亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        極地微生物多糖的生物學特征及對金屬的腐蝕影響機制

        2022-09-27 11:08:02孫振美劉濤郭娜郭章偉
        表面技術 2022年9期

        孫振美,劉濤,郭娜,郭章偉

        極地微生物多糖的生物學特征及對金屬的腐蝕影響機制

        孫振美,劉濤,郭娜,郭章偉

        (上海海事大學 海洋科學與工程學院,上海 201306)

        微生物在自然界中的分布范圍極廣,由于其便捷性、經(jīng)濟型、環(huán)保性等優(yōu)點,已被廣泛應用于人類社會發(fā)展的方方面面。隨著南北極開發(fā)力度的加大,極地微生物由于其適應極地嚴酷自然環(huán)境的獨特生物學特征引起廣泛興趣。其中,極地微生物多糖是重要的研究領域,其在結(jié)構(gòu)上區(qū)別于普通微生物多糖,有助于微生物在極寒環(huán)境中正常的生命活動。此外,還闡述了微生物合成多糖的Wzx-Wzy、ABC轉(zhuǎn)運蛋白和合酶依賴途徑以及多糖與生物膜形成之間的關系,并以此為基礎,進一步延伸至多糖對金屬材料表面腐蝕的影響。通過研究極地微生物多糖的特征、生物膜形成和金屬腐蝕三者之間的關系,探索影響極地微生物腐蝕機制的關鍵因素,為未來極地服役材料的腐蝕防護提供參考。

        極地微生物;多糖;極地;腐蝕

        南、北極位于地球的兩端,擁有獨特的地理環(huán)境,蘊含豐富的礦藏和海洋生物資源。隨著極地重要的科學價值和特殊的戰(zhàn)略地位不斷顯現(xiàn),人們對極地的探索早已從探險時代進入科考與開發(fā)的新時代[1]。南北極寒冷、干燥及強紫外輻射的極端環(huán)境孕育出數(shù)量豐富、種屬各異的極地微生物,它們參與了極地大氣和海洋間的碳循環(huán),在基礎研究方面具有重大的意義,是各領域科學家們研究新型微生物資源、低溫修復、極地環(huán)境工程等科學技術問題的首要關注目標[2]。由于極地海洋具有常年酷寒冰凍、光照輻射大、海冰層海水鹽度高等極端環(huán)境特點,導致極地微生物也多具備獨特分子生物學機制和生理生化特征[3-5]。微生物多糖種類繁多,廣泛應用于各種行業(yè),而在極地地區(qū)中,多糖在極地微生物抵御寒冷環(huán)境中發(fā)揮重要作用,本文通過闡述極地微生物多糖的結(jié)構(gòu)與合成機制加深對極地微生物的認識,為極地微生物多糖的進一步研究奠定基礎,其中將重點討論極地微生物多糖對金屬腐蝕的作用機制。

        1 極地微生物的種類與特征

        截至2018年從國際系統(tǒng)分類生物學網(wǎng)站IJSEM(http://www.microbiologyresearch.org)共檢索到來自南北極的新型微生物種屬包括15個門、143個屬、239個種,其中變形菌門和擬桿菌門占據(jù)絕大多數(shù)[6-8]。近年來極地微生物已經(jīng)成為了關注和研究的熱點。Zeng[9]利用假交替單胞菌屬()和科爾韋爾氏屬(.)研究發(fā)現(xiàn)二甲基磺基丙酸酯對極地細菌的作用。Carmen等[10]發(fā)現(xiàn)顆粒狀球菌屬(.)和解環(huán)菌屬()在海洋中石油降解方面有特殊作用。冷桿菌屬()的冷活性堿性蛋白質(zhì)可作為低溫清潔劑[11]。

        極地環(huán)境的低溫降低生化反應速率,對溶質(zhì)的運輸和擴散產(chǎn)生負面影響,并導致冰的形成和滲透應激。為應對極性應激條件,微生物利用不飽和脂肪酸、冷休克蛋白、色素和多糖等保護策略應對生存問題。Lauritano等[12]發(fā)現(xiàn)極地細菌通過調(diào)節(jié)不飽和脂肪酸的種類和數(shù)量,以維持細胞膜的流動性;同時,極地細菌能夠上調(diào)冷應激反應基因并合成冷活性蛋白質(zhì)/酶[13]。革蘭氏陽性細菌中的肽聚糖增厚也有助于避免細胞破裂和滲透失衡;冷適應細菌會產(chǎn)生多糖等物質(zhì)來降低細胞質(zhì)滲透壓和減少水分散失[12]。

        微生物多糖在微生物適應寒冷環(huán)境中起重要作用,它不僅是微生物的能量來源和支持性組織結(jié)構(gòu),也參與細胞內(nèi)多種生化反應[14]。Koo等[15]研究發(fā)現(xiàn),南極湖泊和土壤微生物群落具有相同的寒冷應激反應,包括胞外多糖基因激活和冷誘導蛋白的產(chǎn)生,這使得它們能夠在極端條件下生存。Huan等[16]提出來自北冰洋的是一種嗜鹽嗜冷菌,其大量細胞外多糖的合成和各種細胞外蛋白酶家族的分泌使得具備抗寒能力。生物膜形成、共生、結(jié)合、孢子形成等活動為細菌生存在地球上最寒冷、最干燥的大陸提供可能性[17]。總而言之,多糖物質(zhì)能夠保持細胞的正常生理活動,而極地微生物的進化機制可能更加保守,非常有利于開展多糖合成機制的深入研究。

        2 極地微生物多糖的結(jié)構(gòu)與功能

        微生物的結(jié)構(gòu)和功能與環(huán)境條件相適應,微生物多糖主要分為莢膜多糖(Capsular polysaccharide,CPS)、脂多糖(Lipopolysaccharide,LPS)和胞外多糖(Exopolysaccharide,EPS),他們在微生物生長過程中發(fā)揮著不同的生物學功能,而極地微生物多糖與普通微生物多糖在結(jié)構(gòu)上有一定差異性,導致其生物學功能和自身分泌機制發(fā)生變化,這使得極地微生物能夠更加適應惡劣的極地寒冷環(huán)境。

