亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于特征暫態(tài)零模電流偏態(tài)系數(shù)的有源配電網(wǎng)單相故障定位方法

        2022-11-07 11:11:46陳紀(jì)宇歐陽金鑫范昭勇
        電力系統(tǒng)保護(hù)與控制 2022年20期
        關(guān)鍵詞:配電網(wǎng)故障

        黃 飛,陳紀(jì)宇,戴 健,歐陽金鑫,劉 佳,范昭勇

        基于特征暫態(tài)零模電流偏態(tài)系數(shù)的有源配電網(wǎng)單相故障定位方法

        黃 飛1,陳紀(jì)宇2,戴 健1,歐陽金鑫2,劉 佳1,范昭勇3

        (1.國網(wǎng)重慶市電力公司電力科學(xué)研究院,重慶 401123;2.輸配電裝備及系統(tǒng)安全與新技術(shù)國家重點(diǎn)實(shí)驗(yàn)室(重慶大學(xué)),重慶 400044;3.國網(wǎng)重慶市電力公司,重慶 400015)

        含分布式電源的配電網(wǎng)是新型電力系統(tǒng)的重要組成部分,但分布式電源接入導(dǎo)致配電網(wǎng)的故障形態(tài)變得復(fù)雜,特別是使得中性點(diǎn)經(jīng)消弧線圈接地的配電網(wǎng)單相故障特征進(jìn)一步被弱化,配電網(wǎng)單相故障定位變得愈加困難?,F(xiàn)有方法存在靈敏度不足或特征量提取與處理困難的問題,通過解析有源配電網(wǎng)單相故障暫態(tài)過程中零模電流的分布特點(diǎn),發(fā)現(xiàn)故障點(diǎn)上游和非故障區(qū)段的暫態(tài)零模電流始終呈振蕩衰減且極性相反的特征。進(jìn)而引入偏態(tài)系數(shù)刻畫暫態(tài)零模電流的振蕩衰減特征,構(gòu)造了基于特征暫態(tài)零模電流偏態(tài)系數(shù)的單相故障定位判據(jù),并提出了有源配電網(wǎng)單相故障區(qū)段的靈敏定位方法。理論分析和仿真結(jié)果表明,該方法在顯著降低故障特征量提取及處理難度的基礎(chǔ)上,仍能可靠實(shí)現(xiàn)有源配電網(wǎng)單相故障區(qū)段定位,具有整定計(jì)算簡單和抗通信干擾能力強(qiáng)等優(yōu)點(diǎn),為新一代配電網(wǎng)單相故障快速定位提供理論依據(jù)。

        分布式電源;有源配電網(wǎng);暫態(tài)零模電流;偏態(tài)系數(shù);單相故障定位

        0 引言

        隨著清潔能源發(fā)電效率的提高和配套設(shè)備成本的不斷下降,包括風(fēng)能、光能等在內(nèi)的分布式電源(distributed generation, DG)憑借其供電靈活、低碳綠色的特點(diǎn),已成為新一代配電網(wǎng)的核心組成[1-3]。分布式電源帶來紅利的同時也對配電網(wǎng)故障定位提出了新的挑戰(zhàn)。隨著分布式電源滲透率的不斷提高,配電網(wǎng)拓?fù)淙遮叾嘣椿?,受外力和絕緣老化等因素影響,事故頻發(fā),其中又以單相故障最為突出。DG出力具有波動性、隨機(jī)性,在分布式電源影響下配電網(wǎng)單相故障的等效電路和參數(shù)變得十分復(fù)雜[4-7],使得有源配電網(wǎng)單相故障特征進(jìn)一步被弱化。特別是在中性點(diǎn)經(jīng)消弧線圈接地方式下,單相故障定位存在靈敏度不足的問題[8-11],電氣設(shè)備和人身安全問題日益凸顯。

        國內(nèi)外學(xué)者針對常規(guī)配電網(wǎng)單相故障定位展開了大量研究,定位方法及應(yīng)對措施已較為成熟。文獻(xiàn)[12]提出了基于零序電流有功分量的定位方法,但基于穩(wěn)態(tài)量的故障定位準(zhǔn)確性易受接地方式、故障形式以及系統(tǒng)運(yùn)行方式的影響,常常面臨靈敏度不足的問題。隨著配電監(jiān)控技術(shù)的發(fā)展,基于暫態(tài)量的故障定位方法[13-14]研究得到突破,文獻(xiàn)[13]提出了利用離散均方根距離度量暫態(tài)零序電流相似性,進(jìn)而實(shí)現(xiàn)故障定位的方法,但未考慮通信同步及噪聲對信號傳輸?shù)挠绊憽N墨I(xiàn)[14]從頻域角度提出了基于零模電流暫態(tài)分量頻率差異的故障定位方法,從原理上克服了消弧線圈的影響,但對數(shù)字處理芯片的運(yùn)算性能提出了較高要求。除利用自然故障響應(yīng)特征外,文獻(xiàn)[15]提出通過控制接地晶閘管通斷,注入幅相和頻率可控的擾動信號,實(shí)現(xiàn)了多種故障場景下的定位,具有較強(qiáng)耐過渡電阻能力,但需要投入額外設(shè)備。近年來,通過綜合多種定位判據(jù)或借助故障數(shù)據(jù)訓(xùn)練,以提高定位準(zhǔn)確性的思路受到關(guān)注,文獻(xiàn)[16-18]通過模擬學(xué)習(xí)行為或自然過程,從而實(shí)現(xiàn)故障選線或定位。但是,基于智能算法的故障定位方法較為復(fù)雜,物理解釋性較差,尚未得到推廣應(yīng)用。

