亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        激光沖擊E690高強鋼Ostwald熟化現(xiàn)象的試驗研究

        2022-09-27 12:43:32解朋朋曹宇鵬花國然楊聰朱鵬飛
        表面技術 2022年9期
        關鍵詞:調幅功率密度選區(qū)

        解朋朋,曹宇鵬,2,3,花國然,楊聰,朱鵬飛

        激光沖擊E690高強鋼Ostwald熟化現(xiàn)象的試驗研究

        解朋朋1,曹宇鵬1,2,3,花國然1,楊聰1,朱鵬飛1

        (1.南通大學 機械工程學院,江蘇 南通 226019;2.南通理工學院 3D打印技術研究所,江蘇 南通 226001;3.南通中遠海運船務工程有限公司,江蘇 南通 226006)

        研究功率密度對激光沖擊E690高強鋼表面Ostwald熟化現(xiàn)象的影響。根據(jù)理論分析激光沖擊金屬材料與產(chǎn)生調幅分解的內(nèi)在聯(lián)系,提出因激光沖擊強化產(chǎn)生 Ostwald熟化現(xiàn)象所需要的條件。使用場發(fā)式透射電鏡(TEM)獲取激光沖擊E690高強鋼試樣表面微觀組織結構和選區(qū)電子衍射花樣,觀測不同功率密度的TEM形貌相中晶粒尺寸的變化特征,以及Ostwald熟化現(xiàn)象驗證。通過TEM形貌像可以看出,E690高強鋼基材是由鐵素體層與滲碳體層交替重疊組成的珠光體形貌,在激光沖擊強化作用下,發(fā)生了晶粒細化,薄層滲碳體逐漸消失,電子衍射花樣逐漸呈圓環(huán)狀變化。當激光功率密度上升至4.07 GW/cm2時,持續(xù)細化的材料發(fā)生粗化,出現(xiàn)調幅分解組織,選區(qū)電子衍射花樣中出現(xiàn)衛(wèi)星斑,E690高強鋼表面發(fā)生了Ostwald熟化現(xiàn)象。當激光功率密度達到5.09 GW/cm2,E690高強鋼表層產(chǎn)生了納米晶。較弱和較強的功率密度都不能使脫溶物到達發(fā)生Ostwald熟化機制的臨界半徑,Ostwald熟化現(xiàn)象與納米晶相鄰出現(xiàn)。

        激光沖擊強化;Ostwald熟化;E690高強鋼;晶粒細化;微結構

        當脫溶沉淀從晶粒中析出的時候,由于系統(tǒng)中眾多的第二相顆粒導致界面的大量存在,使材料中界面能維持在較高的水平,而沒有達到最低的能量狀態(tài),一些具有高能的因素使得小于臨界面積的脫溶物逐漸消融,大于臨界面積的粒子逐漸長大,導致界面面積的減小,這種現(xiàn)象一般稱為粗化或者Ostwald熟化現(xiàn)象[1-4]。激光沖擊強化作為一種具有強大潛力與應用前景的材料表層改性技術,是通過高能激光照射材料表面涂覆的吸收層,利用高壓等離子體產(chǎn)生爆轟波的力學效應作用在材料表層,高應變率使材料發(fā)生晶粒細化甚至形成納米晶,從而提高材料的硬度、抗磨損等性能[5-9]。筆者課題組前期開展了對E690高強鋼一系列的研究,通過仿真與試驗相結合的方式研究了激光沖擊前后殘余應力的變化,進行了不同功率密度激光沖擊E690微結構的研究,從位錯組態(tài)與晶粒細化角度研究了激光與材料相互作用形式,并且還開展了激光沖擊微造型對減摩潤滑的研究,并證明了激光沖擊微造型提高了E690高強鋼的摩擦學性能[10-12]。

        同時,金屬材料中Ostwald熟化吸引了世界上眾多學者對其進行探索研究。楊洪波等[13]研究了GCr15軸承鋼中滲碳體球化的長大機制,結果顯示,滲碳體球化長大是由于Ostwald機制形成的。尹鴻翔等[14]通過原子探針層析技術和高分辨透射電子顯微技術對鐵素體中銅析出相進行了研究,根據(jù)時效時長的增長,銅析出相發(fā)生了粗化現(xiàn)象。Jiang等[15]綜合研究了Ti-14Cu合金相對于Ti2Cu相在長期等溫熱暴露后的粗化行為,觀察到合金在穩(wěn)定粗化階段受Ostwald熟化機制控制,隨著穩(wěn)定粗化,Ti-14Cu合金中高體積Ti2Cu相的存在增加了變形期間的有效滑移長度,并降低了塑性。Badykaa等[16]對時效過程中鑄造奧氏體不銹鋼的鐵素體相發(fā)生調幅分解進行了研究,并且對比了不同元素析出相對調幅分解速度的影響。激光沖擊加載的時間極短(納秒級),而載荷極大(吉帕級),試樣在激光沖擊處理后發(fā)生了無需形核的調幅分解,進而誘發(fā)了Ostwald熟化現(xiàn)象。相對于由熱處理引起Ostwald熟化現(xiàn)象,激光沖擊強化引起的沖擊相變極為復雜,研究其誘發(fā)的Ostwald熟化現(xiàn)象對激光沖擊強化技術具有一定的理論意義。

