彭嘉偉,廖萬能,王堯堯,2,丁亞東,吳洪濤
(1.南京航空航天大學(xué)機(jī)電學(xué)院,江蘇 南京 210016)(2.浙江大學(xué)流體動力與機(jī)電系統(tǒng)國家重點實驗室,浙江 杭州 310027)
隨著旋翼飛行器的發(fā)展,人們越來越不滿足于其僅擁有拍照、攝像等簡單功能。為了增加旋翼飛行器空中作業(yè)的主動性,研究者們在飛行器上加裝了機(jī)械臂[1-2]。然而現(xiàn)階段的機(jī)械臂大多是傳統(tǒng)的工業(yè)機(jī)械臂,其剛性大、質(zhì)量大、能耗高、結(jié)構(gòu)復(fù)雜,對旋翼飛行器機(jī)身穩(wěn)定有很大干擾[3-4]。文獻(xiàn)[5]、[6]研究發(fā)現(xiàn),繩驅(qū)動機(jī)械臂結(jié)構(gòu)簡單且質(zhì)量輕,將關(guān)節(jié)驅(qū)動器安裝于基座使得機(jī)械臂對機(jī)身的干擾變小,能較好地匹配旋翼飛行器,但繩驅(qū)動技術(shù)使得機(jī)械臂的相鄰關(guān)節(jié)存在耦合問題,同時繩索的柔性使得機(jī)械臂的剛度降低。此外,由于繩驅(qū)動機(jī)械臂系統(tǒng)模型復(fù)雜,以及存在參數(shù)不確定性和外部干擾,使得該系統(tǒng)的精確動力學(xué)模型幾乎無法獲得。
為了簡化繩驅(qū)動機(jī)械臂系統(tǒng)模型,采用時延估計 (time delay estimation,TDE)[7]獲得系統(tǒng)模型的估計狀態(tài)。TDE通過采樣將過去很短一段時間的系統(tǒng)狀態(tài)作為下一時刻系統(tǒng)的模態(tài)輸入。對比其他控制方法,TDE可以有效減少系統(tǒng)動力學(xué)模型中的參數(shù),從而得到簡單有效的控制器。文獻(xiàn)[8]針對可變載荷下平面機(jī)械臂的連續(xù)跟蹤控制問題,基于TDE提出關(guān)節(jié)運動控制器,取得了良好控制效果。
由于滑模變結(jié)構(gòu)控制對系統(tǒng)具有較好的魯棒性,很多學(xué)者已將其用于非線性系統(tǒng)控制研究[9],但他們大多運用了線性滑模(linear sliding mode,LSM)變結(jié)構(gòu)控制。為了加快系統(tǒng)在平衡點附近的收斂,將冪指數(shù)引入趨近律公式,終端滑模(terminal sliding mode,TSM)變結(jié)構(gòu)控制應(yīng)運而生[10]。然而因為冪指數(shù)存在,控制信號輸入可能出現(xiàn)奇點,為解決這一問題,學(xué)者們提出了非奇異終端滑模 (nonsingular terminal sliding mode,NTSM)[11]控制器,將所需控制量降到了合理范圍。
本文基于TDE控制框架,引入非奇異終端滑模關(guān)節(jié)運動控制器,以保證繩驅(qū)動機(jī)械臂系統(tǒng)在復(fù)雜干擾下有良好的控制性能。為更好地控制輸出與輸入的關(guān)系,改善控制器在滑模面附近的趨近律,加入了模糊控制策略,以減少干擾和參數(shù)變化對機(jī)械臂控制效果的影響。
繩驅(qū)動機(jī)械臂設(shè)計時參考了課題組先前設(shè)計制作的水下繩驅(qū)動機(jī)械臂[12],并由Zhao等[13]負(fù)責(zé)畫圖、制作。為了滿足旋翼飛行器的空中作業(yè)要求,對機(jī)械臂做了一些輕量化處理,機(jī)械臂板采用尼龍材料,其熱變形溫度為145 ℃,抗拉強(qiáng)度為48 MPa,彎曲強(qiáng)度為43.5 MPa。關(guān)節(jié)軸采用鋁合金材料。因為電機(jī)驅(qū)動關(guān)節(jié)是通過繩索傳遞力矩的,所以對每個關(guān)節(jié)設(shè)計了張緊裝置。將驅(qū)動電機(jī)安裝在基座上,以減小機(jī)械臂運動時帶來的慣性力矩。為了測得各個關(guān)節(jié)運動過程中的位置信息,在各關(guān)節(jié)軸的一端處設(shè)計安裝有關(guān)節(jié)編碼器。上述設(shè)計基本滿足機(jī)械臂本身輕量化、對飛行器基座擾動小、降低能耗的要求。繩驅(qū)動機(jī)械臂的三維圖如圖1所示,參數(shù)見表1。
表1 繩驅(qū)動機(jī)械臂參數(shù)表
繩驅(qū)動機(jī)械臂動力學(xué)模型的代數(shù)形式為:
(1)
(2)
(3)
綜合式(1)、(3)可以得到:
(4)
(5)
(6)
式中:H為繩驅(qū)動機(jī)械臂所有未建模動力學(xué)與所有外部未知干擾之和,其值用時延估計技術(shù)獲得。
(7)
(8)
