何乃如,李建紅,賈均紅,劉寧,楊杰,梁海濤
元素?cái)U(kuò)散對(duì)Cr2O3陶瓷薄膜結(jié)構(gòu)和摩擦學(xué)性能的影響
何乃如1,李建紅1,賈均紅1,劉寧2,楊杰1,梁海濤1
(1.陜西科技大學(xué) 機(jī)電工程學(xué)院,西安 710021;2.西安航天復(fù)合材料研究所,西安 710025)
通過高溫?zé)崽幚?,不同基材?huì)發(fā)生不同的組織演變,研究了組織演變對(duì)基材中金屬元素高溫?cái)U(kuò)散的影響,從而判斷其對(duì)多弧離子鍍制備Cr2O3陶瓷薄膜形貌、結(jié)構(gòu)以及摩擦學(xué)性能的影響。利用多弧離子鍍技術(shù)在不同基材表面(Inconel 718合金、IC10合金、45鋼、316不銹鋼)沉積Cr2O3薄膜。使用掃描電子顯微鏡(SEM)和冷場(chǎng)發(fā)射掃描電鏡(FESEM)分析了基材和薄膜高溫退火前后的表面形貌,并且利用EDS分析了基材和薄膜表面的元素含量變化。采用X射線衍射儀(XRD)對(duì)Cr2O3薄膜進(jìn)行物相分析,使用往復(fù)摩擦磨損試驗(yàn)儀、三維輪廓儀以及掃描電子顯微鏡分析了基材和薄膜退火前后的摩擦學(xué)性能。熱處理后基材中的元素會(huì)擴(kuò)散到其表面,Inconel 718合金、IC10合金和45鋼熱處理后,其摩擦因數(shù)降低。在Inconel 718合金和316不銹鋼表面沉積的Cr2O3薄膜高溫退火后,基材中的金屬元素沿著Cr2O3薄膜晶界擴(kuò)散至薄膜表面,并與大氣中的O2反應(yīng)形成三元氧化物。Cr2O3薄膜經(jīng)1 000 ℃退火后,Inconel 718合金中的Ti元素?cái)U(kuò)散至Cr2O3薄膜表面形成類網(wǎng)狀凸起結(jié)構(gòu),且薄膜表面形成CrTiO3和Cr2O3混合相,316不銹鋼中的Mn元素?cái)U(kuò)散至Cr2O3薄膜表面形成尖晶石結(jié)構(gòu)的MnCr2O4相,45鋼表面上沉積的Cr2O3薄膜在850 ℃退火后薄膜表面形成以Fe元素為主的大顆粒,薄膜表面物相為Fe2O3和Cr2O3混合相,IC10合金表面上沉積的Cr2O3薄膜表面沒有發(fā)現(xiàn)基材中的金屬元素,主要物相為Cr2O3相。Cr2O3薄膜退火后摩擦因數(shù)降低至0.45左右。Inconel 718合金、45鋼以及316不銹鋼中的金屬元素?cái)U(kuò)散至薄膜表面時(shí),其對(duì)Cr2O3薄膜的物相組成、表面形貌以及摩擦學(xué)性能有很大的影響。IC10合金表面上沉積的Cr2O3薄膜熱處理后,磨損壽命較低。Inconel 718合金表面上沉積的Cr2O3薄膜具有優(yōu)異的摩擦學(xué)性能。
多弧離子鍍;不同基材;Cr2O3薄膜;熱處理;元素?cái)U(kuò)散;摩擦與磨損
氧化鉻由于較高的硬度,一直被認(rèn)為是最硬的氧化物,并且具有耐磨、耐蝕性、低摩擦因數(shù)等優(yōu)點(diǎn),被廣泛用于磁帶磁頭的保護(hù)層、軸承材料等[1-5]。研究人員利用熱噴涂技術(shù)制備Cr2O3涂層,發(fā)現(xiàn)Cr2O3的耐磨性能好,摩擦因數(shù)低,但其硬度低于Cr2O3塊體材料[6]。而選擇電弧離子鍍技術(shù)制備Cr2O3薄膜時(shí)發(fā)現(xiàn)其硬度達(dá)到了36 GPa,遠(yuǎn)遠(yuǎn)高于其他的制備方法[6-7]。通過電弧離子鍍制備工藝優(yōu)化,獲得柱狀組織的Cr2O3薄膜時(shí),其最為致密,且擁有較高硬度及低摩擦因數(shù)[8-9]。此外,龐曉露等[10]對(duì)磁控濺射制備的Cr2O3薄膜進(jìn)行熱處理時(shí)發(fā)現(xiàn),當(dāng)退火溫度高于晶化溫度時(shí),氧化鉻的硬度、耐磨性以及膜基結(jié)合力均顯著提高。
基于Cr2O3薄膜優(yōu)異的力學(xué)及摩擦學(xué)性能,筆者前期采用多弧離子鍍制備了Cr2O3薄膜,并采取不同溫度的熱處理,研究結(jié)果表明,隨退火溫度的升高,亞穩(wěn)態(tài)的原始薄膜發(fā)生再結(jié)晶,薄膜的缺陷減少。經(jīng)800 ℃退火后,Cr2O3薄膜在400~600 ℃環(huán)境下的摩擦因數(shù)明顯下降[1]。同時(shí)發(fā)現(xiàn)當(dāng)退火溫度達(dá)到1 000 ℃時(shí),退火處理后Cr2O3薄膜表面形成了類網(wǎng)狀的凸起結(jié)構(gòu),且在凸起區(qū)域檢測(cè)到Ti元素的存在,同時(shí)硬度和韌性的增加使耐磨壽命極大地提高。當(dāng)退火溫度達(dá)到1 000 ℃時(shí),Inconel 718基材中的Ti元素和Cr元素會(huì)向Cr2O3薄膜表面擴(kuò)散并與大氣中的O原子結(jié)合形成三元氧化物從而形成了凸起結(jié)構(gòu),這種具有特殊形貌的三元氧化物在高溫下具有自我修復(fù)的功能,并賦予Cr2O3薄膜非常優(yōu)異的寬溫域多循環(huán)的自潤(rùn)滑性能[11-15]。