        2.1 莢膜多糖

        莢膜多糖是細菌與固體表面相互作用的高度水合型多糖,它調(diào)節(jié)細菌黏附和生物膜形成,維持成熟的生物膜厚度及流動性,是研究細菌附著生物膜需要重點關注的多糖之一[18]。jared等[19]在研究分離自北極海洋的一種γ–變形菌34H時發(fā)現(xiàn),其莢膜多糖由包含2個氨基糖和2個糖醛酸的四糖重復單元組成,這種獨特的多糖結(jié)構(gòu)類似于極地微生物特有的抗凍蛋白和糖蛋白,在促進細菌附著形成生物膜的同時保護細菌免受極地嚴寒的傷害。莢膜多糖通過其獨特的一級結(jié)構(gòu)和三維構(gòu)象,抑制冰晶生長,發(fā)揮抗凍作用。莢膜多糖生產(chǎn)表現(xiàn)出響應生長溫度的變化,Casillo等[20]在極低溫度下的培養(yǎng)嗜冷菌34H,其僅僅產(chǎn)生具有活性的CPS,證實莢膜多糖在細菌存活中的關鍵作用。

        2.2 脂多糖

        脂多糖是由脂質(zhì)和多糖構(gòu)成的物質(zhì),其構(gòu)成的微生物細胞外膜是革蘭氏陰性細菌包膜的組成部分,對微生物的生命活動具有重要作用。脂多糖三元結(jié)構(gòu)包括核心寡糖–O多糖–嵌入外膜的糖脂,在嗜冷菌34H中,Casillo等[20]發(fā)現(xiàn)核心寡糖區(qū)域因含有許多酸性殘基,所以賦予整個分子高負電荷密度、糖脂攜帶多種氨基酸、O–多糖區(qū)域缺乏O鏈等特征,這些結(jié)構(gòu)賦予細菌適應寒冷環(huán)境的能力。Lorenzo等[21]在南極嗜冷革蘭氏陰性菌中觀察到脂多糖糖脂部分酰基鏈去飽和、長度縮短和分支減少等結(jié)構(gòu)改變,這能保證即使在非常低的溫度下細菌也能維持細胞膜的流動性。另有文獻指出,編碼核脂多糖糖基轉(zhuǎn)移酶的引起了明顯的包膜改變,保持脂多糖正常發(fā)揮功能有利于細菌在寒冷條件下生長[22]。脂多糖是兩性大分子,對生存和存活必不可少,因為它們在與外部環(huán)境的動態(tài)相互作用中為整個細菌包膜提供穩(wěn)定結(jié)構(gòu)和保護。

        2.3 胞外多糖

        胞外多糖是微生物在生長過程中分泌到細胞壁外的水溶性多糖,易與菌體分離。海冰微生物胞外多糖的結(jié)構(gòu)與其他海洋細菌分泌多糖的結(jié)構(gòu)不同,其胞外多糖的骨架由1–α–甘露糖基殘基、6–α–甘露糖基殘基組成,其中相當一部分6–α–甘露糖基殘基在第 2 位以單個甘露糖殘基或2個甘露糖殘基分支連接。這種結(jié)構(gòu)使得細菌能夠適應低溫、高鹽度和凍融循環(huán)的環(huán)境[23]。Krembs等[24]研究發(fā)現(xiàn)極地微生物分泌的胞外多糖富含多羥基結(jié)構(gòu),能夠抑制細胞中冰晶的形成,緩沖低溫和高鹽度對細菌的傷害。Blanco等[25]的研究發(fā)現(xiàn)分布于極地海冰水交界處的微生物胞外多糖的平均分子量相較于普通海水中微生物分泌的多糖高5~15倍。細菌的胞外多糖分泌到周圍環(huán)境中,通過穩(wěn)定膜結(jié)構(gòu)保護細胞,具有明顯的冷凍保護作用,可以利用其研發(fā)天然冷凍保護劑;另一方面,胞外多糖可以作為碳和能量儲備,保證細菌的能量供應。

        3 微生物多糖的合成與下游調(diào)控

        不同微生物合成多糖的過程不盡相同,其主要合成途徑主要有Wzx–Wzy依賴途徑、ABC轉(zhuǎn)運蛋白依賴途徑和合酶依賴途徑。在革蘭氏陰性菌和革蘭氏陽性菌中,細菌表面多糖影響生物與非生物基質(zhì)的黏附、運動、免疫系統(tǒng)激活、生物膜形成,對于細菌生存繁殖具有重要作用,而大多數(shù)細胞表面多糖是通過Wzx-Wzy依賴性組裝途徑產(chǎn)生。

        3.1 微生物多糖合成的分子調(diào)控機制

        Wzx-Wzy依賴途徑由依賴性蛋白基因簇編碼。Minic等[26]表示該途徑由磷酸調(diào)節(jié)系統(tǒng)、翻轉(zhuǎn)酶、聚合酶、轉(zhuǎn)錄調(diào)節(jié)因子()、酪氨酸磷酸酶()、膜相關蛋白()、酪氨酸激酶()、半乳糖基轉(zhuǎn)移酶()構(gòu)成。具體地,Zeidan等[27]強調(diào)糖酵解提供前體物質(zhì),利用磷酸化單糖形成重復單元,翻轉(zhuǎn)酶和聚合酶均為膜結(jié)合蛋白,前者識別重復單元并將其翻轉(zhuǎn)至細胞質(zhì)膜上,后者添加新的重復單元構(gòu)成長鏈,至此,多糖組裝基本完成。發(fā)揮支架作用,將翻轉(zhuǎn)酶、聚合酶、固定在細胞質(zhì)膜上,并且激活調(diào)控多糖的鏈長[26-27]。多糖合成的量需要有一定限制,Elsholz等[28]研究發(fā)現(xiàn)生物膜成熟后期,切換至不活躍的磷酸化狀態(tài),結(jié)束正反饋通路循環(huán),細菌通過這種機制維持多糖產(chǎn)量的平衡狀態(tài)。