        由于受DG故障輸出特性的影響,現(xiàn)有單相故障定位方法大多適用于常規(guī)配電網(wǎng),在有源配電網(wǎng)中的靈敏度受限[19-21]。研究人員針對有源配電網(wǎng)單相故障定位開展了研究。文獻(xiàn)[22]利用初始行波到達(dá)時刻構(gòu)造故障矩陣從而確定故障位置,文獻(xiàn)[23]提出基于暫態(tài)零序電流峭度和初始凹凸性的數(shù)學(xué)形態(tài)學(xué)故障定位判據(jù),但兩種方法的有效性與定位精度受故障暫態(tài)信息窗口獲取準(zhǔn)確性的直接影響。文獻(xiàn)[24]通過邏輯運(yùn)算各開關(guān)和區(qū)段的狀態(tài)信息序列構(gòu)造目標(biāo)函數(shù),進(jìn)而提出基于果蠅優(yōu)化算法的故障定位方法,該方法僅需邏輯信號通信,提高了抗干擾能力,但數(shù)據(jù)處理量較大。有源配電網(wǎng)的單相故障定位還存在一定的技術(shù)空白。

        本文以經(jīng)消弧線圈接地的有源配電網(wǎng)為對象,提出了基于特征暫態(tài)零模電流偏態(tài)系數(shù)的單相故障定位方法。通過解析不同故障位置下的暫態(tài)零模電流,發(fā)現(xiàn)了故障點(diǎn)上游和非故障區(qū)段的暫態(tài)零模電流始終呈振蕩衰減且極性相反的特征;設(shè)置合理特征頻段濾波器提取特征暫態(tài)零模電流,并引入偏態(tài)系數(shù)刻畫其振蕩衰減特征,構(gòu)造了基于特征暫態(tài)零模電流偏態(tài)系數(shù)的故障定位判據(jù),提出了有源配電網(wǎng)單相故障區(qū)段定位方法;最后,通過仿真驗(yàn)證了定位方法的準(zhǔn)確性。仿真結(jié)果表明,該方法在顯著降低故障特征量提取及處理難度的基礎(chǔ)上,仍能可靠地實(shí)現(xiàn)故障定位,具有整定計(jì)算簡單和抗通信干擾能力強(qiáng)等優(yōu)點(diǎn)。

        1 有源配電網(wǎng)單相故障暫態(tài)解析

        DG并網(wǎng)變壓器高壓側(cè)通常采用△接線或Y接線[25-26]。不同故障位置的有源配電網(wǎng)單相故障如圖1(a)所示。圖中:T1為主變壓器;T2為接地變壓器;p為消弧線圈;TDG為DG并網(wǎng)變壓器。根據(jù)故障點(diǎn)與DG公共并網(wǎng)點(diǎn)(point of common coupling, PCC)的位置關(guān)系,有源配電網(wǎng)的單相故障分為3類:1) 故障點(diǎn)f1位于PCC點(diǎn)上游;2) 故障點(diǎn)f2位于PCC點(diǎn)下游;3) 故障點(diǎn)f3位于非DG接入饋線。

        由于DG支路的并聯(lián)分流作用,單相故障附加模網(wǎng)絡(luò)的等效線模阻抗相較于常規(guī)配電網(wǎng)有所減小,但線模網(wǎng)絡(luò)中線路阻抗仍遠(yuǎn)小于對地電容容抗。將1模和2模網(wǎng)絡(luò)等效為電阻串聯(lián)電感的形式[27-28],可得有源配電網(wǎng)單相故障暫態(tài)等效電路如圖1(c)所示。圖中,和分別為考慮DG等值參數(shù)后的線模網(wǎng)絡(luò)電阻、電感;和分別為零模網(wǎng)絡(luò)電阻、電感,與DG接入前一致;為等效零模分布電容。

        圖1 有源配電網(wǎng)單相故障

        當(dāng)有源配電網(wǎng)發(fā)生單相故障時,零模分布電容充電速度快,暫態(tài)故障電流頻率較高,可以忽略消弧線圈的影響[29]。根據(jù)圖1(c),可建立關(guān)于暫態(tài)零模電流的二階微分方程。