Inconel 718基材在熱處理后由于相變引起了基材中的元素沿著晶界向基材表面擴(kuò)散[16],但金屬元素的擴(kuò)散機(jī)理有待進(jìn)一步研究。為此,本文在Inconel 718合金的基礎(chǔ)上選擇IC10、45鋼以及316不銹鋼作為基材,研究不同基材高溫下組織演變對(duì)基材中金屬元素?cái)U(kuò)散的影響,從而探討了不同基材中金屬元素的擴(kuò)散機(jī)理及其對(duì)Cr2O3薄膜表面形貌、結(jié)構(gòu)及摩擦學(xué)性能的影響。
采用多弧離子鍍技術(shù)(如圖1所示)分別在Inconel 718、IC10、45鋼和316不銹鋼基材表面上沉積Cr2O3薄膜。6個(gè)Cr靶(純度99.9%)為陰極靶,反應(yīng)氣體為高純O2(純度99.9%),濺射氣體為高純Ar(純度99.9%)。在沉積薄膜之前,Inconel 718、IC10、45鋼和316不銹鋼首先拋光至鏡面(為20~40 nm),隨后用丙酮超聲清洗3次,每次清洗15 min,并用氮?dú)獯蹈?,隨后放于真空腔室內(nèi),將真空腔室預(yù)熱至150 ℃。為了去除基材表面的氧化物,對(duì)基材進(jìn)行Ar+清洗(偏壓?800 V,壓強(qiáng)2.1 Pa,25 min)。為了提高薄膜與基材的結(jié)合力,在基材表面沉積400 nm厚的Cr過渡層,然后在5 min內(nèi)緩慢通入O2,并沉積Cr2O3薄膜30 min。Cr2O3薄膜制備具體工藝參數(shù)見表1。
圖1 試驗(yàn)設(shè)備示意圖
表1 Cr2O3薄膜的沉積參數(shù)
Tab.1 Deposition parameters of the Cr2O3 film
利用高溫馬弗爐分別對(duì)基材和Cr2O3薄膜進(jìn)行1 000 ℃和850 ℃退火處理,Inconel 718、IC10、45鋼和316不銹鋼基材分別記為樣品a、b、c和d,基材退火處理后分別記為樣品a1、b1、c1和d1,Inconel 718、IC10、45鋼和316不銹鋼表面上沉積的Cr2O3薄膜分別記為樣品a2、b2、c2和d2,Cr2O3薄膜退火后分別記為樣品a3、b3、c3和d3。熱處理工藝如表2所示,升溫速率設(shè)為5 ℃/min,所有保溫時(shí)間為120 min,所有的試樣保溫結(jié)束后在高溫馬弗爐中隨爐冷卻至室溫。
表2 熱處理工藝
Tab.2 Heat treatment process
通過JSM-5600L掃描電子顯微鏡(SEM)對(duì)不同基材退火處理前后和Cr2O3薄膜退火處理前后進(jìn)行形貌分析,并利用EDS對(duì)其進(jìn)行元素分析。利用JSM-6701F冷場(chǎng)發(fā)射掃描電鏡(FESEM)觀察退火前后樣品的微觀形貌,采用Philips公司的X’Pert-MRD型X射線衍射儀(XRD)對(duì)退火前后樣品的結(jié)構(gòu)進(jìn)行分析,所用的激發(fā)源為Cu-Kα射線(=0.154 056 nm,40 kV,40 mA),掃描范圍為10°~90°。
利用往復(fù)摩擦磨損試驗(yàn)儀(MSR-2T型)分析樣品退火前后的摩擦學(xué)性能,對(duì)偶球?yàn)? mm的Al2O3陶瓷球,法向載荷為2 N,往復(fù)滑行速度為20 mm/s,利用三維輪廓儀測(cè)量了磨損橫截面積并計(jì)算磨損率,并用SEM觀察磨痕形貌。
為了研究基材元素在Cr2O3薄膜中的擴(kuò)散機(jī)制,首先對(duì)不同合金基材進(jìn)行高溫?zé)崽幚怼D2為不同合金基材熱處理后的表面形貌,可以看出,不同的基材經(jīng)過熱處理,表面有很大的變化。從圖2a可以看出,Inconel 718經(jīng)1 000 ℃退火后在表面形成了類網(wǎng)狀的凸起結(jié)構(gòu),并伴隨著晶粒長(zhǎng)大。從圖2b可以看出,IC10經(jīng)1 000 ℃退火后表面只出現(xiàn)了輕微的晶粒長(zhǎng)大現(xiàn)象,并且可以觀察到少量晶粒脫落形成的脫落坑。45鋼經(jīng)850 ℃退火后(如圖2c所示)表面晶粒明顯長(zhǎng)大,達(dá)到10 μm量級(jí),并呈現(xiàn)疏松結(jié)構(gòu)。而316不銹鋼經(jīng)1 000 ℃退火后(如圖2d所示)表面則形成了不均勻的層狀結(jié)構(gòu)。如表3所示,對(duì)不同基材退火前后的元素分析發(fā)現(xiàn),Inconel 718合金退火后發(fā)現(xiàn)基材表面O、Ti、Cr元素的相對(duì)含量比退火前大幅度增加,這是因?yàn)樵诟邷叵禄闹械慕饘僭貢?huì)在基材的結(jié)晶處發(fā)生偏析聚集而向合金表面擴(kuò)散。Inconel 718合金中的δ相在980 ℃下開始溶解,而這種相的溶解會(huì)導(dǎo)致高溫合金發(fā)生再結(jié)晶從而形成新的晶界,所以1 000 ℃退火時(shí)大量晶界的形成促進(jìn)了基材中Ti、Cr元素向合金表面擴(kuò)散與O2發(fā)生反應(yīng)形成三元氧化物[16-18]。IC10高溫環(huán)境下其表面會(huì)形成Cr2O3氧化膜阻礙合金進(jìn)一步氧化,因此合金熱處理后表面O、Cr元素含量增加。45鋼在850 ℃溫度下全部轉(zhuǎn)變?yōu)閵W氏體,同時(shí)發(fā)生明顯氧化[19]。316不銹鋼退火后,表面檢測(cè)到Mn元素的含量增加。
