變化趨勢(shì),總磷及>10~20 cm土層土壤養(yǎng)分沒有顯著變化。其中椰絲、秸稈、秸稈-椰絲的有機(jī)碳顯著高于裸地,且椰絲有機(jī)碳含量最高;椰絲、秸稈的總氮顯著高于秸稈-椰絲和裸地,椰絲總氮含量仍然最高,可能是由于植被毯透氣性良好,呈現(xiàn)好氧環(huán)境,增加土壤微生物的活性,從而增強(qiáng)凋落物的分解,這與劉宏遠(yuǎn)等[28]結(jié)果一致。天然椰絲纖維具有比表面積大、中空、體積密度低和能夠?yàn)槲⑸锾峁└嗟母街敝晨臻g,這可能導(dǎo)致椰絲植被毯覆蓋的土壤有機(jī)碳和總氮含量高于秸稈植被毯[29]。由于時(shí)間等自然因素,植被毯風(fēng)化后的營養(yǎng)物質(zhì)只堆積在土壤表層,還未滲透到較深土層[30],隨著時(shí)間的推移,>10~20cm土層土壤養(yǎng)分可能會(huì)發(fā)生顯著變化。磷元素是一種沉積性元素,土壤中的遷移率很低,且主要來源于母質(zhì)的風(fēng)化[31],使得磷元素在土壤中分布較為均勻,不能夠及時(shí)在土壤中聚集,所有沒有顯著性差異,與任麗娜等[32]、劉平等[33]研究結(jié)果一致。
土壤碳氮磷生態(tài)化學(xué)計(jì)量比作為環(huán)境變化的重要參數(shù),是衡量土壤營養(yǎng)成分和營養(yǎng)平衡的重要指標(biāo)[34]。土壤C/N用以反映土壤有機(jī)碳和氮的循環(huán)情況,體現(xiàn)有機(jī)質(zhì)礦化速率,C/N越大說明礦化速率越慢[35]。本研究中不同材質(zhì)植被毯覆蓋后土壤的C/N均值為61.813,遠(yuǎn)高于中國土壤平均C/N水平11.90[36],說明排土場土壤礦化速率慢。此外,不同材質(zhì)植被毯覆蓋后土壤的C/N總體無顯著差異,表明研究區(qū)土壤中碳氮元素含量消耗與積蓄相對(duì)穩(wěn)定,且二者含量密切相關(guān),與張繼輝等[37]研究結(jié)果一致。土壤C/P體現(xiàn)土壤微生物促進(jìn)土壤有效磷釋放的特性,表示土壤有機(jī)磷的礦化能力,對(duì)植物的生長發(fā)育具有重要意義,C/P越高表示磷元素有效性越低[38-39]。本研究中不同材質(zhì)植被毯覆蓋后土壤的C/P均值為89.761,遠(yuǎn)高于中國平均水平52.7[36],說明研究區(qū)土壤磷的有效性較低。三種不同材質(zhì)植被毯覆蓋后土壤C/P明顯高于裸地對(duì)照,說明植被毯覆蓋之后能夠有效減緩礦區(qū)土壤較快的礦化速率,有利于土壤有機(jī)質(zhì)的積累,這與盤禮東等[40]研究結(jié)果一致。由于排土場土壤由粗骨土、礦渣土和采礦廢料組成,可能會(huì)殘留少量煤礦殘?jiān)?,?dǎo)致土壤C/N和C/P遠(yuǎn)高于中國平均水平[36]。N/P可以反映土壤養(yǎng)分的供給能力和限制性水平[41]。研究區(qū)不同材質(zhì)植被毯覆蓋后土壤的N/P均值為1.456,遠(yuǎn)低于全國陸地平均水平3.90[36],說明研究區(qū)土壤表現(xiàn)為嚴(yán)重的N限制,與劉源等[42]研究結(jié)果一致。
土壤酶作為土壤的組成部分之一,其活性是衡量土壤微生物營養(yǎng)需求的重要指標(biāo),對(duì)調(diào)控有機(jī)物的形成和分解、土壤養(yǎng)分的轉(zhuǎn)化和循環(huán)等方面發(fā)揮重要作用[43]。本研究中,除蛋白酶無顯著差異,脲酶和堿性磷酸酶均表現(xiàn)為三種植被毯覆蓋大于裸地,且表層大于深層,過氧化氫酶僅表現(xiàn)為椰絲植被毯表層土壤大于深層土壤,說明植被毯有利于覆蓋后能加強(qiáng)酶活性。此外,土壤酶活性受到多方面因素的共同影響,且不同酶活性對(duì)于不同材質(zhì)植被毯的覆蓋措施的相應(yīng)規(guī)律不一致。首先,植被毯風(fēng)化能提供營養(yǎng)物質(zhì),促進(jìn)改善表層土壤理化性質(zhì),相關(guān)性表明土壤碳氮磷含量能夠促進(jìn)土壤酶活性;此外,植被毯能為微生物提供充足的生存空間,微生物的代謝活動(dòng)能釋放酶,從而提高土壤酶活性[44]。