        ABC轉(zhuǎn)運蛋白依賴途徑與多種多糖的生物合成有關。通過ABC轉(zhuǎn)運蛋白依賴通路組裝的多糖完全在內(nèi)膜的細胞質(zhì)表面聚合。該途徑由CtrA、CtrB、ABC轉(zhuǎn)運蛋白構(gòu)成,ABC轉(zhuǎn)運蛋白負責多糖組裝,Williams等[29]發(fā)現(xiàn)肺炎克雷伯菌中ABC轉(zhuǎn)運蛋白的基因簇分為dTDP–L–吡喃鼠李糖合成系統(tǒng)、鼠李糖基轉(zhuǎn)移酶、ABC轉(zhuǎn)運蛋白和多糖鏈終止子四部分,在該菌株中,位于糖基轉(zhuǎn)移酶的WbbB蛋白集多糖聚合、終止和鏈長調(diào)節(jié)功能于一體,發(fā)揮中心作用。而Larue等[30]闡述了OPX–PCP蛋白復合物對于莢膜多糖輸出的重要作用,CtrA屬于外膜多糖輸出(OPX)蛋白質(zhì)家族,CtrB是一種內(nèi)膜蛋白,屬于多糖共聚合酶(PCP)家族,有助于多糖從內(nèi)膜分泌到周質(zhì)。

        在革蘭氏陰性菌中,合酶依賴通路包括外膜β-桶孔蛋白、周質(zhì)含有四肽重復的支架蛋白和內(nèi)膜包埋合酶。Whitney等[31]發(fā)現(xiàn)該通路中,細胞質(zhì)內(nèi)的受體結(jié)合細菌第二信使雙(3′–5′)–環(huán)狀二聚鳥苷一磷酸(c–di–GMP)后,激活嵌于膜中的糖基轉(zhuǎn)移酶能夠促進同時聚合物形成和跨內(nèi)膜易位,激活多糖產(chǎn)生,多糖通過β–桶孔蛋白穿過外膜,其中,含有四肽重復(TPR)的支架蛋白可以保護多糖免于降解。Wzx–Wzy和ABC轉(zhuǎn)運蛋白依賴通路都使用相似的蛋白質(zhì)家族來促進胞外多糖通過周質(zhì)和外膜輸出,該過程涉及來自外膜多糖輸出(OPX)和多糖共聚酶(PCP)蛋白質(zhì)家族的蛋白質(zhì),合酶依賴通路則與它們完全不同。

        3.2 微生物多糖與生物膜形成

        生物膜形成的前提是分泌由多糖、蛋白質(zhì)、脂質(zhì)和核酸成分組成的微生物細胞外聚合物(Extracel-lu-lar polymer EPSs)。EPSs具有緩沖環(huán)境壓力、提供營養(yǎng)環(huán)境、通過信號分子促進基因交換和調(diào)節(jié)的功能[32],多糖的分泌將會加速生物膜形成[33]。Zhuang等[34]表示多糖分泌提高25%,形成的生物膜更厚、更有活力。在結(jié)構(gòu)方面,Bellich等[35]表示C1576多糖的一級結(jié)構(gòu)中含有鼠李糖二聚體,能夠減少細菌與表面的排斥力,加之緊密的三級結(jié)構(gòu),推測多糖在生物膜中發(fā)揮結(jié)構(gòu)支撐作用。然而也有少部分文獻指出,部分多糖對于生物膜的形成具有抑制作用[36]。Zeng等[37]發(fā)現(xiàn)假交替單胞菌的纖維素過量分泌和莢膜多糖的減少分別導致細菌生物膜出現(xiàn)褶皺和半透明形態(tài),多糖對細菌生物膜形成過程中發(fā)揮十分重要的作用。

        從分子生物學層面來看,多糖通過碳儲存調(diào)控(Carbon storage regulation,Csr)機制影響生物膜形成,RNA結(jié)合蛋白(CsrA)負調(diào)控生物膜形成,非編碼RNA(CsrB、CsrC)可以解除CsrA對生物膜形成的抑制作用,CsrA、CsrB、CsrC構(gòu)成Csr控制生物膜的關鍵組分(圖1)。Wang等[38]在大腸桿菌中發(fā)現(xiàn)一種1,6–N–乙?;CD–葡糖胺組成的多糖,稱為黏附素(PGA),具備基因座,其中mRNA可以通過與CsrA結(jié)合促進生物膜形成[39]。生物膜形成后期,在革蘭氏陽性菌中,自誘導肽(AIPs)與細胞膜上的雙組分組氨酸激酶結(jié)合,使其發(fā)生自磷酸化,激活下游基因轉(zhuǎn)錄,促進生物膜形成[40]。相反,在革蘭氏陰性菌中,酰基高絲氨酸內(nèi)酯(AHLs)作為信號分子穿過細胞膜與受體細胞內(nèi)的調(diào)節(jié)蛋白結(jié)合調(diào)控基因表達,AHLs與LuXR受體結(jié)合可以刺激分泌更多AHLs(圖1),進行信號放大[40-41]。細菌種群通過控制生物膜形成,為成員提供了足夠的營養(yǎng)物質(zhì),從而使它們在種群競爭中勝出。

        圖1 多糖調(diào)控生物膜合成機制

        極地嚴苛的低溫環(huán)境下,極地微生物更需要足夠的營養(yǎng)物質(zhì)。Chrismas等[42]發(fā)現(xiàn)極地菌中多糖相關基因活躍表達。假單胞菌過量產(chǎn)生的海藻酸鹽可能是適應南極極端溫度的成功進化[43]。LP1(T)是分離于北冰洋中洋脊黃桿菌科細菌,大量編碼細胞外多糖合成途徑、卷曲纖維和表面附著的基因可以介導生物膜的黏附,并可能有助于生物膜的形成[44]。極地微生物利用多糖等組分形成生物膜,供給自身營養(yǎng)物質(zhì)并減少外界環(huán)境傷害,更好地保證了自身生存繁殖。當遇到適合的固體基質(zhì),微生物群落的多種胞外多糖物質(zhì)會選擇性附著于特定的金屬基材上,從而形成微生物膜,生物膜與金屬材料表面腐蝕關系十分密切。