圖2 不同基材退火后的表面形貌
表3 不同基材退火前后的元素含量變化
Tab.3 Changes in element content of different substrates before and after being annealed
Inconel 718合金表面沉積Cr2O3薄膜的截面形貌圖3a所示,可以看出,薄膜的厚度約為1.7 μm,并且通過過渡層的設(shè)計(jì),氧化鉻陶瓷薄膜的結(jié)合度較好。在不同基材上沉積Cr2O3薄膜的形貌與結(jié)構(gòu)一致,因此選擇樣品a2進(jìn)行對(duì)比分析。由圖3不同基材表面Cr2O3薄膜高溫退火前后SEM形貌可以看出,Inconel 718合金表面沉積的Cr2O3薄膜經(jīng)1 000 ℃退火后形成了類網(wǎng)狀凸起結(jié)構(gòu),這種結(jié)構(gòu)與上述基材退火后形成的凸起結(jié)構(gòu)類似。由表4中EDS分析結(jié)果可以發(fā)現(xiàn),薄膜表面檢測(cè)到Ti元素,由于基材在高溫下發(fā)生相轉(zhuǎn)變促使基材中的金屬元素向界面擴(kuò)散,再由Cr2O3薄膜再結(jié)晶形成新的晶界使界面處的Ti元素?cái)U(kuò)散到Cr2O3薄膜表面,形成的這種結(jié)構(gòu)使Cr2O3薄膜在寬溫域內(nèi)具有良好的潤(rùn)滑效果[14-16],IC10合金表面沉積的Cr2O3薄膜經(jīng)高溫?zé)崽幚砗蟊砻姹容^光滑,僅有幾個(gè)大顆粒嵌入薄膜表面,這主要是由于原始薄膜在沉積過程中存在的大顆粒,經(jīng)高溫氧化后體積進(jìn)一步長(zhǎng)大。EDS結(jié)果表明,薄膜表面只有O和Cr元素,IC10合金中的Ni、Mo、Al元素并沒有發(fā)生擴(kuò)散。圖3d可以觀察到薄膜表面比其他薄膜光滑,45鋼表面沉積的Cr2O3薄膜經(jīng)850 ℃退火處理后薄膜表面形成了較大的顆粒,且EDS結(jié)果顯示薄膜表面存在Fe元素。如圖4所示,對(duì)顆粒進(jìn)一步分析發(fā)現(xiàn)這種較大的顆粒主要成分為Fe元素。在顆粒狀區(qū)域1發(fā)現(xiàn)Fe元素的質(zhì)量分?jǐn)?shù)為64.81%,Cr元素僅有5.95%,在光滑區(qū)域2發(fā)現(xiàn)Fe元素僅有1.81%,但Cr元素的含量為67.14%。45鋼表面上沉積的Cr2O3薄膜在850 ℃退火時(shí),F(xiàn)e元素隨基材相的轉(zhuǎn)變而析出,并通過薄膜的晶界向其表面擴(kuò)散,且形成了這種較大顆粒。316不銹鋼表面沉積的Cr2O3薄膜經(jīng)1 000 ℃退火處理后,表面明顯觀察到晶界,且薄膜表面也檢測(cè)到了大量的Mn元素。退火過程中316不銹鋼基材再結(jié)晶提高了晶界比例,晶界的結(jié)構(gòu)相比于晶體內(nèi)是比較疏松的,并且容易導(dǎo)致雜質(zhì)原子發(fā)生聚集,晶界處的能量較高容易發(fā)生熔化和氧化[20],且Mn和Fe元素沿著316不銹鋼基材的晶界擴(kuò)散其薄膜表面,所以在薄膜表面觀察到晶界的形成。
如圖5所示,對(duì)退火前后Cr2O3薄膜進(jìn)行微觀形貌分析發(fā)現(xiàn),原始薄膜表面存在針孔、大顆粒等缺陷,經(jīng)高溫退火處理后Cr2O3薄膜均出現(xiàn)明顯的晶粒長(zhǎng)大。從圖5b可以看出,Cr2O3薄膜表面凸起部分結(jié)構(gòu)致密,且晶粒要比平坦區(qū)域大。IC10合金表面的Cr2O3薄膜退火后晶粒粗大,且結(jié)構(gòu)較為疏松。對(duì)于45鋼表面的Cr2O3薄膜而言,由于退火溫度較低(850 ℃),薄膜晶粒雖然長(zhǎng)大,但保持納米晶體結(jié)構(gòu)。當(dāng)基材為316不銹鋼時(shí),經(jīng)1 000 ℃退火處理后的薄膜晶粒明顯長(zhǎng)大,由圖5e可以看出,薄膜表面形成了微米級(jí)的八面體大晶粒。
圖3 Cr2O3薄膜退火前后的截面和表面形貌
表4 不同基材表面沉積Cr2O3薄膜退火前后的元素含量變化
Tab.4 Changes in element content of Cr2O3 films deposited on the surface of different substrates before and after being annealed