        暫態(tài)零模電流包括振蕩衰減分量和工頻穩(wěn)態(tài)分量。當(dāng)有源配電網(wǎng)發(fā)生單相故障時,振蕩衰減分量頻率為300~3000 Hz[27],故振蕩衰減分量幅值遠(yuǎn)大于工頻穩(wěn)態(tài)分量。暫態(tài)過程中零模電流主要以振蕩衰減分量為主,具有高頻振蕩衰減的特點(diǎn),其衰減速度與衰減因子大小呈正相關(guān)。

        2 有源配電網(wǎng)暫態(tài)零模電流分布特征

        圖2 故障點(diǎn)位于DG接入饋線時的暫態(tài)零模電流

        當(dāng)單相故障發(fā)生在非DG接入饋線時,部分故障電流通過DG形成回路,暫態(tài)零模電流分布如圖3所示。故障線路的暫態(tài)零模電流同樣可分解為消弧線圈感性電流、經(jīng)配電網(wǎng)等效電源的容性電流和經(jīng)DG送出線路的容性電流。流過非故障區(qū)段的暫態(tài)零模電流仍為線路自身對地電容電流,故障暫態(tài)階段流過故障點(diǎn)上游任一截面的零模電流仍可近似等于非故障線路對地電容電流相量和。綜上分析,DG的接入改變了暫態(tài)零模電流分布,但并未影響故障點(diǎn)上游、下游和非故障線路的暫態(tài)零模電流關(guān)系。

        圖3 故障點(diǎn)位于非DG接入饋線時的暫態(tài)零模電流

        3 有源配電網(wǎng)單相故障定位方法

        3.1 故障定位特征量

        當(dāng)有源配電網(wǎng)發(fā)生單相故障時,線路暫態(tài)零模電流呈振蕩衰減特征,后半波模極大值總是小于前半波模極大值,此外故障點(diǎn)上游與非故障區(qū)段暫態(tài)零模電流極性相反。為此,引入偏態(tài)系數(shù)用以刻畫暫態(tài)零模電流振蕩衰減且在故障點(diǎn)上游與非故障區(qū)段極性相反的特點(diǎn),暫態(tài)零模電流的偏態(tài)系數(shù)(skewness coefficient, SK)定義為

        式(3)分子部分可進(jìn)一步表示為正負(fù)半波采樣偶的形式,即

        3.2 故障區(qū)段定位原理

        基于暫態(tài)零模電流偏態(tài)系數(shù)的故障定位流程如圖5所示。當(dāng)變電站母線零序電壓大于零序電壓整定值時,啟動故障定位算法。零序電壓整定值按照躲過系統(tǒng)不對稱的影響整定。借助饋線智能終端(smart terminal unit, STU)采集暫態(tài)零模電流瞬時值,并就地計(jì)算偏態(tài)系數(shù),通過比較相鄰STU間的暫態(tài)零模電流偏態(tài)系數(shù)來確定故障區(qū)段。

        圖5 基于暫態(tài)零模電流偏態(tài)系數(shù)的故障定位流程

        規(guī)定由母線指向線路為正方向,區(qū)段內(nèi)STU關(guān)系遵循正方向原則,即相對靠母線者為父(節(jié)點(diǎn))STU,其下游為子(節(jié)點(diǎn))STU。當(dāng)饋線無分支時,父STU對應(yīng)的左右子STU不同時存在,此時從首個STU開始搜索,至第一個偏態(tài)系數(shù)異號STU為止,相鄰2個偏態(tài)系數(shù)異號的STU之間區(qū)段即為故障區(qū)段。配電網(wǎng)單相故障定位原理如圖6所示。首個父STU僅有1個子STU,且STU1的偏態(tài)系數(shù)與STU2同號,故障不在區(qū)段①內(nèi),應(yīng)繼續(xù)向下搜索,如圖6(a)所示。以STU2為父STU,獲取下一級子STU3的偏態(tài)系數(shù),若f點(diǎn)發(fā)生A相接地故障(A→G),STU2的偏態(tài)系數(shù)與STU3異號,可判定區(qū)段②為故障區(qū)段,并不再繼續(xù)搜索。

        圖6 配電網(wǎng)單相故障定位原理

        若存在分支線路,父STU對應(yīng)2個及以上子STU,僅利用兩端暫態(tài)零模電流偏態(tài)系數(shù)異號無法判斷單相故障發(fā)生位置。當(dāng)故障點(diǎn)位于分支線路或分支出口位置時,STU2與STU3均異號。此時應(yīng)聯(lián)合判斷父STU及其所有子STU的暫態(tài)零模電流偏態(tài)系數(shù)。若所有子STU均與父STU偏態(tài)系數(shù)異號,即可判斷故障區(qū)段為分支出口位置。否則繼續(xù)向與父STU偏態(tài)系數(shù)同號的子STU一側(cè)搜索。圖6(b)中,父STU2含STU3、STU5兩個子STU,父STU與子STU3偏態(tài)系數(shù)異號,與子STU5同號,因此應(yīng)繼續(xù)在同號STU支路向下搜索。以STU5為父STU,子STU6與其偏態(tài)系數(shù)異號,則可判定區(qū)段④為故障區(qū)段。圖6(c)中,子STU3、STU5均與父STU2偏態(tài)系數(shù)異號,由此可判定故障區(qū)段為分支出口位置即區(qū)段⑤。