        本文對激光沖擊E690高強鋼晶粒尺寸影響過程進行分析,觀察到晶粒尺寸不隨著激光功率密度的增加而細化。在4.07 GW/cm2時,觀察到了E690高強鋼發(fā)生調幅分解,并導致Ostwald熟化現(xiàn)象的產(chǎn)生。通過理論與試驗相結合,探究Ostwald熟化產(chǎn)生所需要的激光沖擊能量。通過場發(fā)式透射電鏡對不同功率密度下試樣TEM形貌像和選區(qū)電子衍射進行分析,探究不同功率密度沖擊后的E690高強鋼中材料微觀結構的變化,并驗證了Ostwald熟化現(xiàn)象的存在。通過TEM形貌像驗證Ostwald熟化現(xiàn)象前后試樣表面晶粒尺寸變化,為科學研究激光沖擊E690表層微觀結構變化,優(yōu)化海工平臺裝備性能提供理論基礎。

        1 調幅分解與“Ostwald熟化”關系分析

        激光作用在材料過程中具有納秒級時間、超高的應變率與極高壓力的特點。在高應變率影響下,塑性變形使材料溫度升高,沖擊波與金屬材料彼此作用過程中,晶體缺陷增加使組織不穩(wěn)定性升高,容易受到其他因素影響發(fā)生調幅分解,導致其Gibbs能變化,Δ為[17-18]:

        式中:0為母相的平均成分;Δ為激光沖擊引起的成分起伏;(0)為摩爾Gibbs能。

        用三階泰勒公式將(0+Δ)和(0-Δ)展開,最終可得:

        式中:(2)(0)、(4)(0)分別為Δ的二階導數(shù)和四階導數(shù)。

        分析式(2)可知,系統(tǒng)的Gibbs能與(2)(0)的取值相關,若(2)(0)>0,則系統(tǒng)的Gibbs能上升;反之則減小。

        在激光沖擊作用下,塑性應變能向熱能轉變會使材料各相Gibbs能增加,直到合金的Gibbs能曲線具有負曲率時發(fā)生調幅分解。在激光沖擊中形成調幅分解時不需要形核,這種相變不因界面的產(chǎn)生和遷移而發(fā)生,而是均勻分布在合金中。在E690高強鋼表面晶粒調幅分解后期,材料處于較高能態(tài),同時其調幅分解產(chǎn)物(脫溶物)的析出會使E690高強鋼具有更大的界面能。為減小材料整體內(nèi)部能量,小尺寸的顆粒可以進入一些粗大的粒子中,導致后者產(chǎn)生尺寸增大現(xiàn)象,即發(fā)生了“奧斯特瓦爾德熟化(Ostwald Ripening)”[18-19]。當E690高強鋼在激光沖擊加載過程中發(fā)生調幅分解時,將出現(xiàn)許多細小脫溶物,滿足了Ostwald熟化發(fā)生條件,相鄰晶粒尺寸差異大,界面能較大,將發(fā)生Ostwald熟化。

        2 試驗方案設計

        E690高強鋼作為本次試驗材料,其力學性能與元素組成(質量分數(shù))為:C ≤1.72%,Si ≤0.45%,Mn ≤1.24%,Cr ≤0.74%,屈服強度為690 MPa,抗拉強度為835 MPa。通過線切割裝置將E690高強鋼加工成50 mm×50 mm×5.5 mm試樣,使用240#—1200#砂紙對試樣正反兩面研磨至厚度為5 mm。吸收層使用150 μm厚的鋁箔,約束層為去離子水。

        激光沖擊試驗使用ND:YAG固體激光器(SGR系列,Beamtech公司,中國),激光沖擊的具體參數(shù):脈寬為10 ns,波長為1 064 nm,光斑直徑為5 mm,分別采用3、3.89、5.43、8、10 J的能量,對應激光功率密度分別為1.53、1.98、2.77、4.07、5.09 GW/cm2,搭接率為70%,沖擊次數(shù)為1次,沖擊區(qū)域以光斑中心構成的20 mm×20 mm正方形,沖擊區(qū)域與光斑搭接方案如圖1所示。

        先用分析純乙醇浸泡試樣,隨后利用超聲清洗并冷風風干。E690高強鋼線切割后,從試樣基體側預減薄,然后經(jīng)凹坑研磨,最后進行離子減薄,制成TEM薄膜試樣。使用透射電子顯微電鏡(Tecnai G2 F20,F(xiàn)EI公司,美國)觀察試樣表層的微觀形貌和選區(qū)電子衍射。

        圖1 激光沖擊區(qū)域與光斑搭接方案

        3 TEM形貌像分析

        3.1 E690高強鋼基體

        E690高強鋼基材結構的TEM形貌如圖2所示。根據(jù)圖2可以看出,E690高強鋼基體結構是由薄層滲碳體和薄層鐵素體2種相組成的混合物,亦稱片狀珠光體。珠光體中清晰可見板條狀鐵素體和薄層滲碳體交替排列,2種相分布距離在160~500 nm。