        4 極地微生物多糖對金屬材料的腐蝕作用

        眾所周知,海洋是嚴酷的腐蝕環(huán)境之一,幾乎所有的船舶和海洋工程裝備都會受到海洋微生物的腐蝕(Microbiologically Influenced Corrosion,MIC)[45-47],海洋微生物是腐蝕的主要誘因之一,可能導致嚴重的安全事故和巨大的經(jīng)濟損失[48]。

        4.1 普通環(huán)境微生物多糖對金屬材料的腐蝕作用

        近年來關于微生物對金屬材料腐蝕機制主要聚焦于其胞外分泌物,尤其是胞外多糖對材料腐蝕的影響。產(chǎn)生的胞外多糖可有效防止碳鋼在人造海水和酸性介質(zhì)中的腐蝕,其抑制作用隨著多糖濃度的增加而增加[49]。Guo等[50]發(fā)現(xiàn)細菌纖維素過量分泌突變株△17125有利于生物礦化膜的形成,有效抑制金屬腐蝕;而纖維素缺乏的突變株△由于缺乏纖維素多糖,無法形成生物礦化膜,從而加速金屬的腐蝕,說明細菌纖維素在生物膜形成和生物礦化過程中起重要作用(圖2)。而某些多糖可能促進金屬材料表面腐蝕的發(fā)生,Ceyhan[51]提出生物膜中的胞外多糖對細菌具有保護作用,使得生物膜在冷卻水管道系統(tǒng)中產(chǎn)生腐蝕現(xiàn)象,并嚴重影響金屬表面的傳熱效率。 Laura等[52]表示胞外多糖可以加速鋼暴露部位的腐蝕。鈦及其合金通常被用作生物醫(yī)學植入物,在生理條件下耐腐蝕能力強。脂多糖能夠和鈦發(fā)生相互作用,改變其耐腐蝕性能[53],造成醫(yī)用器材的腐蝕問題;硫酸鹽還原菌等革蘭氏陰性菌外膜中的脂多糖能與亞鐵離子(Fe2+)發(fā)生特異反應,加速鋼材表面的腐蝕[54]。細胞表面產(chǎn)生莢膜多糖,有助于細胞的黏附、減毒和逃逸[55],筆者推測產(chǎn)生莢膜多糖的細菌能夠在復雜的海水環(huán)境中維持自身的生存,促進細菌與金屬基質(zhì)的黏附,提高菌落形成的效率。硫酸鹽還原菌和鐵氧化細菌由于多糖的作用加速金屬的腐蝕過程[56-57],推測其原因是碳水化合物中陰離子基團螯合金屬的能力增加,促進腐蝕發(fā)生[57]。此外,等[58]嗜鹽產(chǎn)硫細菌通過代謝多糖物質(zhì)產(chǎn)生硫化物和醋酸鹽,對管道的基礎設施造成點蝕。多糖、EPS、生物膜關系鏈逐級累加,其對金屬材料的腐蝕也逐漸復雜,不同細菌形成的生物膜特征有所改變。枯草芽孢桿菌和解脂假單胞菌的生物膜分別抑制和促進低合金鋼的腐蝕,前者致密且疏水,對于金屬材料具有保護作用;后者松散且親水,容易引起金屬材料的點蝕現(xiàn)象[59]。而上文中提到生物膜形成的前提是EPS的合成,EPS在金屬腐蝕中的作用取決于官能團與金屬離子相互作用的程度和組分參加電子轉(zhuǎn)移的能力[60]。隨著國家南北極開發(fā)戰(zhàn)略的推進,破冰船和極地科考站的研究日益重要,這些海洋設備要求材料對于極低溫下耐腐蝕能力提出了更高的要求,因此,極地微生物產(chǎn)生的多糖對金屬材料的腐蝕研究是重要的研究方向。

        圖2 細菌纖維素是影響金屬腐蝕的重要因素之一[50]

        4.2 低溫環(huán)境中微生物多糖對金屬材料的腐蝕作用

        溫度是影響多糖分泌和活性的重要因素,本課題組研究發(fā)現(xiàn)葉氏假交替單胞菌在4 ℃與20 ℃下的總糖含量分別5.67 mg/g與3.27 mg/g,證明低溫環(huán)境確實促進極地微生物的分泌多糖。而多糖總量的提高可以有效抑制金屬材料的腐蝕。Hassan等[61]研究發(fā)現(xiàn)多糖對于金屬材料表面腐蝕的作用受溫度影響比較明顯,果膠酸鹽作為一種水溶性天然多糖對于金屬鋁的腐蝕具有抑制作用,而其抑制效率隨著溫度的升高而降低,說明在低溫條件下多糖能夠更大程度地抑制金屬表面腐蝕。極地微生物為保證生存,低溫下分泌多糖含量增加,大大提高了生物膜的形成速度,而極地微生物的多糖含量一般較高,例如,來自南極的AL的胞外多糖最大產(chǎn)量為5.64 g/L,和AL分別具有7.5 g/L和6.0 g/L的多糖生物量[62-63],以及文中提到極地微生物多糖的結(jié)構(gòu)也發(fā)生一定改變,故筆者推測極地微生物分泌多糖對于金屬材料的腐蝕會有比較明顯的作用。目前Toshkova等[64]利用南極細菌. 分離出鏈霉菌雜多糖(ASMP),其對于生物體炎癥反應有比較好的效果,是良好的免疫調(diào)節(jié)生物活性物質(zhì)。Hao等[65]也提出來自南極細菌的胞外多糖EPS–II是一種能夠降低早期炎癥的天然減毒劑。目前極地微生物多糖的腐蝕研究相對空白,但是極地微生物多糖對金屬材料腐蝕意義重大。該領域的研究可以豐富現(xiàn)有的微生物腐蝕機制、開發(fā)綠色緩蝕劑、提高極地微生物資源的利用率等(圖3)。本文中微生物多糖、生物膜、金屬材料腐蝕三者構(gòu)成沙漏狀關系,不同種微生物多糖通過生物膜作為連接點,促進或者抑制金屬材料表面的腐蝕,在此基礎上,進一步探索極地微生物多糖的腐蝕機制對于未來極地服役材料的抗腐蝕性研究十分重要。