        4 有源配電網(wǎng)故障定位整定方法

        4.1 故障定位判據(jù)

        4.2 特征頻段濾波器整定

        考慮分布參數(shù)的有源配電網(wǎng)單相故障零模網(wǎng)絡(luò)如圖7所示。另外,考慮到零模電阻遠(yuǎn)小于零模電感,可得線路等效零模阻抗,如式(7)所示。

        圖7 考慮分布參數(shù)的有源配電網(wǎng)單相故障零模網(wǎng)絡(luò)

        4.3 采樣窗口選取

        5 算例分析

        圖8 仿真系統(tǒng)

        5.1 暫態(tài)零模電流偏態(tài)特性

        5.2 不同過渡電阻的故障定位

        為驗(yàn)證所提方法在不同過渡電阻下的適用性,設(shè)在饋線L2的30%處發(fā)生單相故障,故障初始角為0°。過渡電阻從1W至300W變化,仿真可得故障饋線各STU的偏態(tài)系數(shù),如表1所示。

        表1 不同過渡電阻下的STU偏態(tài)系數(shù)和故障定位結(jié)果

        當(dāng)過渡電阻為10W時,以此為例說明故障定位過程:首先以STU5為父STU,直接搜索下一級子STU6,二者偏態(tài)系數(shù)均為正值,根據(jù)式(6)可知,故障定位判據(jù)運(yùn)算結(jié)果為“0”,則判斷故障不在當(dāng)前判斷區(qū)段內(nèi);然后以STU6為父STU,搜索下一級子STU7,父STU與其子STU的暫態(tài)零模電流偏態(tài)系數(shù)異號,即相鄰STU偏態(tài)特性相反,定位判據(jù)運(yùn)算結(jié)果為“1”,可判斷單相故障發(fā)生在STU6與STU7區(qū)段內(nèi)。

        盡管暫態(tài)零模電流的數(shù)值受過渡電阻的影響,但其振蕩衰減特征始終存在。由于偏態(tài)系數(shù)反映的是數(shù)據(jù)分布特點(diǎn),而非數(shù)值大小,因此所提出的方法可以有效避免因過渡電阻變化而失去靈敏性,具有較強(qiáng)的耐過渡電阻能力。

        5.3 不同故障初始角下的故障定位

        理論上暫態(tài)零模電流振蕩衰減分量受故障初始角影響[31],有必要通過改變故障發(fā)生時刻以改變故障初始角,研究所提方法的適用性。設(shè)單相故障發(fā)生在線路L2的30%處,以45°為步長,故障初始角從0°變化到180°時的故障饋線各STU的偏態(tài)系數(shù)及故障定位結(jié)果如表2所示。

        表2 不同故障初始角下的STU偏態(tài)系數(shù)和故障定位結(jié)果

        隨著故障初始角變化,暫態(tài)零模電流偏態(tài)系數(shù)隨之變化。但無論在何種故障初始角下,非故障區(qū)段內(nèi)STU的暫態(tài)零模電流偏態(tài)特性始終一致,故障點(diǎn)異側(cè)暫態(tài)零模電流的偏態(tài)系數(shù)始終異號??梢娀谔卣鲿簯B(tài)零模電流偏態(tài)系數(shù)的單相故障定位方法不受故障初始角變化的影響,可有效定位有源配電網(wǎng)單相故障。

        5.4 不同故障位置下的故障定位

        表3 不同故障位置下的STU偏態(tài)系數(shù)和故障定位結(jié)果

        設(shè)故障位于分支線路出口時,饋線L3中STU10—STU12的偏態(tài)特性相同且該區(qū)段內(nèi)無分支,可判斷單相故障不位于上述區(qū)段。父STU12與子STU13、STU14均異號,由式(6)可判斷故障區(qū)段為分支線路出口位置,故障定位正確。設(shè)故障位于分支線路時,子STU14與父STU13偏態(tài)系數(shù)同號,進(jìn)一步以STU14為父STU,子STU15與其偏態(tài)系數(shù)異號,則可判定STU14與STU15所構(gòu)成區(qū)段為故障區(qū)段。所提方法在故障點(diǎn)位于無分支線路、分支線路出口、有分支線路時均能實(shí)現(xiàn)準(zhǔn)確定位。

        5.5 不同分布式電源接入場景下的故障定位

        進(jìn)一步討論分布式電源滲透率不斷提高下的定位方法可靠性,分別設(shè)置3組不同的DG接入組合,以模擬DG接入配電網(wǎng)部分饋線(1,2,3,4)、接入配電網(wǎng)所有饋線但滲透率不高(1,2,3,5)以及接入配電網(wǎng)所有饋線且滲透率較高(1—6)的場景。設(shè)單相故障發(fā)生在線路L2的30%處,故障饋線各STU的偏態(tài)系數(shù)及故障定位結(jié)果如表4所示。