本研究中,不同植被毯覆蓋后土壤碳氮磷及其生態(tài)化學(xué)計(jì)量和酶活性之間呈不同程度的正負(fù)相關(guān)性。土壤有機(jī)碳與總氮呈極顯著正相關(guān),與脲酶、堿性磷酸酶、C/P和N/P呈顯著正相關(guān);總氮與脲酶、堿性磷酸酶、C/P和N/P呈極顯著正相關(guān),與過氧化氫酶呈顯著正相關(guān),與C/N呈顯著負(fù)相關(guān),說明有機(jī)碳、總氮是土壤酶生產(chǎn)和分泌的能量來源[45]。通過諸多生物化學(xué)反應(yīng),土壤脲酶能提高土壤的供氮能力,堿性磷酸酶不僅與磷轉(zhuǎn)化密切相關(guān),還在碳氮轉(zhuǎn)化中發(fā)揮一定的作用,過氧化氫酶能夠有效防止過氧化氫的毒害作用。本研究中,脲酶、堿性磷酸酶和過氧化氫酶之間均存在顯著正相關(guān)關(guān)系,說明土壤中的酶促反應(yīng)既相對(duì)獨(dú)立又彼此相互聯(lián)系[46]。土壤酶活性與環(huán)境因子的冗余分析結(jié)果顯示:土壤TP、C/N是制約酶活性的主要影響因子,而N/P、TN是驅(qū)動(dòng)酶活性的主要因子。目前對(duì)于賀蘭山礦區(qū)生態(tài)系統(tǒng)植被毯覆蓋后土壤酶活性的主要調(diào)控因子的研究還不夠深入,本試驗(yàn)在一定程度上表明植被毯覆蓋技術(shù)對(duì)于旱區(qū)露天煤礦生態(tài)修復(fù)具有可行性,其余土壤容重、含水量、粒徑等物理指標(biāo)以及微生物特性可能也會(huì)對(duì)土壤酶活性具有一定影響,今后還需結(jié)合土壤物理性質(zhì)-微生物特性-酶活性進(jìn)行深入研究,進(jìn)一步通過實(shí)驗(yàn)數(shù)據(jù)所得結(jié)果和結(jié)論評(píng)價(jià)植被毯技術(shù)的可行性和可靠性。本研究選取裸地進(jìn)行對(duì)照處理,在后續(xù)研究中該部分區(qū)域也會(huì)進(jìn)行采用技術(shù)措施生態(tài)修復(fù)。此外,本研究僅采取一個(gè)時(shí)間點(diǎn)的樣本數(shù)據(jù)進(jìn)行分析,還未從時(shí)間尺度上考慮植被毯覆蓋后對(duì)礦區(qū)土壤微生物的影響,由于植被毯會(huì)隨著時(shí)間的推移而逐漸分解,所以后續(xù)研究還會(huì)持續(xù)關(guān)注植被毯逐漸分解時(shí)土壤微生物群落結(jié)構(gòu)的變化,為后期當(dāng)?shù)氐闹脖换謴?fù)和重建提供一定基礎(chǔ)。
秸稈、椰絲和秸稈-椰絲3種植被毯覆蓋后,土壤表層養(yǎng)分含量增加,同時(shí)增加了土壤表層的C/P和N/P,且促進(jìn)表層土壤酶活性,表明植被毯覆蓋技術(shù)對(duì)于旱區(qū)露天煤礦生態(tài)修復(fù)具有可行性。此外,脲酶、蛋白酶、堿性磷酸酶和過氧化氫酶4種酶活性之間也存在顯著正相關(guān)關(guān)系(<0.01)。相對(duì)于秸稈、秸稈-椰絲植被毯,椰絲植被毯提供土壤養(yǎng)分的能力更強(qiáng)。土壤酶活性與環(huán)境因子的相關(guān)性和冗余分析結(jié)果顯示:土壤TP、C/N是制約酶活性的主要影響因子,而N/P、TN是驅(qū)動(dòng)酶活性的主要因子。
[1] Elser J J, Sterner R W, Gorokhova E, et al. Biological stoichiometry from genes to ecosystems[J]. Ecology Letters, 2000, 3(6): 540-550.