        圖3 極地微生物多糖結(jié)構(gòu)、功能、合成及應用

        5 討論與展望

        極地地區(qū)微生物資源豐富,其多樣化的多糖產(chǎn)物是極地微生物資源的研究重點,因為多糖能夠在極寒環(huán)境中保障微生物自身的生長繁殖,具有廣泛的生物活性,因此,它在工業(yè)和社會上有著廣泛應用。目前已經(jīng)有研究人員將多糖添加到涂層中試圖提高材料的防腐性能和抗冰性能[66]。多糖作為天然的腐蝕抑制劑能夠更好地保護環(huán)境,減少對自然生態(tài)系統(tǒng)的損害。無論在微生物腐蝕研究領域還是極地船舶材料研究領域,極地微生物對金屬材料的腐蝕研究都處于空白階段。隨著我國極地事業(yè)的發(fā)展,迫切需要研究極地微生物獨特的生理生化機制是否會對船舶材料造成嚴重的腐蝕危害,從而建立極地船用材料全生命周期的評價體系。同時,隨著更多微生物多糖的發(fā)現(xiàn),其應用范圍將越來越廣,它在腐蝕抑制、食品和化妝品[67-69]等行業(yè)都具有巨大的潛力。

        [1] 李大海, 張熒楠. 冰上絲綢之路海洋科技創(chuàng)新戰(zhàn)略研究[J]. 中國工程科學, 2019, 21(6): 64-70.

        LI Da-hai, ZHANG Ying-nan. Marine Science and Tech-nology Innovation for the Polar Silk Road[J]. Strategic Study of CAE, 2019, 21(6): 64-70.

        [2] ANTONY R, KRISHNAN K P, LALURAJ C M, et al. Diversity and Physiology of Culturable Bacteria Asso-ciated with a Coastal Antarctic Ice Core[J]. Microbiolo-gical Research, 2012, 167(6): 372-380.

        [3] VERDE C, GIORDANO D, BELLAS C M, et al. Polar Marine Microorganisms and Climate Change[J]. Advan-ces in Microbial Physiology, 2016, 69: 187-215.

        [4] DANILOVICH M E, SáNCHEZ L A, ACOSTA F, et al. Antarctic Bioprospecting: In Pursuit of Microorganisms Producing New Antimicrobials and Enzymes[J]. Polar Biology, 2018, 41(7): 1417-1433.

        [5] 林學政, 邊際. 極地微生物低溫適應性的分子機制[J]. 極地研究, 2003(01): 75-82.

        Lin Xue-zheng, bian jiMolecular Mechanisms of Cold Adaptation of Polar Microorganisms[J]. Polar Research, 2003(1): 75-82.

        [6] OZTURK R C, FEYZIOGLU A M, ALTINOK I. Prokaryotic Community and Diversity in Coastal Surface Waters along the Western Antarctic Peninsula[J]. Polar Science, 2022, 31: 100764.

        [7] CHA Qian-qian, WANG Xiu-juan, REN Xue-bing, et al. Comparison of Alginate Utilization Pathways in Cultura-ble Bacteria Isolated from Arctic and Antarctic Marine Environments[J]. Frontiers in Microbiology, 2021, 12: 609393.

        [8] LIU Jia-pei, FAN Ying, LIU Xue-zhu, et al. Communities and Diversities of Bacteria and Archaea in Arctic Sea-water[J]. Evolutionary Ecology Research, 2018, 19: 407- 421.

        [9] ZENG Yin-xin. Phylogenetic Diversity of Dimethyl sul-fo-niopropionate dependent Demethylase Genein Distantly Related Bacteria Isolated from Arctic and Antarctic Marine Environments[J]. Acta Oceanologica Sinica, 2019, 38(8): 64-71.

        [10] RIZZO C, MALAVENDA R, GER?E B, et al. Effects of a Simulated Acute Oil Spillage on Bacterial Communities from Arctic and Antarctic Marine Sediments[J]. Microor-ganisms, 2019, 7(12): 632.

        [11] PERFUMO A, VON SASS G J F, NORDMANN E L, et al. Discovery and Characterization of a New Cold-Active Protease from an Extremophilic Bacterium via Compa-rative Genome Analysis and in Vitro Expression[J]. Fron-tiers in Microbiology, 2020, 11: 881.

        [12] LAURITANO C, RIZZO C, LO GIUDICE A, et al. Phy-sio-logical and Molecular Responses to Main Environ-men-tal Stressors of Microalgae and Bacteria in Polar Marine Environments[J]. Microorganisms, 2020, 8(12): 1957.

        [13] BAEZA M, Zú?IGA S, PERAGALLO V, et al. Identifi-cation of Stress-Related Genes and a Comparative Analy-sis of the Amino Acid Compositions of Translated Coding Sequences Based on Draft Genome Sequences of Antar-ctic Yeasts[J]. Frontiers in Microbiology, 2021, 12: 623171.

        [14] MAHMOUD Y A G, EL-NAGGAR M E, ABDEL- MEGEED A, et al. Recent Advancements in Microbial Poly-saccharides: Synthesis and Applications[J]. Poly-mers, 2021, 13(23): 4136.

        [15] KOO H, HAKIM J, MORROW C, et al. Metagenomic Analysis of Microbial Community Compositions and Cold-Responsive Stress Genes in Selected Antarctic Lacustrine and Soil Ecosystems[J]. Life, 2018, 8(3): 29.

        [16] HUAN Ran, HUANG Jia-feng, LIU Dan, et al. Genome Sequencing ofK4-1 Reveals Its Adap-tation to the Arctic Ocean[J]. Frontiers in Microbiology, 2019, 10: 2812.

        [17] WONG S Y, CHARLESWORTH J C, BENAUD N, et al. Communication within East Antarctic Soil Bacteria[J]. Applied and Environmental Microbiology, 2019, 86(1): e01968-e01919.