為了進(jìn)一步說明不同基材上沉積Cr2O3薄膜退火前后的晶體結(jié)構(gòu),圖6給出了Cr2O3薄膜退火前后的XRD譜圖。從圖6中a2曲線可以看出,原始薄膜的衍射峰較寬,說明原始薄膜的結(jié)晶度較低。然而薄膜在高溫退火后結(jié)晶度明顯提高,從圖6中a3曲線可以看出,Cr2O3薄膜在熱處理過程中發(fā)生再結(jié)晶,并沿著(110)晶面擇優(yōu)生長(zhǎng),并且基材中的金屬Ti元素?cái)U(kuò)散至薄膜表面形成了CrTiO3。而在IC10合金表面沉積的Cr2O3薄膜在熱處理過程中沿著(104)和(116)晶面擇優(yōu)生長(zhǎng),結(jié)合EDS結(jié)果分析發(fā)現(xiàn)IC10基材中金屬元素并沒有發(fā)生擴(kuò)散,在薄膜表面形成其他物相。圖6中c3曲線可以發(fā)現(xiàn)45鋼表面沉積的Cr2O3薄膜在熱處理過程中同樣沿著(104)和(116)晶面擇優(yōu)生長(zhǎng),同時(shí)也發(fā)現(xiàn)45鋼中的Fe元素?cái)U(kuò)散至薄膜表面并固溶在Cr2O3晶格中,形成了Fe2O3的固溶體。當(dāng)基材為316不銹鋼時(shí),Cr2O3薄膜在熱處理過程中沿著(110)晶面擇優(yōu)生長(zhǎng),同時(shí),基材中的Mn元素?cái)U(kuò)散至薄膜表面形成了八面體尖晶石結(jié)構(gòu)的MnCr2O4(PDF#54-0876)。
圖4 圖3e中大顆粒分析
圖5 Cr2O3薄膜退火前后的FESEM表面形貌
圖7給出了不同基材退火前后以及不同基材表面上沉積的Cr2O3薄膜退火前后的摩擦因數(shù)曲線。Inconel 718合金、IC10合金以及45鋼退火后,由于表面氧化膜的存在使得摩擦因數(shù)相比原始合金略有降低。結(jié)合圖8a可以看出,Inconel 718合金的磨損率為7.43×10?4mm?3·n?1·m?1,1 000 ℃退火后磨損率急劇減小至1.35×10?6mm?3·n?1·m?1,與Inconel 718合金相比,1 000 ℃退火處理使其表面氧化形成了Cr2O3和Cr2Ti7O17混合相。其次,凸起結(jié)構(gòu)的成分Cr2Ti7O17相與Magnéli相相似,Magnéli相中由于氧空位而導(dǎo)致易剪切面的存在[16-21],Cr2Ti7O17相符合Magnéli相的組成,從而導(dǎo)致摩擦因數(shù)下降以及磨損率降低。從圖9a也可以看出,退火前磨痕內(nèi)有明顯的犁溝以及磨損引起的剝落,且磨痕較寬,這與較大的摩擦因數(shù)和磨損率相對(duì)應(yīng),退火后(圖9e)磨痕內(nèi)比較光滑,這與雙金屬氧化物的減磨作用有極大的關(guān)系[16]。IC10合金的磨損率約為5.62×10?5mm?3·n?1·m?1,與IC10合金相比,1 000 ℃退火處理使其磨損率降低了大約100倍。從圖9b可以看到磨損引起的剝落、犁溝、裂紋及脆性斷裂,這與較高的磨損率相對(duì)應(yīng),退火后(圖9f)磨痕內(nèi)以Cr2O3相為主的氧化層起到減磨作用,且觀察到氧化層輕微斷裂。但是45鋼和316不銹鋼退火處理前后磨損率變化不大,45鋼退火前(圖9c)磨痕內(nèi)觀察到磨損引起的剝落及較深的犁溝,退火后(圖9g)其表層形成了以Fe2O3相(Fe-O相圖)為主的凸起氧化層起到減磨作用[23]。316不銹鋼退火前(圖9d所示)磨痕內(nèi)有較大的顆粒,退火后(圖9f)表面形成了Fe3O4和Fe2O3混合相的不均勻?qū)訝罱Y(jié)構(gòu)[22-23],且磨痕內(nèi)由磨損引起的剝落,結(jié)合圖2d的形貌分析,可以看到退火后在其表面形成了雙層的膜層,下層較為致密,而上表層形成了不均勻的氧化層而導(dǎo)致摩擦因數(shù)急劇增大。
圖6 Cr2O3薄膜退火前后的XRD譜圖(a2代表原始薄膜,a3代表Inconel 718合金表面沉積Cr2O3薄膜在1 000 ℃退火,b3代表IC10合金表面沉積Cr2O3薄膜在1 000 ℃退火,c3代表45鋼表面沉積Cr2O3薄膜在850 ℃退火,d3代表 316不銹鋼表面沉積Cr2O3薄膜在1 000 ℃退火)
圖7 不同基材退火處理前后和Cr2O3薄膜退火處理前后的摩擦因數(shù)(a代表Inconel 718合金;b代表IC10合金;c代表45鋼;d代表 316不銹鋼;a1代表 Inconel 718合金在1 000 ℃退火;b1代表 IC10合金在1 000 ℃退火;c1代表 45鋼在850 ℃退火;d1代表316不銹鋼在1 000 ℃退火;a2代表Inconel 718合金表面沉積Cr2O3薄膜;b2代表IC10合金表面沉積Cr2O3薄膜;c2代表45鋼表面沉積Cr2O3薄膜;d2代表316不銹鋼表面沉積Cr2O3薄膜;a3代表Inconel 718合金表面沉積Cr2O3薄膜在1 000 ℃退火;b3代表 IC10合金表面沉積Cr2O3薄膜在1 000 ℃退火;c3代表45鋼表面沉積Cr2O3薄膜在850 ℃退火;d3代表316不銹鋼表面沉積Cr2O3薄膜在1 000 ℃退火)
