葛粟粟,李 揚
(1.中國市政工程中南設計研究總院有限公司西安分院,陜西 西安 710065; 2.中交第一公路勘察設計研究院有限公司,陜西 西安 710065)
橋梁抗震設計一直都是橋梁整體設計中的難點問題,在地震動荷載作用下橋梁主體位移破壞和橋墩破壞較為嚴重。我國橋梁抗震設計研究從20世紀50年代到90年代主要采用彈性抗震設計[1]方法,由于該方法操作簡便,容易被現(xiàn)場施工技術人員接受,但橋梁經受地震持續(xù)作用后橋面和橋墩損害嚴重,橋梁設計時僅考慮強度要求,難以滿足橋梁結構抗震要求。因此,在進行橋體結構設計時,要保證橋墩和基礎的變形耗能和延伸性能。
以往橋梁抗震設計方法主要采用反應譜法,以靜力分析法[2]為主,缺少對橋體下部結構的抗震變形和延性的考慮,隨著人們對地震作用機理和破壞特點的了解,在原有靜力解析法和反應譜法的基礎上,將非線性運動方程和非線性靜力分析法引入橋梁結構設計中,使橋梁下部結構滿足地震時的變形設計要求。
早期橋梁抗震設計主要是針對橋梁結構強度進行設計,將地震等外荷載當做靜荷載進行研究,在地震后對橋梁破壞情況總結分析后提出了延性抗震設計[3]方法,但該方法依然屬于對整體結構強度的改進,對橋梁經下部受地震時的水平方向和豎向變形缺少考慮。由于我國早期橋梁建造時經濟等因素的限制,設計規(guī)范時允許橋梁主體在地震作用下發(fā)生塑性變形,這樣的設計理念顯然是不合適的,有學者提出基于位移的抗震設計方法,在20世紀90年代,才將基于位移的抗震設計方法引入到規(guī)范中。
早期抗震設計主要從提升橋梁下部結構的強度和變形能力來提升橋梁整體的抗震能力,這種橋梁結構設計能承受地震能量從土體內部傳到至橋墩基礎,但如何找到能抵抗地震能量沖擊的橋墩基礎的原料,一直是橋梁抗震設計要面對的主要問題?,F(xiàn)有的抗震技術通過設置塑性鉸鏈和設計細部構造來減小橋梁在地震時主體結構垮塌,但橋墩基礎的損壞是不可避免的,經受地震波作用后的橋墩基礎大多不能滿足橋梁原設計時的承載力要求。因此,經歷過強震的橋梁在后期改建時往往從原橋梁附近修建新的橋梁。也有相關研究人員提出了主控制技術、被動控制技術、減隔震技術[4]等抗震技術手段,其技術原理是將地震時可能發(fā)生較大水平變形的運動支座與上部結構分隔開,減小地震能量對上部結構的傳導。
為研究橋梁下部結構在地震動荷載作用下的破壞變形規(guī)律,優(yōu)化橋梁下部結構設計,采用Midas/Civil軟件建立預應力混凝土T型梁模型,橋梁總長120 m,每跨布置6片T型梁,間距2.1 m,每個橋墩布置三個橡膠支座,橋梁下部為雙墩結構,T型梁采用C50混凝土,橋墩及蓋梁采用C40混凝土,具體設計參數(shù)見表1。該橋梁位于市區(qū)二級公路,抗震烈度等級為四度,水平向地震震動峰值加速度為0.5 g。
表1 數(shù)值模擬橡膠支座參數(shù)
在進行數(shù)值模擬時,蓋梁、橋墩、T梁和橫系梁采用梁單元模擬,橡膠支座與橋墩連接方式為彈性連接,分別建立5~40 m共8種不同的橋墩高度來研究不同橋墩高度下,地震荷載對橋墩破壞的影響。橋墩直徑為2.0 m,橋墩高度小于10 m的設置橫系梁,橋墩高度在15~20 m的設置1道系梁,橋墩高度在25~30 m的設置2道系梁,橋墩高度在35~40 m設置3道系梁,其他參數(shù)保持相同。
圖1 橋墩高度在5 m的模型示意圖