        [18] HILTON T, ROSCHE T, FROELICH B, et al. Capsular Polysaccharide Phase Variation in[J]. Applied and Environmental Microbiology, 2006, 72(11): 6986-6993.

        [19] JAVED M A, STODDART P R, PALOMBO E A, et al. Inhibition or Acceleration: Bacterial Test Media can Determine the Course of Microbiologically Influenced Corrosion[J]. Corrosion Science, 2014, 86: 149-158.

        [20] CASILLO A, D'ANGELO C, PARRILLI E, et al. Membrane and Extracellular Matrix Glycopolymers of34H: Structural Changes at Different Growth Temperatures[J]. Frontiers in Microbi-ology, 2022, 13: 820714.

        [21] DI LORENZO F, CRISAFI F, LA CONO V, et al. The Structure of the Lipid a of Gram-Negative Cold-Adapted Bacteria Isolated from Antarctic Environments[J]. Marine Drugs, 2020, 18(12): 592.

        [22] BENFORTE F C, COLONNELLA M A, RICARDI M M, et al. Novel Role of the LPS Core Glycosyltransferase WapH for Cold Adaptation in the Antarctic Bacterium Pseudomonas Extremaustralis[J]. PLoS One, 2018, 13(2): e0192559.

        [23] LIU Sheng-bo, CHEN Xiu-lan, HE Hai-lun, et al. Stru-cture and Ecological Roles of a Novel Exopolysaccharide from the Arctic Sea Ice Bacterium. Strain SM20310[J]. Applied and Environmental Micro-biology, 2013, 79(1): 224-230.

        [24] KREMBS C, EICKEN H, JUNGE K, et al. High Concen-trations of Exopolymeric Substances in Arctic Winter Sea Ice: Implications for the Polar Ocean Carbon Cycle and Cryoprotection of Diatoms[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2002, 49(12): 2163- 2181.

        [25] BLANCO Y, RIVAS L A, GONZáLEZ-TORIL E, et al. Environmental Parameters, and not Phylogeny, Determine the Composition of Extracellular Polymeric Substances in Microbial Mats from Extreme Environments[J]. Science of the Total Environment, 2019, 650: 384-393.

        [26] MINIC Z, MARIE C, DELORME C, et al. Control of, the Phosphoglycosyltransferase Initiating Exopoly-sa-ccharide Synthesis in Streptococcus Thermophilus, byTyrosine Kinase[J]. Journal of Bacteriology, 2007, 189(4): 1351-1357.

        [27] ZEIDAN A A, POULSEN V K, JANZEN T, et al. Poly-saccharide Production by Lactic Acid Bacteria: From Genes to Industrial Applications[J]. FEMS Microbiology Reviews, 2017, 41(Supp_1): S168-S200.

        [28] ELSHOLZ A K W, WACKER S A, LOSICK R. Self- Regulation of Exopolysaccharide Production inby a Tyrosine Kinase[J]. Genes & Development, 2014, 28(15): 1710-1720.

        [29] WILLIAMS D M, OVCHINNIKOVA O G, KOIZUMI A, et al. Single Polysaccharide Assembly Protein that Inte-grates Polymerization, Termination, and Chain- Length Quality Control[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(7): E1215-E1223.

        [30] LARUE K, FORD R C, WILLIS L M, et al. Functional and Structural Characterization of Polysaccharide Co-Polymerase Proteins Required for Polymer Export in ATP-Binding Cassette Transporter-Dependent Capsule Biosynthesis Pathways[J]. The Journal of Biological Chemistry, 2011, 286(19): 16658-16668.

        [31] WHITNEY J C, HOWELL P L. Synthase-Dependent Exo-polysaccharide Secretion in Gram-Negative Bac-teria[J]. Trends in Microbiology, 2013, 21(2): 63-72.

        [32] SAMROT A V, ABUBAKAR MOHAMED A, FARAD-JEVA E, et al. Mechanisms and Impact of Biofilms and Targeting of Biofilms Using Bioactive Compounds-a Review[J]. Medicina, 2021, 57(8): 839.

        [33] CUI Xiao-chun, CHEN Cong-li, LIU Ying-lu, et al. Exo-genous Refractory Protein Enhances Biofilm Formation by Altering the Quorum Sensing System: A Potential Ha-zard of Soluble Microbial Proteins from WWTP Efflu-ent[J]. Science of the Total Environment, 2019, 667: 384-389.

        [34] ZHUANG Zheng, YANG Gui-qin, MAI Qi-jun, et al. Physiological Potential of Extracellular Polysaccharide in PromotingBiofilm Formation and Extrace-llular Electron Transfer[J]. Science of the Total Environ-ment, 2020, 741: 140365.

        [35] BELLICH B, DISTEFANO M, SYRGIANNIS Z, et al. The Polysaccharide Extracted from the Biofilm ofStrain C1576 Binds Hydrophobic Species and Exhibits a Compact 3D-Structure[J]. Interna-tional Journal of Biological Macromolecules, 2019, 136: 944-950.

        [36] GRISHIN A V, KARYAGINA A S. Polysaccharide Gala-ctan Inhibits Pseudomonas Aeruginosa Biofilm Formation but Protects Pre-Formed Biofilms from Antibiotics[J]. Biochemistry Biokhimiia, 2019, 84(5): 509-519.

        [37] ZENG Zhen-shun, GUO Xing-pan, LI Bai-yuan, et al. Characterization of Self-Generated Variants inBiofilm with Increased Antifouling Activities[J]. Applied Microbiology and Biotechnology, 2015, 99(23): 10127-10139.

        [38] WANG Xin, PRESTON J F 3rd, ROMEO T. The pgaABCD Locus of Escherichia Coli Promotes the Syn-thesis of a Polysaccharide Adhesin Required for Biofilm Formation[J]. Journal of Bacteriology, 2004, 186(9): 2724-2734.

        [39] WANG Xin, DUBEY A K, SUZUKI K, et al. CsrA Post-Transcriptionally Represses pgaABCD, Responsible for Synthesis of a Biofilm Polysaccharide Adhesin of Escherichia Coli[J]. Molecular Microbiology, 2005, 56(6): 1648-1663.