[2] Bian F F, Wang Y K, Duan B L, et al. Drought stress introduces growth, physiological traits and ecological stoichiometry changes in two contrasting Cunninghamia lanceolata cultivars planted in continuous-plantation soils[J]. BMC Plant Biology, 2021, 21(1): 379.
[3] 宋佳杰,徐郗陽,白金澤,等. 秸稈還田配施化肥對(duì)土壤養(yǎng)分及冬小麥產(chǎn)量的影響[J/OL]. 環(huán)境科學(xué):1-13.[2022-04-27].DOI:10.13227/j.hjkx.202112043.
Song Jiajie, Xu Xiyang, Bai Jinze, et al. Effects of straw returning and fertilizer application on soil nutrients and winter wheat yield[J/OL]. Environmental Science: 1-13. [2022-04-27]. DOI:10.13227/j.hjkx.202112043. (in Chinese with English abstract)
[4] Wang Y, Ren Z, Ma P P, et al. Effects of grassland degradation on ecological stoichiometry of soil ecosystems on the Qinghai-Tibet Plateau[J]. Science of the Total Environment, 2020, 722(C): 137910.
[5] Wang L J, Wang P, Sheng M Y, et al. Ecological stoichiometry and environmental influencing factors of soil nutrients in the karst rocky desertification ecosystem, southwest China[J]. Global Ecology and Conservation, 2018, 16: e000449.
[6] Zhao F Z, Ren C J, Han X H, et al. Changes of soil microbial and enzyme activities are linked to soil C, N and P stoichiometry in afforested ecosystems[J]. Forest Ecology and Management, 2018, 427: 289-295.
[7] Shen F F, Wu J P, Fan H B, et al. Soil N/P and C/P ratio regulate the responses of soil microbial community composition and enzyme activities in a long-term nitrogen loaded Chinese fir forest[J]. Plant and Soil, 2019, 436: 91-107.
[8] Xu Y F, Huang Y, Li Y C. Summary of recent climate change studies on the carbon and nitrogen cycles in the terrestrial ecosystem and ocean in China[J]. Advances in Atmospheric Sciences, 2012, 29(5): 1027-1047.
[9] Tian D, Yan Z B, Niklas K J, et al. Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent[J]. National Science Review, 2018, 5(5): 728-739.
[10] Avazpoor Z, Moradi M, Basiri R, et al. Soil enzyme activity variations in riparian forests in relation to plant species and soil depth[J]. Arabian Journal of Geosciences, 2019, 12(23): 1-9.
[11] 趙雪,賈小敏,盧笑玥,等. 黃土高原油井開發(fā)跡地自然恢復(fù)過程土壤酶活性及其化學(xué)計(jì)量特征[J/OL]. 應(yīng)用與環(huán)境生物學(xué)報(bào):1-13. [2022-04-25]. DOI:10.19675/ j.cnki.1006-687x.2021.10041.
Zhao Xue, Jia Xiaomin, Lu Xiaoyue, et al. Soil enzyme activity and its stoichiometric characteristics during natural recovery of oil well development site in the Loess Plateau[J/OL]. Chinese Journal of Applied and Environmental Biology: 1-13. [2022-04-25]. DOI:10.19675/ j.cnki.1006-687x.2021.10041. (in Chinese with English abstract)
[12] 孫德斌,栗云召,于君寶,等. 黃河三角洲濕地不同植被類型下土壤營養(yǎng)元素空間分布及其生態(tài)化學(xué)計(jì)量學(xué)特征[J/OL]. 環(huán)境科學(xué):1-15. [2022-04-27]. DOI:10.13227/j.hjkx.202109011.
Sun Debin, Li Yunzhao, Yu Junbao, et al. Spatial distribution and eco-stoichiometric characteristics of soil nutrient elements under different vegetation types in the Yellow River Delta Wetland[J/OL]. Environmental Science: 1-15. [2022-04-27]. DOI:10.13227/j.hjkx.202109011. (in Chinese with English abstract)
[13] 原野,高國卿,高嫄,等. 黃土區(qū)大型露天煤礦復(fù)墾24a土壤碳氮組分特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(4):167-174.