Fig.8 Friction coefficient of different substrates before and after being annealed and Cr2O3flim before and after being annealed (a is Inconel 718 alloy; a1 is Inconel 718 alloy after being annealed at 1 000 ℃; b is IC10 alloy; b1 is IC10 alloy after being annealed at 1 000 ℃; c is 45 steel; c1 is 45 steel after being annealed at 850 ℃; d is 316 stainless steel; d1 is 316 stainless steel after being annealed at 1 000 ℃; a2 is Cr2O3film deposited on the surface of Inconel 718 alloy; a3 is Cr2O3film deposited on the surface of Inconel 718 alloy was annealed at 1 000 ℃; b2 is Cr2O3film deposited on the surface of IC10; b3 is Cr2O3film deposited on the surface of IC10 alloy was annealed at 1 000 ℃; c2 is Cr2O3film deposited on the surface of 45 steel; c3 is Cr2O3film deposited on the surface of 45 steel was annealed at 850 ℃; d2 is Cr2O3film deposited on the surface of 316 stainless steel; d3 is Cr2O3film deposited on the surface of 316 stainless steel was annealed at 1 000 ℃)
圖9 不同基材退火前后的磨痕形貌
在Cr2O3薄膜制備過程中不同基材對(duì)其結(jié)構(gòu)與形貌沒有明顯影響,因此退火前薄膜的摩擦因數(shù)都基本保持在0.55左右,退火處理后Cr2O3薄膜的摩擦因數(shù)均下降。從圖8可以看出,不同基材上沉積的Cr2O3薄膜退火處理前的磨損率基本都保持在10?6的數(shù)量級(jí),這與圖10中磨痕形貌比較光滑相一致。Inconel 718合金表面上沉積的Cr2O3薄膜退火前(圖8中a2樣品)磨損率為1.46×10?6mm?3·n?1·m?1,退火處理后(圖10e)磨痕比退火前窄(圖10a),且在磨痕內(nèi)觀察到類網(wǎng)狀凸起結(jié)構(gòu),這主要是由于其基材中的金屬元素?cái)U(kuò)散至薄膜表面形成了CrTiO3和Cr2O3潤(rùn)滑相,使其摩擦因數(shù)降低至0.45左右以及磨損率下降到1.35×10?7mm?3·n?1·m?1(圖8中a3樣品)。結(jié)合圖5c的表面形貌可以看到薄膜的晶粒較粗大,結(jié)構(gòu)較為疏松,所以IC10合金上沉積的Cr2O3薄膜退火后磨損壽命較低(圖7中b3曲線),且在磨痕內(nèi)(圖10f)明顯看到基材裸露,這與磨損壽命較低相對(duì)應(yīng)。
45鋼和316不銹鋼表面沉積的Cr2O3薄膜退火后磨損率增大(圖8中c3和d3樣品),45鋼熱處理溫度為850 ℃,由圖4知,表面生成了以Fe元素為主的大顆粒,圖10g可以看到磨痕兩邊有堆積的磨屑,摩擦?xí)r發(fā)生了磨粒磨損,故磨損率較大(圖8中c3樣品),且薄膜熱處理后Cr2O3薄膜表層形成了耐磨的Fe2O3相導(dǎo)致摩擦因數(shù)降低[23](圖7中c3曲線)。316不銹鋼表面上沉積的Cr2O3薄膜退火后(圖10h)在磨痕內(nèi)觀察到晶界結(jié)構(gòu),與圖10e不同的是組成晶界結(jié)構(gòu)的晶粒大小、分布和形態(tài)不同,由FESEM可以看出,圖5e的晶粒較大且比較分散,也看出薄膜表面的結(jié)構(gòu)比較疏松,容易導(dǎo)致晶粒的脫落,導(dǎo)致了磨粒磨損,故磨損率較大(圖8中d3樣品),但316不銹鋼基材中的Mn元素?cái)U(kuò)散至Cr2O3薄膜表面形成了尖晶石結(jié)構(gòu)的MnCr2O4相,與Cr2O3相協(xié)同降低了其摩擦因數(shù)(圖7中d3曲線)。
圖10 不同基材表面沉積的Cr2O3薄膜退火前后的磨痕形貌
1)Inconel718、IC10、45鋼以及316不銹鋼經(jīng)高溫退火后基材中的金屬元素?cái)U(kuò)散到其表面,除316不銹鋼外,退火后的摩擦因數(shù)明顯降低。
2)Inconel718合金、IC10合金、45鋼以及316不銹鋼表面沉積的Cr2O3薄膜經(jīng)高溫退火后發(fā)現(xiàn)只有基材發(fā)生相變或者有大量晶界的形成才能將基材中的金屬元素?cái)U(kuò)散到Cr2O3薄膜表面,且對(duì)Cr2O3薄膜表面形貌、結(jié)構(gòu)以及摩擦學(xué)性能有很大的影響。
3)在高溫下,由于化學(xué)勢(shì)的差異使基材中的原子沿著Cr2O3薄膜晶界擴(kuò)散至薄膜的表面,并與大氣中的O原子結(jié)合形成氧化物相,并且顯著地提高了Cr2O3薄膜的結(jié)晶度、消除了薄膜的缺陷以及降低了其摩擦因數(shù),Inconel718合金、45鋼以及316不銹鋼表面上沉積的Cr2O3薄膜經(jīng)高溫退火后摩擦因數(shù)都保持在0.45左右,Inconel718合金表面上沉積的Cr2O3薄膜具有優(yōu)異的摩擦學(xué)性能。