        3.2 不同功率密度激光沖擊下E690高強鋼TEM形貌像分析與選區(qū)電子衍射標定

        E690高強鋼經(jīng)過激光功率密度為 1.53 GW/cm2沖擊后的 TEM 形貌像和對應的電子衍射花樣如圖3所示。由圖3a可知,經(jīng)過1.53 GW/cm2的激光沖擊加載后,材料的滲碳體區(qū)域明顯減少,鐵素體和滲碳體兩相邊界逐漸模糊,但整體依舊呈現(xiàn)基體中類似的兩相相互疊加而成的層狀混合物,并且局部區(qū)域的晶粒開始出現(xiàn)細化現(xiàn)象。對該位置進行選區(qū)電子衍射,然后利用特征平行四邊形法則[20-21]對電子衍射花樣進行標定,如圖3b所示。對比分析標定的結果可知,可以確定該區(qū)域呈現(xiàn)出珠光體與微量奧氏體的復相疊加,其發(fā)生衍射的晶面中晶帶軸指數(shù)為[111]方向。衍射花樣標定后可以看出,晶粒呈現(xiàn)出體心立方晶格,結合形貌像可以判斷該衍射區(qū)域存在鐵素體。對另一套衍射花樣標定分析可以確定衍射晶面中晶帶軸指數(shù)為[125]方向,表明此處晶粒呈現(xiàn)面心立方晶格。結合圖3a和沖擊相變的相關理論可推知,該衍射區(qū)域存在殘余奧氏體。此外,圖3b中僅有少數(shù)衍射斑向圓弧狀變化,說明在1.53 GW/cm2的激光加載下,E690高強鋼晶粒細化不明顯。

        圖2 E690高強鋼基體組織TEM形貌像

        圖3 激光功率密度1.53 GW/cm2時的TEM形貌和選區(qū)電子衍射圖

        E690高強鋼經(jīng)過激光功率密度為1.98 GW/cm2沖擊后的TEM形貌像和對應的電子衍射花樣如圖4所示。由圖4a可知,在1.98 GW/cm2的激光功率密度作用下,激光沖擊的高應變率作用形成的馬氏體組織相互擠壓,致使原本形態(tài)改變,區(qū)域內(nèi)位錯分布均勻,原先的滲碳體薄層基本消失,剩下的滲碳體聚集在馬氏體晶界處。圖4b為圖4a中的選取電子衍射圖,標定分析該選區(qū)為2種相的疊加,其中晶帶軸指數(shù)為[011]方向的衍射斑點表明此處晶粒為體心立方晶格,可以判斷出該區(qū)域鐵素體經(jīng)激光沖擊形成了BCC(體心立方)結構位錯型馬氏體。馬氏體的晶體結構常為BCC、BCT(體心四方)結構。在塑性變形的過程中,F(xiàn)CC結構的奧氏體既可以轉變成BCC結構的馬氏體,也可以轉變成BCT結構的馬氏體,并且它們之間可以相互轉化和共存[22]。晶帶軸指數(shù)為[125]的衍射斑點表現(xiàn)為面心立方晶格,且衍射斑亮度較暗,可推知此選區(qū)仍然存在微量的殘余奧氏體。與功率密度1.53 GW/cm2激光沖擊處理后試樣的TEM形貌像相比,1.98 GW/cm2激光沖擊處理后,試樣表面的珠光體形貌基本消失,滲碳體聚集在馬氏體晶界處,位錯明顯增殖。

        E690高強鋼經(jīng)過激光功率密度為2.77 GW/cm2沖擊后的TEM形貌像和對應的電子衍射花樣如圖5所示。觀察圖5a可知,位錯分布明顯增殖,E690高強鋼表層晶粒繼續(xù)保持細化趨勢,此時有更多的滲碳體組織融進晶體內(nèi)部,此時晶粒尺寸分布在200 nm以內(nèi)。圖5b為圖5a的電子衍射圖,標定分析該選區(qū)為2個體心立方的衍射斑點,且晶帶軸指數(shù)為[100]方向,可以判斷這是由2個馬氏體晶粒組成的。2套電子衍射花樣的角度為6.4°,表明這2個晶粒經(jīng)過劇烈塑性應變后形成了取向差。此外,通過圖5b可以看出,衍射斑有不斷向圓環(huán)狀演化的趨勢。與功率密度1.98 GW/cm2激光沖擊處理后試樣的TEM形貌像相比,經(jīng)2.77 GW/cm2激光沖擊處理后,E690高強鋼試樣表層的晶粒進一步細化。