Yuan Ye, Gao Guoqing, Gao Yuan, et al. Characteristics of soil organic carbon and nitrogen fractions after 24 years of reclamation in a large open pit coal mine in the Loess Plateau[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(4): 167-174. (in Chinese with English abstract)
[14] Ghosh D, Maiti S K. Biochar assisted eco-restoration of coal mine degraded land for un sustainable development goals[J]. Land Degradation & Development, 2021, 32(16): 4494-4508.
[15] 吳鋼,魏東,周政達(dá),等. 我國大型煤炭基地建設(shè)的生態(tài)恢復(fù)技術(shù)研究綜述[J]. 生態(tài)學(xué)報(bào),2014,34(11):2812-2820.
Wu Gang, Wei Dong, Zhou Zhengda, et al. A summary of study on ecological restoration technology of large coal bases construction in China[J]. Acta Ecologica Sinica, 2014, 34(11): 2812-2820. (in Chinese with English abstract)
[16] 田佳,及金楠,鐘琦,等. 賀蘭山云杉林根土復(fù)合體提高邊坡穩(wěn)定性分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(20):144-152.
Tian Jia, Ji Jinnan, Zhong Qi, et al. Analysis on improvement of slope stability in root-soil composite offorest in Helan Mountain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(20): 144-152. (in Chinese with English abstract)
[17] 劉秉儒,李國旗,姜興盛. 賀蘭山自然保護(hù)區(qū)礦山生態(tài)修復(fù)現(xiàn)狀評(píng)價(jià)及相關(guān)問題對(duì)策[J]. 寧夏農(nóng)林科技,2021,62(4):40-43,50.
Liu Bingru, Li Guoqi, Jiang Xingsheng. Countermeasures and evaluation of ecological restoration of mines in helan mountains nature reserve[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2021, 62(4): 40-43, 50. (in Chinese with English abstract)
[18] Eugeniusz D, Lucyna N. Geotextiles in coastal engineering practice[J]. Geotextiles and Geomembranes, 1991, 10(2), 147-159.
[19] Chu Z X, Wang S C, Wang X M. Distribution pattern and limiting factors of vegetation in coal waste pile of Xinzhuangzi coal mine in Huainan[J]. Journal of Coal Science and Engineering (China), 2012, 18(4): 413-417.
[20] 劉興良,劉世榮,劉杉,等. 生態(tài)毯植被恢復(fù)技術(shù)研究及其進(jìn)展[J]. 四川林業(yè)科技,2019,40(6):110-114.
Liu Xinliang, Liu Shirong, Liu Shan, et al. Research and progress of eco-carpet vegetation restoration technology[J]. Journal of Sichuan Forestry Science and Technology, 2019, 40(6): 110-114. (in Chinese with English abstract)
[21] 張俊嬌,胡楊,史常青,等. 不同修復(fù)模式下排土場植被與土壤水熱肥變化[J]. 中國水土保持科學(xué)(中英文),2022,20(3):88-93.
Zhang Junjiao, Hu Yang, Shi Changqing, et al. Changes of vegetation and soil water, temperature and nutrient under different remediation modes in a dump[J]. Science of Soil and Water Conservation, 2022, 20(3): 88-93. (in Chinese with English abstract)
[22] 陳云浩,李京,楊波,等. 基于遙感和GIS的煤田火災(zāi)監(jiān)測(cè)研究:以寧夏汝箕溝煤田為例[J]. 中國礦業(yè)大學(xué)學(xué)報(bào),2005,34(2):226-230.
Chen Yunhao, Li Jing, Yang Bo, et al. Monitoring coal fires based on remotely sensed data and gis technique in coalfields: A case study of Rujigou Col field in Nixia, China[J]. Journal of China University of Mining & Technology, 2005,34(2): 226-230. (in Chinese with English abstract)
[23] Li Z H, Liu B R, Chen Z F, et al. Re-vegetation improves soil quality by decreasing soil conductivity and altering soil microbial communities: A case study of an opencast coal mine in the helan mountains[J]. Frontiers in Microbiology, 2022, 13:833711.
[24] 劉秉儒. 生態(tài)數(shù)據(jù)分析與建模[M]. 銀川:寧夏人民教育出版,2019:83-85.