        表4 不同分布式電源接入場景下的STU偏態(tài)系數(shù)和故障定位結(jié)果

        隨著分布式電源滲透率的不斷增加,STU測得的偏態(tài)系數(shù)雖因采樣窗口選擇等存在波動,但STU6與STU7的暫態(tài)零模電流偏態(tài)系數(shù)始終異號,即故障點(diǎn)異側(cè)暫態(tài)零模電流的偏態(tài)特性始終相反。這表明暫態(tài)零模電流的偏態(tài)特性僅與故障位置有關(guān),而不受DG滲透率的影響。所提方法能可靠實(shí)現(xiàn)不同DG滲透率場景下的單相故障區(qū)段定位。

        綜上所述,利用偏態(tài)系數(shù)刻畫單相故障后暫態(tài)零模電流的振蕩衰減特征,進(jìn)而實(shí)現(xiàn)故障定位。其定位精度不受故障位置、故障初始角和分布式電源滲透率的影響,且具有較好的耐故障過渡電阻能力。

        6 結(jié)論

        本文根據(jù)故障點(diǎn)上游與非故障區(qū)段暫態(tài)零模電流極性相反且均呈振蕩衰減的特征,提出了一種基于特征暫態(tài)零模電流偏態(tài)系數(shù)的有源配電網(wǎng)單相故障定位方法,得出以下結(jié)論:

        1) 所提方法引入偏態(tài)系數(shù)用以刻畫暫態(tài)零模電流振蕩衰減且在故障區(qū)段兩側(cè)極性相反的特征,通過比較相鄰STU的偏態(tài)特性,實(shí)現(xiàn)有源配電網(wǎng)單相故障定位;

        2) 定位方法中STU獨(dú)立確定特征頻段濾波器的采樣窗口開啟時刻,就地完成特征暫態(tài)零模電流采集及其偏態(tài)系數(shù)計(jì)算,實(shí)時拓?fù)湎噜彽闹悄芙K端間僅需交互簡單邏輯信號,抗通信干擾能力強(qiáng);

        3) 所提方法計(jì)算量小,既充分挖掘了故障暫態(tài)信息,也克服了暫態(tài)特征量采樣及處理的困難,且定位判據(jù)與系統(tǒng)參數(shù)無關(guān),具有靈敏度高、整定計(jì)算簡便的優(yōu)點(diǎn)。

        本文針對分布式電源采用外特性等效,后續(xù)將結(jié)合分布式電源常規(guī)控制策略以及故障穿越控制下的控保協(xié)同開展研究。

        [1] 馬釗, 周孝信, 尚宇煒, 等. 未來配電系統(tǒng)形態(tài)及發(fā)展趨勢[J]. 中國電機(jī)工程學(xué)報, 2015, 35(6): 1289-1298.

        MA Zhao, ZHOU Xiaoxin, SHANG Yuwei, et al. Form anddevelopment trend of future distribution system[J]. Proceedings of the CSEE, 2015, 35(6): 1289-1298.

        [2] 國家發(fā)展和改革委員會能源研究所. 中國2050高比例可再生能源發(fā)展情景暨路徑研究[R]. 北京: 國家發(fā)展和改革委員會能源研究所, 2015.

        National Development and Reform Commission Energy Research Institute. China 2050 high proportion of renewable energy development scenarios and path research[R]. Beijing: National Development and Reform Commission Energy Research Institute, 2015.

        [3] ZHANG C, LI J, ZHANG Y J. Optimal location planning of renewable distributed generation units in distribution networks: an analytical approach[J]. IEEE Transactions on Power Systems, 2018, 33(3): 2742-2753.

        [4] ZHANG F, MU L. A fault detection method of micro grids with grid-connected inverter interfaced distributed generators based on the PQ control strategy[J]. IEEE Transactions on Smart Grid, 2018, 10(5): 4816-4826.

        [5] 彭克, 張聰, 徐丙垠, 等. 含高密度分布式電源的配電網(wǎng)故障分析關(guān)鍵問題[J]. 電力系統(tǒng)自動化, 2017, 41(24): 184-192.

        PENG Ke, ZHANG Cong, XU Bingyin, et al. Key issues of fault analysis on distribution system with high-density distributed generations[J]. Automation of Electric Power Systems, 2017, 41(24): 184-192.

        [6] 崔子軒, 袁婉玲, 郝正航, 等. 基于電流幅值關(guān)系與制動系數(shù)相配合的有源配電網(wǎng)差動保護(hù)方案[J]. 電網(wǎng)與清潔能源, 2021, 37(12): 1-7.

        CUI Zixuan, YUAN Wanling, HAO Zhenghang, et al. Differential protection scheme of active distribution network based on current amplitude relation and braking coefficient[J]. Power System and Clean Energy, 2021, 37(12): 1-7.