[1] 劉曉紅, 盧小偉, 何乃如, 等. 退火溫度對(duì)氧化鉻薄膜結(jié)構(gòu)和高溫摩擦學(xué)性能的影響[J]. 摩擦學(xué)學(xué)報(bào), 2019, 39(2): 164-170.
LIU Xiao-hong, LU Xiao-wei, HE Nai-ru, et al. Influence of Annealing Temperature on Structure and High Tempe-rature Tribological Properties of Chromium Oxide Films[J]. Tribology, 2019, 39(2): 164-170.
[2] SOURTY E, SULLIVAN J L, BIJKER M D. Chromium Oxide Coatings Applied to Magnetic Tape Heads for Imp-roved Wear Resistance[J]. Tribology International, 2003, 36(4-6): 389-396.
[3] BHUSHAN B, THEUNISSEN G S A M, LI Xiao-dong. Tribological Studies of Chromium Oxide Films for Mag-netic Recording Applications[J]. Thin Solid Films, 1997, 311(1-2): 67-80.
[4] BIJKER M D, BASTIAENS J J J, DRAAISMA E A, et al. The Development of a Thin Cr2O3Wear Protective Coating for the Advanced Digital Recording System[J]. Tribology International, 2003, 36(4-6): 227-233.
[5] CETINEL H, CELIK E, KUSOGLU M I. Tribological Behavior of Cr2O3Coatings as Bearing Materials[J]. Jour-nal of Materials Processing Technology, 2008, 196(1-3): 259-265.
[6] ZHANG Y, LI J, HUANG J, et al. Mechanical and Tribo-logical Properties of Plasma-Sprayed Cr3C2-NiCr, WC-Co, and Cr2O3Coatings[J]. Journal of Thermal Spray Techno-logy, 1998, 7(2): 242-246.
[7] JI A L, WANG W, SONG G H, et al. Microstructures and Mechanical Properties of Chromium Oxide Films by Arc Ion Plating[J]. Materials Letters, 2004, 58(14): 1993-1998.
[8] WANG Tie-gang, JEONG D, KIM S H, et al. Study on Nanocrystalline Cr2O3Films Deposited by Arc Ion Plating: I. Composition, Morphology, and Microstructure Analysis[J]. Surface and Coatings Technology, 2012, 206(10): 2629- 2637.
[9] WANG Tie-gang, JEONG D, LIU Yan-mei, et al. Study on Nanocrystalline Cr2O3Films Deposited by Arc Ion Plating: II. Mechanical and Tribological Properties[J]. Surface and Coatings Technology, 2012, 206(10): 2638-2644.
[10] 龐曉露, 羅飛, 高克瑋, 等. 熱處理對(duì)磁控濺射制備氧化鉻涂層的結(jié)構(gòu)及力學(xué)性能的影響[J]. 真空, 2007, 44(6): 43-47.
PANG Xiao-lu, LUO Fei, GAO Ke-wei, et al. Influence of Annealing Temperature/Time on Structure and Mecha-nical Properties of Chromium Oxide Coating by Magne-tron Sputtering[J]. Vacuum, 2007, 44(6): 43-47.