式中:α=diag([α1α2…αn]),k1=diag([k11k12…k1n]),k2=diag([k21k22…k2n]),ρ=diag([ρ1ρ2…ρn]),γ=diag([γ1γ2…γn]);e為繩驅(qū)動機(jī)械臂系統(tǒng)關(guān)節(jié)軌跡跟蹤誤差,e=qd-q,其中qd為關(guān)節(jié)的期望軌跡,該軌跡連續(xù)有界且存在二階導(dǎo),所以有:
(9)
sig是一個自定義函數(shù),滿足sig(a)b=|a|bsgn(a),a,b∈R。sgn是一個符號函數(shù),滿足
(10)
根據(jù)式(5)、(7)、(8),可以將繩驅(qū)動機(jī)械臂的控制器設(shè)計為:
(11)
(12)
(13)
(14)
由式(5)和式(14)可以推導(dǎo)出系統(tǒng)誤差動力學(xué)模型
(15)
(16)
(17)
引理1 如果a1,a2,a3,…,an都是正值,則下列不等式成立:
(18)
引理2 如果李雅普諾夫函數(shù)V(x)滿足以下條件:
(19)
那么V(x)可以在有限的時間內(nèi)從V(x0)到V(0),時間T滿足:
(20)
kc2isig(si)γi)-αiρiεi]
(21)
式(21)可以寫成以下兩種形式:
(22)
(23)
將式(22)改寫為:
(24)
從引理1,可以推出:
(25)
(26)
(27)
同理,對于式(23)可以得到:
(28)
(29)
綜上所述,只要存在一個估計誤差εi,那么si就可以收斂到某個滑模面區(qū)域,該區(qū)域可以表示為:
|si|≤Δ=min{Δ1,Δ2}
(30)
(31)
至此,控制器的穩(wěn)定性證明完畢。
圖2 模糊控制器的控制面
綜上,針對繩驅(qū)動機(jī)械臂的運動控制問題,基于時延估計的模糊非奇異終端滑??刂破?NTSN+Fuzzy)設(shè)計方案如圖3所示。
圖3 基于時延估計的終端滑??刂?/p>
為了驗證模糊非奇異終端滑??刂破髟O(shè)計的有效性,在一定實驗周期內(nèi),將本文設(shè)計的控制器與非奇異終端滑模控制器、線型滑??刂破鬟M(jìn)行控制效果對比。
非奇異終端滑模控制器(NTSM)如下:
(32)
線型滑??刂破?LSM)如下:
(33)
表2 工況1下關(guān)節(jié)1和關(guān)節(jié)2控制誤差的Rms值和Max值 單位:(°)
表3 工況2下關(guān)節(jié)1和關(guān)節(jié)2控制誤差的Rms值和Max值 單位:(°)
圖4 工況1關(guān)節(jié)跟蹤軌跡
圖5 工況1關(guān)節(jié)跟蹤誤差
圖6 工況1關(guān)節(jié)跟蹤力矩
圖7 工況1模糊量
圖8 工況2關(guān)節(jié)跟蹤軌跡
圖9 工況2關(guān)節(jié)跟蹤誤差
圖10 工況2關(guān)節(jié)跟蹤力矩
圖11 工況2模糊量
從工況1、工況2的關(guān)節(jié)軌跡跟蹤圖可以看出,繩驅(qū)動機(jī)械臂關(guān)節(jié)運動在NTSM-Fuzzy控制器下對理想軌跡的擬合性更好,證明了其優(yōu)越性。從關(guān)節(jié)跟蹤誤差圖可以看出,當(dāng)機(jī)械臂處于開始和換向階段時系統(tǒng)誤差放大,但由于引入了模糊控制項δ,誤差e的增大使輸出的δ也相應(yīng)地增大,從而抑制了誤差,由此可以看出本文所設(shè)計的NTSM-Fuzzy控制器的有效性。對比關(guān)節(jié)跟蹤力矩可以看出,NTSM-Fuzzy控制器下的關(guān)節(jié)力矩波動較大,說明良好的控制效果也是以犧牲更多的關(guān)節(jié)力矩為代價得到的。
以關(guān)節(jié)1為例,從關(guān)節(jié)的控制誤差指標(biāo)Rms與Max值可以看出。工況1在NTSM-Fuzzy控制器下均方差Rms減小了85%左右,峰值誤差Max減小了75%左右,證明了NTSM-Fuzzy控制器的魯棒性。雖然在工況2下NTSM-Fuzzy控制器的控制效果與其他控制器的控制效果對比優(yōu)勢不明顯,但也還算差強(qiáng)人意。
為了增加旋翼飛行器主動作業(yè)能力,本文設(shè)計了一款可供旋翼飛行器搭載的輕量化繩驅(qū)動機(jī)械臂。設(shè)計了一款基于時延估計的模糊非奇異終端滑??刂破?,用于繩驅(qū)動機(jī)械臂的運動控制。通過李雅普諾夫理論,證明了控制器的穩(wěn)定性與誤差收斂性。最后在兩種工況下,設(shè)計對比仿真實驗,驗證了所設(shè)計控制器的有效性、魯棒性。
下一階段將針對繩驅(qū)動機(jī)械臂空中作業(yè)能力進(jìn)行研究。在多干擾、多自由度的集成環(huán)境下,可能需要改進(jìn)機(jī)械臂的控制方法,減少作業(yè)誤差,高效完成空中作業(yè)。