        [7] 李瀚霖, 靳維, 梁睿, 等. 基于故障信息自同步的有源配電網(wǎng)縱聯(lián)保護(hù)[J].電力工程技術(shù), 2021, 40(6): 121-126, 133.

        LI Hanlin, JIN Wei, LIANG Rui, et al. The pilot protection for active distribution network based on fault information self-synchronizes[J]. Electric Power Engineering Technology, 2021, 40(6): 121-126, 133.

        [8] SINGH M. Protection coordination in distribution systems with and without distributed energy resources - a review[J]. Protection and Control of Modern Power Systems, 2017, 2(3): 294-310.

        [9] 程夢竹, 張新慧, 徐銘銘, 等. 基于多目標(biāo)加權(quán)灰靶決策的有源配電網(wǎng)故障區(qū)段定位方法[J]. 電力系統(tǒng)保護(hù)與控制, 2021, 49(11): 124-132.

        CHENG Mengzhu, ZHANG Xinhui, XU Mingming, et al. Location method of an active distribution network fault section based on multi-target weighted grey target decision[J]. Power System Protection and Control, 2021, 49 (11): 124-132.

        [10] GALVEZ C, ABUR A. Fault location in active distribution networks containing distributed energy resources (DERs)[J]. IEEE Transactions on Power Delivery, 2021, 36(5): 3128-3139.

        [11] LI Zhenxing, WAN Jialing, et al. A novel fault section locating method based on distance matching degree in distribution network[J]. Protection and Control of Modern Power Systems, 2021, 6(2): 253-263.

        [12] 莊偉, 牟龍華. 基于零序電流有功分量的配電網(wǎng)接地故障定位[J]. 同濟(jì)大學(xué)學(xué)報(自然科學(xué)版), 2014, 42(3): 468-473.

        ZHUANG Wei, MU Longhua. Active component of zero-sequence current based single-phase ground fault location in distribution grid[J]. Journal of Tongji University (Natural Science Edition), 2014, 42(3): 468-473.

        [13] 尤向陽, 葛笑寒, 吳萍. 基于零序電流波形相似度的接地故障定位方法[J]. 電力系統(tǒng)保護(hù)與控制, 2019, 47(14): 125-130.

        YOU Xiangyang, GE Xiaohan, WU Ping. Ground fault location method based on waveform similarity of zero-sequence current[J]. Power System Protection and Control, 2019, 47(14): 125-130.

        [14] 張林利, 葛珍珍, 張世棟, 等. 利用暫態(tài)頻率比較的配電網(wǎng)單相接地定位方法[J]. 電力系統(tǒng)及其自動化學(xué)報, 2017, 29(12): 135-138.

        ZHANG Linli, GE Zhenzhen, ZHANG Shidong, et al. Location approach for single phase-to-earth fault in distribution network by comparing transient frequencies[J]. Proceedings of the CSU-EPSA, 2017, 29(12): 135-138.

        [15] 徐嘉偉. 基于可控信號注入的小電流接地系統(tǒng)單相接地故障定位方法研究[D]. 重慶: 重慶大學(xué), 2018.

        XU Jiawei. Research on single-phase ground fault location method based on controllable signal injection in small current grounding system[D]. Chongqing: Chongqing University, 2018.

        [16] 趙喬, 王增平, 董文娜, 等. 基于免疫二進(jìn)制粒子群優(yōu)化算法的配電網(wǎng)故障定位方法研究[J]. 電力系統(tǒng)保護(hù)與控制, 2020, 48(20): 83-89.

        ZHAO Qiao, WANG Zengping, DONG Wenna, et al. Research on fault location in a distribution network based on an immune binary particle swarm algorithm[J]. Power System Protection and Control, 2020, 48(20): 83-89.

        [17] 高湛軍, 李思遠(yuǎn), 彭正良, 等. 基于網(wǎng)絡(luò)樹狀圖和改進(jìn)D-S證據(jù)理論的配電網(wǎng)故障定位方法[J]. 電力自動化設(shè)備, 2018, 38(6): 65-71.

        GAO Zhanjun, LI Siyuan, PENG Zhengliang, et al. Fault location method of distribution network based on tree structure diagram and improved D-S evidence theory[J]. Electric Power Automation Equipment, 2018, 38(6): 65-71.

        [18] 林梅芬, 陳婷, 王秋杰, 等. 一種配電網(wǎng)基于模型診斷的最小碰集改進(jìn)算法[J]. 電力系統(tǒng)保護(hù)與控制, 2020, 48(8): 25-33.

        LIN Meifen, CHEN Ting, WANG Qiujie, et al. An improved minimum set algorithm for model-based diagnosis of a distribution network[J]. Power System Protection and Control, 2020, 48(8): 25-33.

        [19] LIANG J, JING T, NIU H, et al. Two-terminal fault location method of distribution network based on adaptive convolution neural network[J]. IEEE Access, 2020, 8: 54035-54043.