[11] 何乃如, 王飛飛, 吉利, 等. Ti、Cr元素在Cr2O3薄膜中的擴(kuò)散及其對(duì)摩擦學(xué)性能的影響[J]. 中國(guó)表面工程, 2016, 29(6): 67-74.
HE Nai-ru, WANG Fei-fei, JI Li, et al. Diffusion Behavior of Ti and Cr Elements in Cr2O3Film and Its Influence on Tribological Properties[J]. China Surface Engineering, 2016, 29(6): 67-74.
[12] HE Nai-ru, LI Hong-xuan, JI Li, et al. Toughness Measu-rement and Toughening Mechanisms of Arc Ion Plating Cr2O3Films Treated by Annealing[J]. Ceramics Interna-tional, 2015, 41(8): 9534-9541.
[13] HE Nai-ru, JI Li, LIU Xiao-hong, et al. Role of Annealing Temperatures on the Evolution of Microstructure and Properties of Cr2O3Films[J]. Applied Surface Science, 2015, 357: 1472-1480.
[14] HE Nai-ru, LI Hong-xuan, JI Li, et al. Reusable Chro-mium Oxide Coating with Lubricating Behavior from 25 to 1 000 ℃ Due to a Self-Assembled Mesh-Like Surface Structure[J]. Surface and Coatings Technology, 2017, 321: 300-308.
[15] HE Nai-ru, LI Hong-xuan, JI Li, et al. Investigation of Metal Elements Diffusion in Cr2O3Film and Its Effects on Mechanical Properties[J]. Ceramics International, 2020, 46(5): 6811-6819.
[16] 劉紅利, 劉曉紅, 吉利, 等. 高溫氧化處理前后Inconel 718高溫合金摩擦學(xué)性能的探究[J]. 摩擦學(xué)學(xué)報(bào), 2018, 38(3): 274-282.
LIU Hong-li, LIU Xiao-hong, JI Li, et al. Wide Tempe-rature Range Tribological Property of Inconel 718 High- Temperature Alloy[J]. Tribology, 2018, 38(3): 274-282.
[17] ZHANG Jian yang, XU Bin, TARIQ N U H, et al. An Innovative Approach for Grain Refinement in Ni-Based Superalloys: Modification in the Classical Delta Process through Γ" Pre-Aging Treatment[J]. Journal of Alloys and Compounds, 2020, 818: 152827.
[18] 馬迪, 魏剛, 張鏡斌, 等. δ相球化演變對(duì)Inconel718合金室溫力學(xué)性能的影響[J]. 熱加工工藝, 2021, 50(4): 124-130.
MA Di, WEI Gang, ZHANG Jing-bin, et al. Effect of Δ- Phase Spheroidization Evolution on Mechanical Proper-ties of Inconel718 Alloy at Room Temperature[J]. Hot Working Technology, 2021, 50(4): 124-130.
[19] 黃勝銀, 段閃閃, 鄭喜平. 45鋼調(diào)質(zhì)工件的金相組織分析[J]. 熱加工工藝, 2018, 47(16): 163-165.
HUANG Sheng-yin, DUAN Shan-shan, ZHENG Xi-ping. Microstructure Analysis of 45 Steel Quenched and Tem-pered Workpiece[J]. Hot Working Technology, 2018, 47(16): 163-165.
[20] 王坤, 陳文覺, 夏爽, 等. 高溫退火過程中316不銹鋼晶界特征分布的演化[J]. 上海金屬, 2009, 31(5): 13-18.
WANG Kun, CHEN Wen-jue, XIA Shuang, et al. Evolu-tion of Grain Boundary Character Distribution in 316 Austenitic Stainless Steel during High Temperature Annea-ling[J]. Shanghai Metals, 2009, 31(5): 13-18.
[21] STEN A, ANITA S, ARNE M, et al. A Homologous Series of Mixed Titanium Chromium Oxides Ti(n-2)Cr2O(2n-1) Isomorphous with the Series Ti(n)O(2n-1) and V(n)O(2n-1)[J]. Acta Chemica Scandinavica, 1959, 13: 989-997.
[22] 張志紅, 劉潔, 張孝元, 等. 奧氏體不銹鋼的高溫氧化行為[J]. 鍛壓技術(shù), 2021, 46(7): 214-220.
ZHANG Zhi-hong, LIU Jie, ZHANG Xiao-yuan, et al. High Temperature Oxidation Behaviour for Austenitic Stainless Steel[J]. Forging & Stamping Technology, 2021, 46(7): 214-220.
[23] 張秋陽(yáng), 丁紅燕, 周廣宏, 等. 含F(xiàn)e2O3摩擦層的促進(jìn)形成對(duì)H13和45鋼磨損性能的影響[J]. 摩擦學(xué)學(xué)報(bào), 2017, 37(6): 823-830.
ZHANG Qiu-yang, DING Hong-yan, ZHOU Guang- hong, et al. Formation of Tribo-Layer in the Presence of Fe2O3Particles and Its Influence on Wear Performance of H13 and 45 Steel[J]. Tribology, 2017, 37(6): 823-830.