[25] Wang L G, Ye C L, Chen J, et al. Effects of continuous cropping on bacteria community in oil flax soil[J]. Agricultural Research in the Arid Areas, 2022, 40(1): 70-75.
[26] Gao Y, He N P, Yu G R, et al. Long-term effects of different land use types on C, N, and P stoichiometry and storage in subtropical ecosystems: A case study in China[J]. Ecological Engineering, 2014, 67: 171-181.
[27] 王星,于雙,許冬梅,等. 不同恢復(fù)措施對(duì)退化荒漠草原土壤碳氮及其組分特征的影響[J]. 草業(yè)學(xué)報(bào),2022,31(1):26-35.
Wang Xing, Yu Shuang, Xu Dongmei, et al. Effects of different restorative measures on soil carbon and nitrogen and their component fractions in a degraded desert steppe[J]. Acta Prataculturae Sinica, 2022, 31(1): 26-35. (in Chinese with English abstract)
[28] 劉宏遠(yuǎn),劉亮,李秀軍,等. 植物纖維毯道路邊坡防護(hù)技術(shù)綜合效益評(píng)價(jià)[J]. 水土保持學(xué)報(bào),2019,33(1):345-352.
Liu Hongyuan, Liu Liang, Li Xiujun, et al. Comprehensive benefit evaluation on the protection technique of plant fiber blanket on the road side slope[J]. Journal of Soil and Water Conservation, 2019, 33(1): 345-352. (in Chinese with English abstract)
[29] Feng L J, Chen K, Han D D, et al. Comparison of nitrogen removal and microbial properties in solid-phase denitrification systems for water purification with various pretreated lignocellulosic carriers[J]. Bioresource Technology, 2017, 224: 236-245.
[30] 閆美芳,王璐,郝存忠,等. 煤礦廢棄地生態(tài)修復(fù)的土壤有機(jī)碳效應(yīng)[J]. 生態(tài)學(xué)報(bào),2019,39(5):1838-1845.
Yan Meifang, Wang Lu, Hao Cunzhong, et al. Effects of ecological restoration on soil organic carbon in post-mining lands[J]. Acta Ecologica Sinica, 2019, 39(5): 1838-1845. (in Chinese with English abstract)
[31] 簡尊吉,倪妍妍,徐瑾,等. 馬尾松人工林土壤碳氮磷生態(tài)化學(xué)計(jì)量學(xué)特征的緯度變化[J]. 林業(yè)科學(xué)研究,2022,35(2):1-8.
Jian Zunji, Ni Yanyan, Xu Jin, et al. Latitudinal variations of soil C-N-P stoichiometry in(Lamb.) plantations[J]. Forest Research, 2022, 35(2): 1-8. (in Chinese with English abstract)
[32] 任麗娜,王海燕,丁國棟,等. 密度調(diào)控對(duì)華北落葉松人工林土壤有機(jī)碳及養(yǎng)分特征的影響[J].干旱區(qū)資源與環(huán)境,2012,26(4):138-143.
Ren Lina, Wang Haiyan, Ding Guodong, et al. Effects of-plantation density control on soil organic carbon and nutrients characteristics[J]. Journal of Arid Land Resources and Environment, 2012, 26(4): 138-143. (in Chinese with English abstract)
[33] 劉平,李鵬,楊章旗,等. 廣西不同林齡和區(qū)域馬尾松人工林的土壤C、N、P化學(xué)計(jì)量特征[J]. 廣西科學(xué),2022,29(1):192-200.
Liu Ping, Li Peng, Yang Zhangqi, et al. Stoichiometric characteristics of Soil C, N and P inplantations of different ages and regions in Guangxi[J]. Guangxi Sciences, 2022, 29(1): 192-200. (in Chinese with English abstract)
[34] Zhang T, Wang T, Liu K S, et al. Effects of different amendments for the reclamation of coastal saline soil on soil nutrient dynamics and electrical conductivity responses[J]. Agricultural Water Management, 2015, 159: 115-122.
[35] Huang J,Yuan Z N. Ecological stoichiometric characteristics of soil SOC, TN, and TP under different restoration methods in Qixing River wetland[J]. Journal of King Saud University-Science, 2021, 33(4): 101407.
[36] Tian H Q, Chen G S, Zhang C, et al. Pattern and variation of C:N:P ratios in China's soils: A synthesis of observational data[J]. Biogeochemistry, 2010, 98(1/2/3): 139-151.