        [40] SAXENA P, JOSHI Y, RAWAT K, et al. Biofilms: Architecture, Resistance, Quorum Sensing and Control Mechanisms[J]. Indian Journal of Microbiology, 2019, 59(1): 3-12.

        [41] BEHNSEN J, DERIU E, SASSONE-CORSI M, et al. Probiotics: Properties, Examples, and Specific Applica-tions[J]. Cold Spring Harbor Perspectives in Medicine, 2013, 3(3): a010074.

        [42] CHRISMAS N A M, BARKER G, ANESIO A M, et al. Genomic Mechanisms for Cold Tolerance and Production of Exopolysaccharides in the Arctic CyanobacteriumBC1401[J]. BMC Genomics, 2016, 17(1): 533.

        [43] VáSQUEZ-PONCE F, HIGUERA-LLANTéN S, PAV-LOV M S, et al. Alginate Overproduction and Biofilm Formation by PsychrotolerantDe-pend on Temperature in Antarctic Marine Sedi-ments[J]. Electronic Journal of Biotechnology, 2017, 28: 27-34.

        [44] WISSUWA J, BAUER S L, STEEN I H, et al. Complete Genome Sequence ofLP1TIsolated from an Arctic Deep-Sea Hydrothermal Vent System[J]. Standards in Genomic Sciences, 2017, 12: 5.

        [45] HOU Bao-rong, LI Xiao-gang, MA Xiu-min, et al. The Cost of Corrosion in China[J]. Npj Materials Degradation, 2017, 1: 4.

        [46] SABEL C F, VICTOR D G. Governing Global Problems under Uncertainty: Making Bottom-up Climate Policy Work[J]. Climatic Change, 2017, 144(1): 15-27.

        [47] 呂美英, 李振欣, 杜敏, 等. 微生物腐蝕中生物膜的生成、作用與演變[J]. 表面技術, 2019, 48(11): 59-68.

        LYU Mei-ying, LI Zhen-xin, DU Min, et al. Formation, Function and Evolution of Biofilm in Microbiologically Influenced Corrosion[J]. Surface Technology, 2019, 48(11): 59-68.

        [48] 侯保榮. 海洋腐蝕防護的現(xiàn)狀與未來[J]. 中國科學院院刊, 2016, 31(12): 6.

        Hou Bao-rongCurrent Status and Future of Marine Corrosion Protection[J]. PNAS, 2016, 31(12): 6.

        [49] MORADI M, SONG Zhen-lun, XIAO Tao. Exopolysac-charide Produced byas a Green Corrosion Inhibitor: Production and Structural Cha-racterization[J]. Journal of Materials Science & Tech-nology, 2018, 34(12): 2447-2457.

        [50] GUO Na, ZHAO Qian-yu, HUI Xin-rui, et al. Enhanced Corrosion Protection Action of Biofilms Based on Endo-genous and Exogenous Bacterial Cellulose[J]. Corrosion Science, 2022, 194: 256.

        [51] CEYHAN N. Evaluation of Enzymatic Removal of Coo-ling Water System Biofilm Using Its Own Producer Bac-teria[J]. Asian Journal of Chemistry, 2013, 25(1): 251- 256.

        [52] MACHUCA L L, JEFFREY R, MELCHERS R E. Micro-organisms Associated with Corrosion of Structural Steel in Diverse Atmospheres[J]. International Biodeterioration & Biodegradation, 2016, 114: 234-243.

        [53] YU Fei, ADDISON O, BAKER S J, et al. Lipopoly-sac-charide Inhibits or Accelerates Biomedical Titanium Cor-rosion Depending on Environmental Acidity[J]. Inter-national Journal of Oral Science, 2015, 7(3): 179-186.

        [54] MA Yan, ZHANG Yi-meng, ZHANG Rui-yong, et al. Microbiologically Influenced Corrosion of Marine Steels within the Interaction between Steel and Biofilms: A Brief View[J]. Applied Microbiology and Biotechnology, 2020, 104(2): 515-525.

        [55] ALI L, BLUM H E, SAKΙN? T. Detection and Chara-cterization of Bacterial Polysaccharides in Drug-Resistant Enterococci[J]. Glycoconjugate Journal, 2019, 36(5): 429- 438.

        [56] YANG Da-zhang, LEI Yan-hua, XIE Jing, et al. The Mic-robial Corrosion Behaviour of Ni-P Plating by Sulfate- Reducing Bacteria Biofouling in Seawater[J]. Materials Technology, 2019, 34(8): 444-454.

        [57] SACHAN R, SINGH A K. Comparison of Microbial Influ-enced Corrosion in Presence of Iron Oxidizing Bac-teria (Strains DASEWM1 and DASEWM2)[J]. Constru-ction and Building Materials, 2020, 256: 119438.

        [58] ACU?A N, ORTEGA-MORALES B O, VALADEZ- GONZáLEZ A. Biofilm Colonization Dynamics and Its Influence on the Corrosion Resistance of Austenitic UNS S31603 Stainless Steel Exposed to Gulf of Mexico Seawater[J]. Marine Biotechnology, 2006, 8(1): 62-70.

        [59] GUO Zhang-wei, LIU Tao, CHENG Y F, et al. Adhesion ofandto Steel in a Seawater Environment and Their Effects on Corrosion[J]. Colloids and Surfaces B: Biointerfaces, 2017, 157: 157-165.

        [60] WANG Ya-nan, ZHANG Rui-yong, DUAN Ji-zhou, et al. Extracellular Polymeric Substances and Biocorrosion/ Bio-fouling: Recent Advances and Future Perspectives[J]. International Journal of Molecular Sciences, 2022, 23(10): 5566.

        [61] HASSAN R, ZAAFARANY I. Kinetics of Corrosion Inhibition of Aluminum in Acidic Media by Water- Soluble Natural Polymeric Pectates as Anionic Polyele-ctrolyte Inhibitors[J]. Materials, 2013, 6(6): 2436-2451.