Effect of Element Diffusion on Structure and Tribological Properties of Cr2O3Ceramic Films Prepared by Multi-arc Ion Plating
1,1,1,2,1,1
(1. School of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; 2. Xi'an Aerospace Composites Research Institute, Xi'an 710025, China)
The Cr2O3ceramic films prepared by multi-arc ion plating possess a low friction coefficient, good wear resistant and oxidation resistance. Meanwhile, high temperature annealing could improve the mechanical properties of Cr2O3films significantly. In previous work, we found that the metal elements in the substrate would diffuse to the film surface and oxidize to form a ternary metal oxide with lubricating property. Thus, in order to research the diffusion behaviours of the metal elements in the substrate, the effects of microstructure evolution of the substrates on the metal elements diffusion in high temperature, and the evolutions of morphologies, microstructure and tribological properties of the Cr2O3films were also researched in detail.
Cr2O3ceramic films were deposited on the surfaces of different substrate (Inconel 718 alloy, IC10 alloy, 45 steel and 316 stainless steel, polished to a roughness () of 20 to 40 nm) by multi-arc ion plating technology. Pure Ar (99.99%) and O2(99.99%) were utilized as working gases. After cleaning with acetone for three times and drying with nitrogen, the substrates were pre-heated to 150 ℃ by placed into the vacuum chamber. Substrates were cleaned with Ar+(bias voltage ?800 V, pressure 2.1 Pa, 25 min) to remove oxides layer on the surface of the substrates. Firstly, Cr transition layer was deposited to improve adhesion strength between substrate and Cr2O3film in pure Ar atmosphere, and then O2was slowly introduced within 5 minutes, finally Cr2O3film was deposited for 30 minutes. The working current, voltage, duty cycle, substrate temperature, working pressure and ratio of O2: Ar were 80 A, ?100 V, 40%, 150 ℃, 0.63 Pa, 110: 200 (ml/min), respectively. The films deposited on the surface of Inconel 718 alloy, IC10 alloy and 316 stainless steel were annealed at 1 000 ℃, and the film deposited on the surface of 45 steel was annealed at 850 ℃. Meanwhile, the corresponding different substrates were also annealed accordingly. Scanning electron microscope (SEM) and cold field emission scanning electron microscope (FESEM) are used to analyze the surface morphologies of the substrate and film before and after annealing and the changes of element content on the surface of the substrate and the film are analyzed by EDS. The phase of Cr2O3films are analyzed by X-ray diffraction (XRD). The tribological properties of the substrate and film before and after annealing are analyzed by reciprocating friction and wear tester, a three-dimensional profiler and SEM.
After annealing, the elements in the substrate diffuse to its surface, and the friction coefficient of Inconel 718 alloy, IC10 alloy and 45 steel are reduce. The metal elements in the substrate of Inconel 718 alloy and 316 stainless steel diffuse along the grain boundary of the Cr2O3film to the surface in the process of annealing, and then form the ternary oxides in atmosphere. After annealing at 1 000 ℃, the Ti element in Inconel 718 alloy diffuse to the surface of the Cr2O3film and form a mesh-like heave structure which comprised of CrTiO3and Cr2O3. The Mn element in 316 stainless steel diffuse to the surface of the Cr2O3film and form spinel structure of MnCr2O4phase. After annealing at 850 ℃, the Cr2O3film deposited on surface of 45 steel forms large particles dominated by Fe elemen. The phase of the film surface is a mixed phase of Fe2O3and Cr2O3. Metal elements in the substrate are not found on the surface of the Cr2O3film deposited on the IC10 alloy, and the main phase is Cr2O3.The friction coefficient of the Cr2O3film reduces to about 0.45 after annealing.
Metal elements in Inconel 718 alloy, 45 steel and 316 stainless steel diffuse to the surface of the film, which has a great influence on the phase composition, surface morphologies and tribological properties of the Cr2O3film. The Cr2O3film deposited on the surface of the IC10 alloy has a poor anti-wear performance after annealing. The Cr2O3film deposited on the surface of Inconel 718 alloy exhibits excellent tribological properties.
multi-arc ion plating; different substrates; Cr2O3film; annealing; element diffusion; friction and wear
2021-08-12;
2012-12-07
HE Nai-ru (1989-), Male, Doctor, Associate professor, Research focus: self-lubricating film.
賈均紅(1974—),男,博士,教授,主要研究方向?yàn)槟Σ翆W(xué)及表面工程。
JIA Jun-hong (1974-), Male, Doctor, Professor, Research focus: tribology and surface engineering.
何乃如, 李建紅, 賈均紅, 等. 元素?cái)U(kuò)散對(duì)Cr2O3陶瓷薄膜結(jié)構(gòu)和摩擦學(xué)性能的影響[J]. 表面技術(shù), 2022, 51(9): 91-101.
th117
A
1001-3660(2022)09-0091-11
10.16490/j.cnki.issn.1001-3660.2022.09.000
2021–08–12;
2021–12–07
國(guó)家自然科學(xué)基金項(xiàng)目(51905325);中國(guó)博士后科學(xué)基金項(xiàng)目(2019M653525)
Fund:The National Natural Science Foundation of China (51905325); China Postdoctoral Science Foundation (2019M653525)
何乃如(1989—),男,博士,副教授,主要研究方向?yàn)樽詽?rùn)滑薄膜。
HE Nai-ru, LI Jian-hong, JIA Jun-hong, et al. Effect of Element Diffusion on Structure and Tribological Properties of Cr2O3Ceramic Films Prepared by Multi-arc Ion Plating[J]. Surface Technology, 2022, 51(9): 91-101.