[37] 張繼輝,蔡道雄,盧立華,等. 不同林齡柚木人工林土壤生態(tài)化學(xué)計(jì)量特征[J]. 生態(tài)學(xué)報(bào),2020,40(16):5718-5728.
Zhang Jihui, Cai Daoxiong, Lu Lihua, et al. Soil ecological stoichiometry of different aged Teak () plantations[J]. Acta Ecologica Sinica, 2020, 40(16): 5718-5728. (in Chinese with English abstract)
[38] Peng Y, Duan Y S, Huo W G, et al. C:P stoichiometric imbalance between soil and microorganisms drives microbial phosphorus turnover in the rhizosphere[J]. Biology and Fertility of Soils, 2022, 58(4): 421-433.
[39] Wang W Q, Jordi S, Wang C, et al. The response of stocks of C, N, and P to plant invasion in the coastal wetlands of China[J]. Global Change Biology, 2019, 25(2): 733-743.
[40] 盤禮東,李瑞,張玉珊,等. 西南喀斯特區(qū)坡耕地秸稈覆蓋對(duì)土壤生態(tài)化學(xué)計(jì)量特征及產(chǎn)量的影響[J]. 生態(tài)學(xué)報(bào),2022,42(11):4428-4438.
Pan Lidong, Li Rui, Zhang Yushan, et al. Effects of straw mulching on soil ecological stoichiometry characteristics and yieldon sloping farmland in karst area, Southwestern China[J]. Acta Ecologica Sinica, 2022, 42(11): 4428-4438. (in Chinese with English abstract)
[41] Mohsin A M, Hu X, Tariq A, et al. Carbon, nitrogen, and phosphorus stoichiometry mediate sensitivity of carbon stabilization mechanisms along with surface layers of a Mollisol after long-term fertilization in Northeast China[J]. Journal of Soils and Sediments, 2020, 21(2): 705-723.
[42] 劉源,李曉晶,段玉璽,等. 庫布齊沙漠東部植被恢復(fù)對(duì)土壤生態(tài)化學(xué)計(jì)量的影響[J]. 干旱區(qū)研究,2022,39(3):924-932.
Liu Yuan, Li Xiaojing, Duan Yuxi, et al. Effects of vegetation restoration on soil stoichiometry in the eastern Hobq Desert[J]. Arid Zone Research, 2022, 39(3): 924-932. (in Chinese with English abstract)
[43] Qiu X C, Peng D L, Tian H X, et al. Soil ecoenzymatic stoichiometry and microbial resource limitation driven by thinning practices and season types in Larix principis-rupprechtii plantations in North China[J]. Forest Ecology and Management, 2021, 482: 118880.
[44] Cui Y X, Fang L C, Guo X B, et al. Responses of soil bacterial communities, enzyme activities, and nutrients to agricultural-to-natural ecosystem conversion in the Loess Plateau, China[J]. Journal of Soils and Sediments, 2019, 19(3): 1427-1240.
[45] 姚宏佳,王寶榮,安韶山,等. 黃土高原生物結(jié)皮形成過程中土壤胞外酶活性及其化學(xué)計(jì)量變化特征[J]. 干旱區(qū)研究,2022,39(2):456-468.
Yao Hongjia, Wang Baorong, An Shaoshan, et al. Variation in soil extracellular enzyme activities stoichiometry during biological soil crust formation in the Loess Plateau[J]. Arid Zone Research, 2022, 39(2): 456-468. (in Chinese with English abstract)
[46] 解心潔,李朝興,賈小麗,等. 武夷山土壤養(yǎng)分及酶活性的空間分布特征[J]. 安徽農(nóng)業(yè)科學(xué),2017,45(9):115-117.