        [62] POLI A, ANZELMO G, TOMMONARO G, et al. Produ-ction and Chemical Characterization of an Exopolysac-charide Synthesized by Psychrophilic Yeast StrainAL1Isolated from Livingston Island, Antarctica[J]. Folia Microbiologica, 2010, 55(6): 576-581.

        [63] RUSINOVA-VIDEVA S, KAMBOUROVA M, ALI-PI-EVA K, et al. Metabolic Profiling of Antarctic Yeasts by Proton Nuclear Magnetic Resonance-Based Spectros-copy[J]. Biotechnology & Biotechnological Equipment, 2019, 33(1): 12-19.

        [64] TOSHKOVA R, YOSSIFOVA L, GARDEVA E, et al. In Vitro Immunobiological Activity of an Antarctic Stre-ptomyces Polysaccharide[J]. Comptes Rendus De L Aca-demie Bulgare Des Sciences, 2010, 63: 1667-1674.

        [65] CHEN Hao, ZHENG Zhou, CHEN Peng, et al. Inhibitory Effect of Extracellular Polysaccharide EPS-II fromonAdhesion to Cornea[J]. Biomedical and Environmental Sciences, 2012, 25(2): 210-215.

        [66] YANG Wei, XU Da-peng, WANG Jian-li, et al. Micro-structure and Corrosion Resistance of Micro Arc Oxi-dation Plus Electrostatic Powder Spraying Composite Co-ating on Magnesium Alloy[J]. Corrosion Science, 2018, 136: 174-179.

        [67] YOUNES M, AGGETT P, et al. re-Evaluation of Gellan Gum (E 418) as Food Additive[J]. EFSA Journal, 2018, 16(6): 659.

        [68] ANDERSON L A, ISLAM M A, PRATHER K L J. Synthetic Biology Strategies for Improving Microbial Synthesis of Green Biopolymers[J]. The Journal of Bio-logical Chemistry, 2018, 293(14): 5053-5061.

        [69] DE CAMARGO F B J, GASPAR L R, Patrícia Maria Berardo Gon?alves Maia Campos. Immediate and Long- Term Effects of Polysaccharides-Based Formulations on Human Skin[J]. Brazilian Journal of Pharmaceutical Sciences, 2012, 48(3): 547-555.

        Biological Characteristics of Polar Microbial Polysaccharides and Corresponding Mechanism of Metal Corrosion

        ,,,

        (College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China)

        Microorganism is widely distributed in nature, and has been utilized in all aspects of human social development due to its advantages of convenience, economy and environmental protection. With the development of the arctic and Antarctic, polar microorganisms have attracted extensive interest because of their unique biological characteristics in adapting to the harsh polar natural environment. Especially, polar microbial polysaccharides are important research branch, which is structurally different from ordinary microbial polysaccharides.It is helpful for normal life activities of microorganisms in extremely cold environment. In addition, the Wzx-Wzy, ABC transporters, synthase-dependent pathways of microbial synthesis of polysac-charides and the relationship between polysaccharides and biofilm formation are also discussed in this paper. Based on this, the effect of polysaccharides on the surface corrosion of metal materials is further extended. By studying the relationship between the characteristics of polar microbial polysaccharides, biofilm formation and metal corrosion, the key factors affecting the mechanism of polar microbial corrosion were explored, providing perspective for the corrosion protection of polar service materials in the future.

        polar microorganism; polysaccharides; polar region; corrosion

        2022-05-29;

        2022-08-22

        SUN Zhen-mei (1997-), Female, Ph. D. student, Research focus: microbiologically influenced corrosion.

        劉濤(1979—),男,博士,教授,主要研究方向為海洋工程材料。

        LIU Tao (1979-), Male, Doctor, Professor, Research focus: marine engineering materials.

        孫振美,劉濤,郭娜,等. 極地微生物多糖的生物學特征及對金屬的腐蝕影響機制[J]. 表面技術, 2022, 51(9): 65-73.

        tg172

        A

        1001-3660(2022)09-0065-09

        10.16490/j.cnki.issn.1001-3660.2022.09.000

        2022–05–29;

        2022–08–22

        國家自然科學基金(41976039,42006039,51901127);上海市自然科學基金(19ZR1422100)

        Fund:National Natural Science Foundation of China (41976039, 42006039, 51901127); Natural Science Foundation of Shanghai (19ZR1422100)

        孫振美(1996—),女,博士研究生,主要研究方向為微生物腐蝕。

        SUN Zhen-mei, LIU Tao, GUO Na, et al. Biological Characteristics of Polar Microbial Polysaccharides and Corresponding Mechanism of Metal Corrosion[J]. Surface Technology, 2022, 51(9): 65-73.

        責任編輯:萬長清

        女优视频一区二区三区在线观看| 四川少妇大战4黑人| 大胆欧美熟妇xxbbwwbw高潮了| 亚洲公开免费在线视频| 亚洲激情一区二区三区视频| 亚洲天堂成人av在线观看| 在熟睡夫面前侵犯我在线播放| 亚洲视频毛片| 亚洲av毛片成人精品| 开心激情视频亚洲老熟女| 一区二区三区中文字幕| 亚洲av乱码中文一区二区三区| 2020最新国产激情| 亚洲在线精品一区二区三区| 好吊妞无缓冲视频观看 | 青青青爽国产在线视频| 成人综合亚洲国产成人| 中文字幕人妻少妇伦伦| 麻豆精品国产精华精华液好用吗 | 精品三级久久久久久久电影| 久久免费网站91色网站| 人妻制服丝袜中文字幕| 日韩欧美人妻一区二区三区| 老熟女老女人国产老太| 国产伦理一区二区| 国产一级毛片AV不卡尤物| 亚洲av高清在线一区二区三区| 国产精品激情自拍视频| 天天爽夜夜爽夜夜爽| 久久久久久久综合日本| 久久亚洲网站中文字幕| 欧美人牲交| 91视频88av| 日本熟妇视频在线中出| 亚洲国产精品久久精品| 亚洲av纯肉无码精品动漫| 国产欧美亚洲精品第二区首页 | 中文字幕偷拍亚洲九色| 青青草视频在线观看色| 人人妻人人澡人人爽精品欧美| 无码人妻精品一区二区三区下载 |