        [20] 曾祥君, 陳磊, 喻錕, 等. 基于配電網(wǎng)雙端信息融合的單相斷線故障實(shí)時監(jiān)測方法[J]. 電力科學(xué)與技術(shù)學(xué)報, 2020, 35(3): 12-18.

        ZENG Xiangjun, CHEN Lei, YU Kun, et al. A real time monitoring method for the single-line break fault based on dual-terminal information in the distribution network[J]. Journal of Electric Power Science and Technology, 2020, 35(3): 12-18.

        [21] 司新躍. 逆變型分布式電源故障建模與配電網(wǎng)保護(hù)[D]. 濟(jì)南: 山東大學(xué), 2016.

        SI Xinyue. Fault model of inverter based distributed generation and distribution system protection[D]. Jinan: Shandong University, 2016.

        [22] 鄧豐, 李欣然, 曾祥君, 等. 基于多端故障行波時差的含分布式電源配電網(wǎng)故障定位新方法[J]. 中國電機(jī)工程學(xué)報, 2018, 38(15): 4399-4409, 4640.

        DENG Feng, LI Xinran, ZENG Xiangjun, et al. A novel multi-terminal fault location method based on traveling wave time difference for radial distribution systems with distributed generators[J]. Proceedings of the CSEE, 2018, 38(15): 4399-4409, 4640.

        [23] 李衛(wèi)國, 許文文, 喬振宇, 等. 基于暫態(tài)零序電流凹凸特征的配電網(wǎng)故障區(qū)段定位方法[J]. 電力系統(tǒng)保護(hù)與控制, 2020, 48(10): 164-173.

        LI Weiguo, XU Wenwen, QIAO Zhenyu, et al. Fault section location method for a distribution network based on concave and convex characteristics of transient zero sequence current[J]. Power System Protection and Control, 2020, 48(10): 164-173.

        [24] 王巍璋, 王淳, 敖鑫. 基于果蠅優(yōu)化算法的配電網(wǎng)故障定位[J]. 電力系統(tǒng)保護(hù)與控制, 2019, 47(18): 108-114.

        WANG Weizhang, WANG Chun, AO Xin. Fault location of power distribution network based on fruit fly optimization algorithm[J]. Power System Protection and Control, 2019, 47(18): 108-114.

        [25] FENG Bo, JIA Yong, CHEN Yan, et al. Influence analysis of neutral point grounding mode on the single-phase grounding fault characteristics of distribution network with distributed generation[C] // 2020 5th Asia Conference on Power and Electrical Engineering (ACPEE), June 4-7, 2020, Chengdu, China: 1834-1840.

        [26] 薛永端, 郭麗偉, 張林利, 等. 有源配電網(wǎng)中性點(diǎn)接地方式的選擇問題[J]. 電力系統(tǒng)自動化, 2015, 39(13): 129-136.

        XUE Yongduan, GUO Liwei, ZHANG Linli, et al. Selection problems of neutral grounding mode in active distribution networks[J]. Automation of Electric Power Systems, 2015, 39(13): 129-136.

        [27] 秦蘇亞, 薛永端, 劉礫鉦, 等. 有源配電網(wǎng)小電流接地故障暫態(tài)特征及其影響分析[J]. 電工技術(shù)學(xué)報, 2022, 37(3): 655-666.

        QIN Suya, XUE Yongduan, LIU Lizheng, et al. Transient characteristics and influence of small current grounding faults in active distribution network[J]. Transactions of China Electrotechnical Society, 2022, 37(3): 655-666.

        [28] WANG Xuewen, ZHANG Hengxu, SHI Fang, et al. Location of single phase to ground faults in distribution networks based on synchronous transients energy analysis[J]. IEEE Transactions on Smart Grid, 2020, 11(1): 774-785.

        [29] 徐丙垠, 李天友, 薛永端. 配電網(wǎng)繼電保護(hù)與自動化[M]. 北京: 中國電力出版社, 2017.

        [30] 李嘉沛. 基于暫態(tài)錄波型故障指示器系統(tǒng)的小電流接地定位技術(shù)研究[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2020.

        LI Jiapei. Research on fault location of small current grounding based on transient recording fault indicator system[D]. Harbin: Harbin Institute of Technology, 2020.

        [31] 呂哲, 王增平. 基于暫態(tài)電流波形特征的快速差動保護(hù)新原理[J]. 中國電機(jī)工程學(xué)報, 2020, 40(5): 1534-1545.

        Lü Zhe, WANG Zengping. A transient current waveform feature based novel high-speed differential protection[J]. Proceedings of the CSEE, 2020, 40(5): 1534-1545.