        E690高強鋼經(jīng)過激光功率密度為4.07 GW/cm2沖擊后的TEM形貌像和對應的電子衍射花樣如圖6所示。從圖6a可以觀察到,經(jīng)過此次沖擊波加載后,材料中的第二相顆粒增多,一些滲碳體在晶粒內(nèi)形成偏聚,晶粒尺寸分布在200~300 nm,沒有持續(xù)細化。圖6b為對應的選區(qū)電子衍射花樣,根據(jù)標定可以看出,該區(qū)域仍然為2套標準的體心立方晶格,晶帶軸指數(shù)為[111]方向,判斷此處為仍然是2個馬氏體晶粒組成。與功率密度2.77 GW/cm2激光沖擊處理后試樣的TEM形貌像相比,4.07 GW/cm2激光沖擊處理后,試樣表面的晶粒呈小角度晶界向大角度轉化的趨勢,2個晶粒的取向角差增大到7.4°。在此功率密度下進一步觀察TEM形貌像,失穩(wěn)分解組織發(fā)展成為均勻分散的兩相結構,典型的明暗相間的波紋組織消失,如圖6c所示。該形貌像特征表明該區(qū)域發(fā)生調幅分解。對該選區(qū)進行電子衍射分析(如圖6d所示),選區(qū)內(nèi)出現(xiàn)了衛(wèi)星斑,由形貌像和選取電子衍射表明,激光在4.07 GW/cm2功率密度下調幅分解長大[23-26]。

        圖4 激光功率密度1.98 GW/cm2時的TEM形貌像和選區(qū)電子衍射圖

        圖5 激光功率密度 2.77 GW/cm2時的TEM形貌像和選區(qū)電子衍射圖

        圖6 激光功率密度4.07 GW/cm2時的TEM形貌像、選區(qū)電子衍射圖、調幅分解和衛(wèi)星斑

        E690高強鋼經(jīng)過激光功率密度為5.09 GW/cm2沖擊后的TEM形貌像和對應的電子衍射花樣如圖7所示。觀察圖7a可知,晶粒尺寸都在100 nm以內(nèi),表明E690高強鋼晶粒細化至納米級。根據(jù)圖7b可以看出,其衍射花樣為連續(xù)的同心環(huán),說明晶粒在經(jīng)受5.09 GW/cm2的強激光加載后,形成了分布均勻,取向隨機的納米晶[11,27]。

        3.3 E690高強鋼表層Ostwald熟化驗證

        隨著激光能量的增大,其晶粒尺寸不斷減小。當激光功率小于2.77 GW/cm2時,雖存在少量小晶粒,但在試樣不同區(qū)域的TEM形貌像中并未觀察到調幅分解和Ostwald熟化現(xiàn)象,說明界面能并不能支撐細小晶粒的遷移。當激光功率密度到達5.09 GW/cm2時,E690高強鋼在極高塑性變形情況下形成細小均勻的納米晶。細小脫溶物溶入較大的顆粒是發(fā)生Ostwald熟化現(xiàn)象的前提。由此可推知,當激光功率為5.09 GW/cm2時,試樣表面的納米晶不滿足Ostwald熟化現(xiàn)象的條件。當功率密度為4.07 GW/cm2的激光沖擊加載后,試樣表面的TEM形貌像中觀察到了失穩(wěn)分解及Ostwald熟化,且只在該功率密度激光沖擊處理后試樣表面TEM形貌像中觀察到了失穩(wěn)分解及Ostwald熟化。

        功率密度為4.07 GW/cm2的激光沖擊加載后,試樣的TEM形貌像如圖8所示,其中圖8b為圖8a的暗場像。激光沖擊促使E690高強鋼試樣因調幅分解內(nèi)部產(chǎn)生沉淀相差異的不均勻結構,因成分梯度導致材料組織內(nèi)應力的差異,從而導致系統(tǒng)Gibbs能增高[19,28-29]。觀察圖8可知,試樣表面因調幅分解生成了眾多細小的脫溶顆粒。為了減小系統(tǒng)能量,以及維持脫溶物與基體界面間的濃度平衡,細小脫溶晶粒a1、b1、c1、d1、e1、f1沿濃度梯度逐漸向大晶粒L移動。具體到粒子而言,伴隨著小粒子不斷向大晶粒L移動,導致小粒子脫溶物消失,以及大粒子L的尺寸長大。由此可知,在功率密度4.07 GW/cm2激光沖擊加載后,試樣表面產(chǎn)生了Ostwald熟化現(xiàn)象,與前文分析相符。

        圖7 激光功率密度5.09 GW/cm2時的TEM形貌像和選區(qū)電子衍射圖

        圖8 功率密度4.07 GW/cm2下E690高強鋼表面典型Ostwald熟化TEM像

        4 結論

        1)對E690高強鋼激光沖擊過程中調幅分解現(xiàn)象的發(fā)生進行分析,探究了材料表層發(fā)生Ostwald熟化現(xiàn)象與激光功率密度之間的關系。通過對試驗結果進行分析證明,激光沖擊E690高強鋼其表面存在Ostwald熟化現(xiàn)象,且激光沖擊E690高強鋼表面納米化與Ostwald熟化相鄰出現(xiàn)。

        2)對激光加載后的E690高強鋼形貌像進行分析,晶粒尺寸在4.07 GW/cm2功率密度下增大,其中明暗相間的條紋組織以及選區(qū)電子衍射存在衛(wèi)星斑表明,在此功率密度下發(fā)生了調幅分解,進而使 E690高強鋼材料表面發(fā)生Ostwald熟化現(xiàn)象。

        3)E690高強鋼經(jīng)過激光沖擊后,其表層材料在高應變率作用下使得Ostwald熟化現(xiàn)象和表面納米化現(xiàn)象相鄰出現(xiàn),但Ostwald熟化轉變成納米晶過程有待進一步探究。此外,激光沖擊波沿材料深度方向衰減,E690高強鋼截面組織是否會發(fā)生Ostwald熟化現(xiàn)象也尚需考察。

        [1] 吳志方, 吳潤. 兩相體系中第二相顆粒粗化的研究進展[J]. 材料導報, 2010, 24(15): 113-117.