在進行橋墩抗震性能測試時,選擇能力需求比來評價其抗震性能。驗證內容為在E1和E2地震波作用下橋墩的抗彎和抗剪強度。圖2為地震球波波形圖。在進行橋墩抗彎和抗剪能力需求比計算時,橋墩抗彎需求值取橋墩截面初始屈服彎矩,即橋墩截面的屈服彎矩強度沒有超過設計強度,且橋墩在地震球波作用下整體結構處于彈性變形范圍,橋墩的初始屈服彎矩由截面彎矩曲率計算得出。在橋墩進行抗剪強度驗算時,由于公路橋梁設計規(guī)范沒有針對橋墩偏心受壓或受拉構件的抗剪計算公式,因此,橋墩截面抗剪計算參照《混凝土結構設計規(guī)范》進行驗算,其中,橋墩的鋼筋與混凝土均按照設計強度取值。
圖2 地震球波波形圖
表2和表3分別為在不同地震波作用下,橋墩截面在縱橋向和橫橋向的抗彎、抗剪能力需求比值表。從表中可以看出橋墩高度從5 m增大到40 m的過程中,抗彎能力需求比和抗剪能力需求比均大于1,橋墩整體處于穩(wěn)定狀態(tài),滿足《公路工程抗震設計規(guī)范》(JTG004—89)中對橋梁的設防要求,但在《公路橋梁抗震設計細則》(GTG/TB—2008)中提出了兩水準設防要求,因此還需要檢測橋梁在水準地震作用下的抗彎、抗剪能力需求比是否滿足設計要求。
表2 橋墩抗彎強度能力比
表3 橋墩抗剪強度能力比
表4和表5為在E2地震波作用下橋墩截面的抗彎、抗剪強度能力比,橋墩的抗彎強度計算取等效屈服強度,允許橋墩在地震波作用下發(fā)生有限破壞,抗彎和抗剪驗算參照《公路橋梁抗震設計細則》(GTG/TB—2008),初始軸力取地震動荷載和恒定荷載的組合軸力,橋墩鋼筋與混凝土均取設計標準值。
從表4和表5可以看出,在地震波E2作用下,橋墩高度在5~40 m變化時,橋墩底面的縱向抗彎能力需求比均小于1,橋墩高度在5~30 m時,橋墩橫橋向抗剪能力需求比也小于1,橋墩處于失穩(wěn)狀態(tài),不滿足設計規(guī)范要求,因此需要對橋墩進行加固設計。
表4 橋墩抗彎強度能力比
表5 橋墩抗剪強度能力比
綜合各橋墩在地震波E1和E2作用下的抗彎和抗剪能力需求比變化,橋墩高度為35 m和40 m時,其抗震性能符合現(xiàn)行規(guī)范要求,但在E2地震波的作用下大部分橋墩都不符合《公路橋梁抗震設計細則》(GTG/TB—2008)規(guī)定,為了提高橋梁整體的抗震性能,應該對橋墩設計方案進行改進。
通過對近年來混凝土橋墩在地震后破壞特點進行分析,發(fā)現(xiàn)在地震波作用下橋墩破壞以剪切破壞為主?,F(xiàn)階段我國對城市混凝土橋墩抗震變形研究[5]主要分為兩個方面,第一是預測橋墩在不同地震等級作用下預變形量大小,第二是采用新的橋墩設計方案使橋墩在經受地震后變形處于可控范圍內。
針對第一方面抗震變形研究主要集中在橋墩數(shù)值模擬技術分析上,在橋墩變形數(shù)值模擬時大多采用非線性有限元模型[6]和集中塑性鉸模型,為了研究橋墩的抗剪能力還引入了彎剪數(shù)值分析模型。國內外很多學者對混凝土橋墩的抗震變形能力進行了試驗,發(fā)現(xiàn)在地震動荷載作用下影響橋墩變形的因素眾多,包括橋墩塑性區(qū)箍筋用量、橋墩截面形狀、橋墩的跨度比、軸壓比以及外力加載路徑均會對橋墩破壞形式產生較大影響。對第二方面的主要研究內容是橋墩在塑性鉸區(qū)的箍筋用量和橋墩在水平動荷載下的抗剪切變形能力。
該文通過對我國現(xiàn)行抗震規(guī)范的主要內容和改進方向進行了梳理總結,對公路橋梁地震后的破壞形式和特點進行了統(tǒng)計分析。通過數(shù)值模擬研究了在不同地震波作用下,橋墩高度改變對橋墩抗彎和抗剪能力的影響,發(fā)現(xiàn)在E2地震波作用下橋墩的抗彎和抗剪能力比都不符合規(guī)范要求,在后續(xù)橋墩設計中可適當增加橋墩塑性區(qū)箍筋配置或調整橋梁跨度比來減少地震荷載對橋墩的破壞。