Xie Xinjie, Li Chaoxing, Jia Xiaoli, et al. Spatial distribution characteristics of soil nutrients and enzyme activities in Wuyi Mountain[J]. Journal of Anhui Agricultural Sciences, 2017, 45(9): 115-117. (in Chinese with English abstract)
Effects of vegetation blanket cover on the ecological stoichiometry and enzymatic activity of opencast coal mine soils in arid areas
Wang Ziyin1,2,3, Tang Wanpeng1, Liu Bingru1,2,3※, Zhao Xiaoyu1,2,3, Li Zihao1
(1.,,750021,; 2.,,750021,; 3.,750021,)
This study aims to explore the effects of different vegetation blanket covers on the nutrient and enzyme activities of open-pit coal mine soils in arid areas. The research object was taken as the Dafeng mine in Ningxia Helan Mountains Nature Reserve. Three vegetation blanket covers were set as straw, straw-coir, and coir. Some parameters were measured, including the organic carbon, total nitrogen, total phosphorus, urease, protease, and alkaline phosphatase, as well as the peroxidase and ecological stoichiometric ratios of the mine soils. The results showed that: 1) The vegetation blanket covered with different materials increased the organic carbon and total nitrogen content of the surface layer of the soil. Specifically, the maximum content was achieved in the soil covered by the coir vegetation blanket. By contrast, there was no significant change in the total phosphorus content, and the organic carbon. Among them, there was the total nitrogen, and total phosphorus content of the soil from 10 to 20 cm. Only the organic carbon content of straw-coir vegetation blanket cover soil decreased with the increasing soil depth in the vertical direction. There was no change in the organic carbon, total nitrogen, and total phosphorus of the rest of the vegetation blanket-covered soil, as the soil depth increased. 2) The vegetation blanket cover with different materials increased C/P and N/P ratios. The maximum was also the soil covered by the coir vegetation blanket. There was no significant change in the C/N. Moreover, there was no change in the C/N, C/P and N/P, as the soil depth increased. 3) The urease and alkaline phosphatase activities of the vegetation blanket-covered soil were significantly higher than those of the bare ground. The soil from 0 to 10cm was greater than that from 10 to 20cm. There was no change in the protease activity with the depth of the soil layer. Furthermore, the catalase activity was significantly higher only in the soil from 0 to 10cm of the coir vegetation blanket than in the soil from 10 to 20 cm. 4) The correlation between soil enzyme activity and environmental factors showed that the total phosphorus of soil and C/N were the main influencing factors to govern the enzyme activity, whereas, the N/P and the total nitrogen of soil were the main factors to drive the enzyme activity. The nutrient content of the soil surface layer increased after the three vegetation blankets were mulched, which also increased the C/P and N/P of the soil surface layer, thus promoting surface soil enzyme activity. In addition, there was a significant positive correlation (<0.01) among the four enzyme activities. The coir vegetation blanket was more capable to provide soil nutrients, compared with the straw and straw-coir vegetation blankets. The redundancy analysis of soil enzyme activities and environmental factors showed that the total soil phosphorus of soil and C/N were the main influencing factors to govern the enzyme activities, while the N/P and the total nitrogen of soil were the main factors driving the enzyme activities. Consequently, the vegetation blankets cover increased the nutrients in the surface layer of the soil. At the same time, the enzyme activity was also promoted in the surface soil. The findings can provide a strong theoretical basis to implement the ecological restoration of vegetation blankets for the open-pit coal mine soil in arid areas.
soils; enzyme activity; ecological stoichiometry; C, N and P; vegetation blanket; mining area; Helan Mountains
10.11975/j.issn.1002-6819.2022.15.013
S154.3; X826
A
1002-6819(2022)-15-0124-09
王子寅,唐萬鵬,劉秉儒,等. 植被毯覆蓋對(duì)旱區(qū)露天煤礦土壤生態(tài)化學(xué)計(jì)量及酶活性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(15):124-132.doi:10.11975/j.issn.1002-6819.2022.15.013 http://www.tcsae.org
Wang Ziyin, Tang Wanpeng, Liu Bingru, et al. Effects of vegetation blanket cover on the ecological stoichiometry and enzymatic activity of opencast coal mine soils in arid areas[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(15): 124-132. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.15.013 http://www.tcsae.org
2022-05-04
2022-06-22
國家自然科學(xué)基金項(xiàng)目(32060280);寧夏重點(diǎn)研發(fā)計(jì)劃重點(diǎn)項(xiàng)目(2021BBF02009);寧夏回族自治區(qū)科技創(chuàng)新領(lǐng)軍人才項(xiàng)目(2021GKLRLX12);中央高校基本科研業(yè)務(wù)費(fèi)北方民族大學(xué)高層次人才引進(jìn)科研啟動(dòng)項(xiàng)目(2019KYQ001);北方民族大學(xué)研究生創(chuàng)新項(xiàng)目(YCX22172)
王子寅,研究方向?yàn)樾迯?fù)生態(tài)學(xué)。Email:ziyin_wang@foxmail.com
劉秉儒,博士,教授,研究方向?yàn)樯鷳B(tài)修復(fù)與生物多樣性。Email:bingru.liu@163.com