        Single-phase fault location method for an active distribution network based on the skewness coefficient of characteristic transient zero-mode current

        HUANG Fei1, CHEN Jiyu2, DAI Jian1, OUYANG Jinxin2, LIU Jia1, FAN Zhaoyong3

        (1. State Grid Chongqing Electric Power Research Institute, Chongqing 401123, China; 2. State Key Laboratory of Power Transmission Equipment & System Security and New Technology (Chongqing University), Chongqing 400044, China;3. State Grid Chongqing Electric Power Company, Chongqing 400015, China)

        A distribution network with distributed generation is an important component of the new power system. However, the access of distributed generation leads to complex fault patterns. In particular, the single-phase fault characteristics are further weakened under the neutral via arc suppression coil grounded system, resulting in the serious difficulty of single-phase fault location. To address the problems of insufficient sensitivity or difficulty in extracting and processing the characteristics posed by existing methods, the zero-mode current and its distribution characteristics in the transient process of a single-phase fault in the active distribution network are analyzed. It is found that the transient zero-mode currents are always oscillating and decaying with opposite polarity upstream of the fault and in the non-faulted section. Then, the skewness coefficient is introduced to characterize the oscillating and decay of the transient zero-mode current. A single-phase fault location criterion based on the skewness coefficient of the characteristic transient zero-mode current is constructed, and a sensitive location method of the single-phase fault section in the active distribution network is proposed. The theoretical analysis and simulation results show that the method is able to locate single-phase faults in active distribution networks on the basis of significantly reducing the difficulty of fault feature extraction and processing. It has the advantages of simple setting calculation and strong anti-communication interference ability, providing a theoretical basis for the rapid and safe disposal of single-phase faults in the new generation of distribution networks.

        distributed generation; active distribution network; transient zero-mode current; skewness coefficient; single-phase fault location

        10.19783/j.cnki.pspc.226433

        國家自然科學(xué)基金項(xiàng)目資助(51877018);國網(wǎng)重慶市電力公司科技項(xiàng)目資助(SGCQDK00DWJS2100189)

        This work is supported by theNational Natural Science Foundation of China (No. 51877018).

        2021-12-20;

        2022-03-01

        黃 飛(1987—),男,通信作者,碩士研究生,高級工程師,研究方向?yàn)橹悄芘潆娋W(wǎng)技術(shù);E-mail: huangfei_87@ 163.com

        陳紀(jì)宇(1999—),男,碩士研究生,研究方向?yàn)殡娏ο到y(tǒng)保護(hù)與控制;E-mail: chenjiyve@163.com

        歐陽金鑫(1984—),男,博士,副教授,研究方向?yàn)殡娏ο到y(tǒng)保護(hù)與控制。E-mail: jinxinoy@163.com

        (編輯 姜新麗)

        猜你喜歡
        配電網(wǎng)故障
        故障一點(diǎn)通
        配電網(wǎng)自動化的應(yīng)用與發(fā)展趨勢
        奔馳R320車ABS、ESP故障燈異常點(diǎn)亮
        關(guān)于配電網(wǎng)自動化繼電保護(hù)的幾點(diǎn)探討
        電子制作(2016年23期)2016-05-17 03:54:05
        基于IEC61850的配電網(wǎng)數(shù)據(jù)傳輸保護(hù)機(jī)制
        電測與儀表(2016年5期)2016-04-22 01:14:14
        配電網(wǎng)不止一步的跨越
        河南電力(2016年5期)2016-02-06 02:11:24
        故障一點(diǎn)通
        故障一點(diǎn)通
        故障一點(diǎn)通
        基于LCC和改進(jìn)BDE法的配電網(wǎng)開關(guān)優(yōu)化配置
        91久久国产情侣真实对白| 黑人巨大精品欧美一区二区| 久久久久国产精品熟女影院| 亚洲人成人一区二区三区| 亚洲国产综合精品中文| 国产丝袜美腿精品91在线看| 99精品国产在热久久| 无遮挡网站| 亚洲一区二区三区国产精品视频| 亚洲国产精品av在线| 国产一区二区波多野结衣| 色yeye免费视频免费看| 亚洲av一区二区网址| 日韩精品成人区中文字幕| 另类老妇奶性生bbwbbw| 亚洲AV综合久久九九| 丝袜美腿诱惑一二三区| 精品高朝久久久久9999| 国产熟妇高潮呻吟喷水| 高清国产美女一级a毛片在线| 国语对白自拍视频在线播放| 亚洲欧洲成人a∨在线观看| 中文字幕人妻丝袜美腿乱| 日本韩国三级aⅴ在线观看| 91九色熟女潮喷露脸合集| 久久亚洲欧美国产精品| 亚洲精品夜夜夜| av一区二区不卡久久| 极品人妻少妇av免费久久| 欧美大肥婆大肥bbbbb| 91精品91| 亚洲国产精品久久久婷婷| 99久久人妻无码精品系列| 国产高清视频91| 亚洲熟女一区二区三区不卡| 国产成人精品无码片区在线观看| 亚洲欧美日本| 久久亚洲中文字幕精品一区四| 在线观看国产视频你懂得| 国产午夜福利片| 亚洲V无码一区二区三区四区观看|