        WU Zhi-fang, WU Run. Research Development of Seco-ndary Phase Particle in Dual-Phase System[J]. Materials Review, 2010, 24(15): 113-117.

        [2] 崔紅保, 郭景杰, 蘇彥慶, 等. Cu-Pb過偏晶合金顆粒生長和Ostwald熟化的相場法模擬[J]. 金屬學報, 2007, 43(9): 907-912.

        CUI Hong-bao, GUO Jing-jie, SU Yan-qing, et al. Phase Field Simulation of Particle Growth and Ostwald Ripe-ning for Cu-Pb Hypermonotectic Alloy[J]. Acta Metal-lurgica Sinica, 2007, 43(9): 907-912.

        [3] 黃耀, 趙征志, 趙愛民, 等. 汽車大梁鋼中第二相粒子析出行為[J]. 北京科技大學學報, 2013, 35(7): 882-889.

        HUANG Yao, ZHAO Zheng-zhi, ZHAO Ai-min, et al. Precipitation Behavior of Secondary Phases in Automo-bile Beam Steel[J]. Journal of University of Science and Technology Beijing, 2013, 35(7): 882-889.

        [4] 楊柯, 梁燁, 嚴偉, 等. (9~12)%Cr馬氏體耐熱鋼中微量B元素的擇優(yōu)分布行為及其對微觀組織與力學性能的影響[J]. 金屬學報, 2020, 56(1): 53-65.

        YANG Ke, LIANG Ye, YAN Wei, et al. Preferential Distribution of Boron and Its Effect on Microstructure and Mechanical Properties Of (9~12)%Cr Martensitic Heat Resistant Steels[J]. Acta Metallurgica Sinica, 2020, 56(1): 53-65.

        [5] SUN Ru-jian, LI Liu-he, ZHU Ying, et al. Microstructure, Residual Stress and Tensile Properties Control of Wire- Arc Additive Manufactured 2319 Aluminum Alloy with Laser Shock Peening[J]. Journal of Alloys and Compounds, 2018, 747: 255-265.

        [6] HUANG Shuai, ZHU Ying, GUO Wei, et al. Impact Tou-ghness and Microstructural Response of Ti-17 Titanium Alloy Subjected to Laser Shock Peening[J]. Surface and Coatings Technology, 2017, 327: 32-41.

        [7] 曹宇鵬, 徐影, 馮愛新, 等. 激光沖擊強化7050鋁合金薄板表面殘余應力形成機制的實驗研究[J]. 中國激光, 2016, 43(7): 139-146.

        CAO Yu-peng, XU Ying, FENG Ai-xin, et al. Experi-mental Study of Residual Stress Formation Mechanism of 7050Aluminum Alloy Sheet by Laser Shock Proces-sing[J]. Chinese Journal of Lasers, 2016, 43(7): 139-146.

        [8] 曹宇鵬, 葛良辰, 馮愛新, 等. 沖擊波傳播方式對激光沖擊7050鋁合金殘余應力分布的影響[J]. 表面技術, 2019, 48(6): 195-202.

        CAO Yu-peng, GE Liang-chen, FENG Ai-xin, et al. Effect of Shock Wave Propagation Mode on Residual Stress Distribution of Laser Shock 7050 Aluminum Alloy[J]. Surface Technology, 2019, 48(6): 195-202.

        [9] 曹子文, 楊清, 高宇. 激光沖擊強化TC17鈦合金室溫和高溫拉伸性能研究[J]. 表面技術, 2018, 47(3): 85-90.

        CAO Zi-wen, YANG Qing, GAO Yu. Tensile Properties at Room and High Temperature of TC17 Titanium Alloy Treated by Laser Shock Peening[J]. Surface Technology, 2018, 47(3): 85-90.

        [10] 陳浩天, 曹宇鵬, 花國然, 等. 激光沖擊690高強鋼表面殘余應力工藝優(yōu)化模擬[J]. 金屬熱處理, 2018, 43(10): 206-209.

        CHEN Hao-tian, CAO Yu-peng, HUA Guo-ran, et al. Optimization and Simulation of Residual Stress on Surface Of690 High Strength Steel by Laser Shocking[J]. Heat Treatment of Metals, 2018, 43(10): 206-209.

