亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        A New Low Order H1-Galerkin Mixed Finite Element Method for Nonlinear Dispersion Dissipative Wave Equations

        2022-10-31 12:40:02FANMingzhi樊明智
        應用數(shù)學 2022年4期
        關鍵詞:明智

        FAN Mingzhi(樊明智)

        ( School of Science,Xuchang University,Xuchang 461000, China)

        Abstract:A low order H1-Galerkin mixed finite element method (for short FEM) is proposed for a class of nonlinear dispersion dissipative wave equations with the simplest bilinear rectangular element and zero order Raviart-Thomas(for short R-T) element.By use of the interpolation operator instead of the traditional Ritz projection,together with integral identity technique,the superclose properties of u in H1-norm and →p in H(div,Ω)-norm are deduced for the semi-discrete and fully-discrete schemes,which improve the results in the associated existing literature.Finally,numerical results are provided to confirm the validity of our theoretical analysis.

        Key words:Nonlinear dispersion dissipative wave equations; H1-Galerkin MFEM;Superclose property;Semi-discrete and fully-discrete schemes

        1.Introduction

        Consider the following dispersion-dissipative wave equations[1]

        whereΩis a convex polygonal domain in R2with bounded boundary?Ω,J=(0,T] is the time interval,X=(x,y),u0(X),u1(X) are known smooth functions,f(u) is a Lipschitz continuous function.

        The nonlinear dispersion-dissipative wave equations (1.1) are usually used to diserible the propagation problems of lenghways-wave in nonlinear elastic rods and ion-sonic of space transformation by weak nonlinear effect,and there have been appeared some studies.For example,[1] discussed this problem which initial boundary value condition;[2-4] studied solitary wave solution,[5-6] proved existence and asymptotic behaviour of the global solution,respectively;[7] investigated mixed covolume methods;[8] derived convergence results for semi-discrete and the backward Euler fully-discrete schemes;although,[9] deduced the superclose properties and the superconvergence results of conforming linear triangular FEM,however.Unfortunately,there is no consideration on Crank-Nicolson fully-discrete scheme of equations (1.1),up to now.

        In recent years,a lot of studies have been devoted to mixed FEMs for partial differential eauation[10-21].For example,[10-11] established the general theory of Mixed FEMs;[12]developed a new FEM called expand Mixed FEMs.However,the pair of the approximating spaces has to satisfy the LBB consistency condition on the approximating spaces.[13]proposed theH1-Galerkin Mixed FEMs,and has been applied to different PDEs.For exemple parabolic partial integro-differential equations[14],second order hyperbolic equations[15],hyperbolic type integro-differential equation[16],Sobolev equations[17]and pseudo-hyperbolic equations[18],etc.

        At present work,we mainly study the superclose properties of the lowest orderH1-Galerkin mixed FEM for equations (1.1) under semi-discrete and fully-discrete schemes.the bilinear FE and the zero order R-T FE spaces are taken as approximation spaceV hfor the original variableuandfor the stress=?ut,respectively.Firstly,we derive the superclosed properties with orderO(h2) foruinH1-norm and forinH(div,Ω) for semidiscrete scheme.Secondly,we obtain the superclosed results with orderO(h2+Δt)/O(h2+(Δt)2) foruinH1-norm and for→pinH(div,Ω) under backward Euler and Crank-Nicolson fully-discrete schemes,respectively.The results of this paper for semi-discrete scheme and Euler fully-discrete scheme is one order higher than the results with respect tohin[18].This proposed mixed FE scheme has a smallest total degrees of freedom (about 3NP,NP denotees the numbers of the nodal points in the subdivision).

        Throughout this paper,hand Δtdenote the mesh size and the time step,respectively.Cdenotes a general positive constant which does not depend onhand Δt,andCmay represent different values in different places.

        2.Construction of Mixed FEs and Two Important Lemmas

        3.Superclose Analysis for Semi-discrete Scheme

        We reurite the problem (1.1) into the following system

        4.Superclose Analysis of the Backward Euler Fully-discrete Scheme

        In this section,we will derive the error estimates between the exact solution an its approximation solution for fully-discrete scheme.

        Let 0=t0<t1<...<tN-1<tN=Tbe a given partition of the time interval [0,T]with step length Δt=T/N,tn=nΔt,n=1,2,···,N,for some positive integerN.Next,we introduce some notations as follows

        5.Superclose Analysis of the Crank-Nicolson Fully-discrete Scheme

        6.Numerical Results

        Tab.6.1 Numerical results for Euler scheme at t=0.1

        Tab.6.2 Numerical results for Euler scheme at t=0.5

        Tab.6.3 Numerical results for Euler scheme at t=1.0

        Tab.6.4 Numerical results for Crank-Nicolson scheme at t=0.1

        Tab.6.5 Numerical results for Crank-Nicolson scheme at t=0.5

        Tab.6.6 Numerical results for Crank-Nicolson scheme at t=1.0

        猜你喜歡
        明智
        減震隔震技術下高層建筑消能減震結構概念設計研究
        科學家(2022年3期)2022-04-11 21:36:53
        More adventures in Brobdingnag
        神童之殤
        讀書·明智
        零售商品牌生活用紙是大型零售商的明智選擇
        生活用紙(2016年5期)2017-01-19 07:36:08
        你以為
        HTC久病無方難倒王雪紅走小眾路線或是明智選擇
        IT時代周刊(2015年9期)2015-11-11 05:51:39
        2. 實習偵探
        雨照樣落下
        安徽文學(2015年7期)2015-05-30 07:08:33
        普通用戶簡單、流暢才是明智選擇
        一本久道久久综合婷婷五月| 亚洲综合天堂av网站在线观看| 中文字幕人妻熟在线影院| 国产精品久久久av久久久| 动漫av纯肉无码av在线播放| 亚洲一本二区偷拍精品| 在线观看av片永久免费| 精品国产aⅴ无码一区二区| 久久精品国产亚洲婷婷| 国产三级一区二区三区在线观看| 国产毛片黄片一区二区三区| 国产精品无码午夜福利| 欧美在线资源| 亚洲国产不卡免费视频| 国产亚洲av另类一区二区三区| 初女破初的视频| 亚洲 成人 无码 在线观看| 伊人久久大香线蕉综合av| 成人影院在线视频免费观看| 亚洲av综合日韩| 国产精品国产三级国产专播 | 国产日产高清欧美一区| 国产裸体AV久无码无遮挡| 沐浴偷拍一区二区视频| 亚洲av无码成人网站在线观看| 久久免费国产精品| 二区三区视频在线观看| 亚洲中文字幕国产视频| 国产做a爱片久久毛片a片| 成年女人在线观看毛片| 日韩一级精品视频免费在线看 | 国产免费av片在线播放| 久久精品亚洲中文无东京热| 日本97色视频日本熟妇视频| 色88久久久久高潮综合影院| 亚洲成a人片在线观看天堂无码| 少妇高潮惨叫久久久久电影| 狼人伊人影院在线观看国产| 精品无码久久久久久国产| 国产精品青草视频免费播放| av免费在线播放一区二区|