        [11] 曹宇鵬, 楊聰, 施衛(wèi)東, 等. 激光沖擊690高強鋼位錯組態(tài)與晶粒細化的實驗研究[J]. 光子學報, 2020, 49(4): 31-42.

        CAO Yu-peng, YANG Cong, SHI Wei-dong, et al. Expe-rimental Study on Dislocation Configuration and Grain Refinement of 690 High Strength Steel Treated by Laser Shock Processing[J]. Acta Photonica Sinica, 2020, 49(4): 31-42.

        [12] 曹宇鵬, 蔣蘇州, 施衛(wèi)東, 等. E690高強鋼表面激光沖擊微造型的模擬與試驗[J]. 中國表面工程, 2019, 32(5): 69-77.

        CAO Yu-peng, JIANG Su-zhou, SHI Wei-dong, et al. Numerical Simulation and Experiment Micro-Dimple Array on E690 High-Strength Steel Surface Induced by Laser Shock Processing[J]. China Surface Engineering, 2019, 32(5): 69-77.

        [13] 楊洪波, 王快社, 王慶娟, 等. GCr15軸承鋼滲碳體球化的長大機制[J]. 材料熱處理學報, 2012, 33(8): 79-83.

        YANG Hong-bo, WANG Kuai-she, WANG Qing-juan, et al. Spheroidizing Growth Mechanism of Cementite in GCr15 Bearing Steel[J]. Transactions of Materials and Heat Treatment, 2012, 33(8): 79-83.

        [14] 尹鴻祥, 吳毅, 張關震, 等. 鐵素體不銹鋼中銅析出相的長大和晶體結構演化規(guī)律研究[J]. 稀有金屬材料與工程, 2021, 50(2): 658-663.

        YIN Hong-xiang, WU Yi, ZHANG Guan-zhen, et al. Growth and Crystal Structure Evolution of Copper Precipitate in Ferritic Stainless Steel[J]. Rare Metal Materials and Engineering, 2021, 50(2): 658-663.

        [15] JIANG Chao-ping, ZHANG Li-xiang, CHEN Yong-nan, et al. Coarsening Behavior of the Ti2Cu Phase of a Ti- 14Cu Alloy during Isothermal Thermal Exposure[J]. Journal of Alloys and Compounds, 2021, 882: 160685.

        [16] BADYKA R, SAILLET S, EMO J, et al. Effect of Ni, Mo and Mn Content on Spinodal Decomposition Kinetics and G-Phase Precipitation of Aged Model Cast Austenitic Stainless Steels[J]. Journal of Nuclear Materials, 2021, 555: 153123.

        [17] 孫振巖, 劉春明. 合金中的擴散與相變[M]. 沈陽: 東北大學出版社, 2002.

        SUN Zhen-yan, LIU Chun-ming. Diffusion and Phase Transformation in Alloys[M]. Shenyang: Northeast Uni-versity Press, 2002.

        [18] 李亞強, 劉建華, 鄧振強, 等. 15CrMoG鋼包晶凝固特征與機制[J]. 金屬學報, 2020, 56(10): 1335-1342.

        LI Ya-qiang, LIU Jian-hua, DENG Zhen-qiang, et al. Peritec-tic Solidification Characteristics and Mechanism of 15CrMoG Steel[J]. Acta Metallurgica Sinica, 2020, 56(10): 1335-1342.

        [19] 曹宇鵬, 陳浩天, 馮愛新, 等. 激光沖擊7050-T7451鋁合金表面的X射線衍射圖譜與微結構的相關性[J]. 中國激光, 2018, 45(5): 61-67.

        CAO Yu-peng, CHEN Hao-tian, FENG Ai-xin, et al. Corre-la-tion between X-Ray Diffraction Pattern and Mic-rostructure of Laser Shock Processed 7050-T7451 Alumi-num Alloy Surface[J]. Chinese Journal of Lasers, 2018, 45(5): 61-67.

        [20] 宋寶來. 四方和六方晶系基本特征平行四邊形表的統(tǒng)一及電子衍射花樣的標定分析與改進[D]. 湘潭: 湘潭大學, 2007.

        SONG Bao-lai. Studies on the Characteristic Parallelo-gram Grid in Square System and Hexagonal Crystal Sys-tem and the Improvement of the Electron Diffraction Pat-tern Demarcating[D]. Xiangtan: Xiangtan University, 2007.

        [21] 黃孝瑛. 透射電子顯微學[M]. 上海: 上海科學技術出版社, 1987.

        HUANG Xiao-ying. Transmission Electron Microscopy[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1987.

        [22] FU Hui, YUAN Shu-qing, SUN Wan-ting, et al. A Novel Atomic Movement Mechanism of Intersection-Induced BCT-α → BCC-Α' Martensitic Phase Transformation[J]. Scripta Materialia, 2021, 204: 114153.

        [23] KHERADMANDFARD M, KASHANI-BOZORG S F, KANG K H, et al. Simultaneous Grain Refinement and Nanoscale Spinodal Decomposition of β Phase in Ti-Nb- Ta-Zr Alloy Induced by Ultrasonic Mechanical Impacts[J]. Journal of Alloys and Compounds, 2018, 738: 540-549.

        [24] 郭翠萍, 訾建玲, 李長榮, 等. Zr-Nb合金調幅分解組織的研究[J]. 稀有金屬, 2017, 41(6): 672-677.

        GUO Cui-ping, ZI Jian-ling, LI Chang-rong, et al. Spino-dal Decomposition Microstructure in Zr-Nb Alloys[J]. Chinese Journal of Rare Metals, 2017, 41(6): 672-677.

        [25] SUN L Y, VASIN R N, ISLAMOV A K, et al. Influence of Spinodal Decomposition on Structure and Thermoela-stic Martensitic Transition in MnCuAlNi Alloy[J]. Mate-rials Letters, 2020, 275: 128069.

        [26] LACH T G, COLLINS D A, BYUN T S. Evolution of the Role of Molybdenum in Duplex Stainless Steels during Thermal Aging: From Enhancing Spinodal Decomposi-tion to Forming Heterogeneous Precipitates[J]. Journal of Nuclear Materials, 2021, 557: 153268.

        [27] 胡蘭青, 馬晉芳, 許并社. Al-Zn-Mg合金的表面納米晶化及其熱穩(wěn)定性研究[J]. 材料熱處理學報, 2007, 28(S1): 343-347.-

        HU Lan-qing, MA Jin-fang, XU Bing-she. Surface Nano-crystallization of Al-Zn-Mg Alloy and Its Thermal Stabi-lity[J]. Transactions of Materials and Heat Treatment, 2007, 28(S1): 343-347.

        [28] AN Dong, PAN Shi-yan, REN Qing-qiang, et al. A Gibbs Energy Balance Model for the Isothermal Ferrite-to- Austenite Transformation[J]. Scripta Materialia, 2020, 178: 207-210.

        [29] PELEGRINA J L, GENNARI F C, CONDó A M, et al. Predictive Gibbs-Energy Approach to Crystalline/Amorp-hous Relative Stability of Nanoparticles: Size-Effect Cal-culations and Experimental Test[J]. Journal of Alloys and Compounds, 2016, 689: 161-168.

        Experimental Study on Ostwald Ripening of E690 High Strength Steel Treated by Laser Shock Peening

        1,1,2,3,1,1,1

        (1. College of Mechanical Engineering, Nantong University, Jiangsu Nantong 226019, China; 2. 3D Printing Technology Research Institute, Nantong Institute of Technology, Jiangsu Nantong 226001, China; 3. Nantong COSCO Shipyard Co. Ltd, Jiangsu Nantong 226006, China)

        Laser shock peening is a surface modification technology with great potential and application prospect. Given the extremely short loading time (ns) and extremely large load (GPa) of laser shock peening, samples undergoing laser shock treatment exhibited spinodal decomposition without nucleation, which induced Ostwald ripening phenomenon. Compared with the Ostwald ripening phenomenon caused by heat treatment, the impact phase transition caused by laser shock peening is more complex. Therefore, researching the Ostwald ripening phenomenon induced by laser shock peening has certain theoretical significance for laser shock strengthening technology.

        Based on the theoretical analysis of the internal relationship between laser shock metal materials and spinodal decomposition, the conditions required for Ostwald ripening due to laser shock strengthening are put forward. The surface microstructure and selected electron diffraction patterns of E690 high-strength steel samples following laser shock were observed by using field-induced transmission electron microscopy (TEM). The variation characteristics of microstructure in TEM morphology of the sample surface following laser shock treatment at different power densities were obtained, and the Ostwald ripening phenomenon was verified. The specific experimental process and parameters are as follows: E690 high strength steel was cut into 50 mm×50 mm×5.5 mm rectangular block, which was then designed as the sample, and 240-1200# sandpaper was applied to grind the front and back sides of the sample until the thickness was 5 mm. The machine used for laser shock test was Nd: YAG (SGR series, beamtech company, China). The absorption layer was 150 μm thick aluminum foil, and the constraint layer was deionized water. The specific parameters of laser shock were: pulse width 10 ns, wavelength 1,064 nm and spot diameter 5 mm. Using 3, 3.89, 5.43, 8 and 10J laser energy respectively, the corresponding laser power densities were 1.53, 1.98, 2.77, 4.07 and 5.09 GW/cm2. The lap rate was 70%, and the impact times was once. The laser shock area of E690 high strength steel was cut by wire, and the cut sample was pre-thinned from the substrate side, then it was ground in a recess and finally ion-thinned, eventually made into the TEM sample. The micro morphology and selected area electron diffraction of the sample surface were observed by transmission electron microscopy (TECNAI G2 F20, FEI, USA).

        As can be seen from the TEM image, the matrix of E690 high strength steel was pearlite morphology formed by alternating overlap of ferrite layer and cementite layer; when the laser power density was weak, the E690 high strength steel material continued to refine under the action of laser shock peening. In the meantime, the thin layer cementite gradually melted into ferrite and disappeared, and the electron diffraction pattern gradually changed into a ring shape. E690 high strength steel gradually changed from pearlite to martensite. However, when the laser power density increased to 4.07 GW/cm2, the continuously refined material was coarsened, the spinodal decomposition structure appeared. The satellite spots appeared in the selected area electron diffraction pattern, and the Ostwald ripening occurred on the surface of E690 high strength steel; when the laser power density reached 5.09 GW/cm2, geometric dislocations divided the whole large grain into finer grains, nanocrystals were produced on the surface of E690 high strength steel.

        In conclusion, when the laser power density was 4.07 GW/cm2, Ostwald ripening occurred on the surface of E690 high strength steel due to spinodal decomposition; neither weak nor strong power density can make the precipitate reach the critical radius of Ostwald ripening mechanism; in the experiment, the laser power density required for Ostwald ripening phenomenon is close to the laser power density required for nanocrystals.

        laser shock peening; Ostwald ripening; E690 high strength steel; grain refinement; microstructure

        2021-09-07;

        2021-11-15

        XIE Peng-peng (1997-), Male, Postgraduate, Research focus: laser processing.

        曹宇鵬(1981—),男,博士,副教授,主要從事激光加工檢測技術的研究。

        CAO Yu-peng (1981-), Male, Doctor, Associate professor, Research focus: laser processing and testing technology research.

        解朋朋, 曹宇鵬, 花國然, 等.激光沖擊E690高強鋼Ostwald熟化現(xiàn)象的試驗研究[J]. 表面技術, 2022, 51(9): 371-378.

        TN249

        A

        1001-3660(2022)09-0371-08

        10.16490/j.cnki.issn.1001-3660.2022.09.000

        2021–09–07;

        2021–11–15

        國家自然科學基金(51505236,51979138,52109106);江蘇省博士后科研資助計劃(2021K606C);國家重點研發(fā)計劃(2019YFB2005300);國家高技術船舶科研項目(工信部裝函[2019]360號)

        Fund:The National Natural Science Foundation of China (51505236, 51979138, 52109106); The Jiangsu Planned Projects for Postdoctoral Research Funds (2021K606C); The National Key Research and Development Program of China (2019YFB2005300); National High-tech Ship Scientific Research Project of China (MIIT [2019]360)

        解朋朋(1997—),男,碩士研究生,主要研究方向為激光加工。

        XIE Peng-peng, CAO Yu-peng, HUA Guo-ran, et al. Experimental Study on Ostwald Ripening of E690 High Strength Steel Treated by Laser Shock Peening[J]. Surface Technology, 2022, 51(9): 371-378.

        責任編輯:劉世忠

        猜你喜歡
        調幅功率密度選區(qū)
        鋁合金激光選區(qū)熔化成型能力研究
        基于MATLAB調幅包絡檢波和相干解調性能設計與比較
        電子制作(2019年9期)2019-05-30 09:42:12
        中航工業(yè)成功研發(fā)大尺寸多激光選區(qū)熔化增材制造設備
        一種用于調幅接收機AGC的設計與實現(xiàn)
        測控技術(2018年6期)2018-11-25 09:50:18
        調幅翻轉式超深翻犁的研制及推廣應用
        安鶴煤田煤層氣開發(fā)選區(qū)評價研究
        中國煤層氣(2015年1期)2015-08-22 03:05:47
        高效高功率密度低噪聲電機研究
        調頻引信中噪聲調幅干擾的自適應抑制
        PrimePACKTM結合最新IGBT5和.XT模塊工藝延長產(chǎn)品壽命,提高功率密度
        沉淀硬化型不銹鋼的選區(qū)激光熔化成形研究
        裝備機械(2015年2期)2015-02-26 11:32:14
        乱码午夜-极品国产内射| 天堂av在线免费播放| 午夜一区二区在线视频| 91精品国产在热久久| 色狠狠一区二区三区中文| 欧美成人www在线观看| 少妇下面好紧好多水真爽播放| 伊人狠狠色丁香婷婷综合| 初尝黑人巨砲波多野结衣| 国产免费AV片在线看| 国产成人cao在线| 国产精品老女人亚洲av无| 国产自拍在线视频91| 欧美成人精品第一区| 亚洲成av人的天堂在线观看| 最近最新中文字幕| 免费人成再在线观看网站| 日韩欧美亚洲国产一区二区三区| 久久国产精品懂色av| 小池里奈第一部av在线观看| 色一情一乱一伦一视频免费看| 国产亚洲午夜高清国产拍精品 | 国产精品av在线一区二区三区| 亚洲av乱码国产精品色| 成年男人裸j照无遮挡无码| 无码少妇a片一区二区三区| 丝袜美腿高清在线观看| 国精品人妻无码一区免费视频电影| 中文字幕一区在线观看视频| 国产成人午夜福利在线小电影 | 亚洲熟伦熟女新五十路熟妇| 最新亚洲人成网站在线| 久久无码中文字幕东京热| 成人亚洲av网站在线看| 视频一区视频二区制服丝袜| 一本一本久久aa综合精品| 日子2020一区二区免费视频| 最新国产一区二区三区| 中文字幕av长濑麻美| 国内免费高清在线观看| 精品人妻伦九区久久AAA片69|